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QUENCHING OF A SEMILINEAR DIFFUSION EQUATION
WITH CONVECTION AND REACTION

QIAN ZHOU, YUANYUAN NIE, XU ZHOU, WEI GUO

Abstract. This article concerns the quenching phenomenon of the solution

to the Dirichlet problem of a semilinear diffusion equation with convection and
reaction. It is shown that there exists a critical length for the spatial interval

in the sense that the solution exists globally in time if the length of the spatial

interval is less than this number while the solution quenches if the length is
greater than this number. For the solution quenching at a finite time, we study

the location of the quenching points and the blowing up of the derivative of

the solution with respect to the time.

1. Introduction

In this article, we consider the problem

∂u

∂t
− ∂2u

∂x2
+ b(x)

∂u

∂x
= f(u), (x, t) ∈ (0, a)× (0, T ), (1.1)

u(0, t) = 0 = u(a, t), t ∈ (0, T ), (1.2)

u(x, 0) = 0, x ∈ (0, a), (1.3)

where a > 0, b ∈ C1([0,+∞))∩L∞([0,+∞)) and f ∈ C1([0, c)) with c > 0 satisfies

f(0) > 0, f ′(s) > 0 for 0 < s < c, lim
s→c−

f(s) = +∞. (1.4)

By the properties of f , the solution u to the problem (1.1)–(1.3) may quench, i.e.,
there exists a time 0 < T∗ ≤ +∞ such that

sup
(0,a)

u(·, t) < c for each 0 < t < T∗ and lim
t→T−∗

sup
(0,a)

u(·, t) = c.

It is called that u quenches at a finite time if T∗ < +∞, while u quenches at the
infinite time if T∗ = +∞.

Quenching phenomena were introduced by Kawarada [10] in 1975 for the problem
(1.1)–(1.3) in the case that b ≡ 0 and f(s) = (1− s)−1 (0 ≤ s < 1), where Kawarada
proved the existence of the critical length (which is 2

√
2). That is to say, the solution

exists globally in time if a is less than the critical length, while it quenches if a is
greater than the critical length. For the quenching case, Kawarada also showed
that a/2 is the quenching point and the derivative of the solution with respect to
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the time blows up at the quenching time. However, it was unknown what happens
when a is equal to the critical length in [10]. For the special case that f(s) =
(c− s)−β (0 ≤ s < c, β > 0), Levine ([12]) in 1989 proved that the solution can not
quench in infinite time by finding the explicit form of the minimum steady-state
soluton. Since [10], there are many interesting results on quenching phenomena for
semilinear uniformly parabolic equations (see, e.g., [1, 2, 7, 11, 13, 14]), singular or
degenerate semilinear parabolic equations (see, e.g., [3, 4, 5, 6, 9]) and quasilinear
diffusion equations ([8, 15, 16, 17]).

In this article, we study the quenching phenomenon of the solution to (1.1)–(1.3).
Since there is a convection term in (1.1), it can describe more diffusion phenomena.
By constructing suitable super and sub solutions, we prove the existence of the
critical length. For the solution quenching at a finite time, we also study the location
of the quenching points and the blowing up of the derivative of the solution with
respect to the time at the quenching time by energy estimates and many kinds of
super and sub solutions. Due to the existence of the convection term in (1.1), we
have to overcome some technical difficulties when doing estimates and constructing
super and sub solutions.

This paper is arranged as follows. The existence of the critical length is proved
in §2. Subsequently, in §3 we study the quenching properties for the quenching
solution, including the location of the quenching points and the blowing up of the
derivative of the solution with respect to the time at the quenching time.

2. Critical length

Thanks to the classical theory on parabolic equations, problem (1.1)–(1.3) is
well-posed locally in time. Denote

T∗ = sup
{
T > 0 : problem (1.1)–(1.3) admits a solution

u ∈ C2,1((0, a)× (0, T )) ∩ C([0, a]× [0, T ]) and sup
(0,a)×(0,T )

u < c
}
.

T∗ is called the life span of the solution to (1.1)–(1.3).

Proposition 2.1. Problem (1.1)–(1.3) admits uniquely a solution u in (0, T∗).
Furthermore, u ∈ C2,1((0, a)× (0, T∗)) ∩ C([0, a]× [0, T∗)) and satisfies u > 0 and
∂u
∂t > 0 in (0, a)× (0, T∗).

Proof. Clearly, the existence and uniqueness follow from the local well-posedness
and a standard extension process. Set

v(x, t) =
∂u

∂t
(x, t), (x, t) ∈ [0, a]× [0, T∗).

Then v solves

∂v

∂t
− ∂2v

∂x2
+ b(x)

∂v

∂x
= f ′(u(x, t))v, (x, t) ∈ (0, a)× (0, T∗),

v(0, t) = 0 = v(a, t), t ∈ (0, T∗),

v(x, 0) = f(0), x ∈ (0, a).

The strong maximal principles for u and v show that u > 0 and v > 0 in (0, a) ×
(0, T∗). �
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If T∗ = +∞, then u exists globally in time. If T∗ < +∞, then u must quench at
a finite time. Let us study the relation between T∗ and a below. For convenience,
we denote ua to be the solution to (1.1)–(1.3) and T∗(a) to be its life span.

Lemma 2.2. If a > 0 is sufficiently small, then T∗(a) = +∞, and

sup
(0,a)×(0,+∞)

ua < c.

Proof. Fix 0 < c0 < c and

0 < a ≤ min
{( 4c0

f(c0)

)1/2

,
1

‖b‖L∞([0,+∞)) + 1

}
.

Set
ūa(x, t) = f(c0)x(a− x), (x, t) ∈ [0, a]× [0,+∞).

Then, ūa satisfies

0 ≤ ūa(x, t) ≤ 1
4
f(c0)a2 ≤ c0, (x, t) ∈ [0, a]× [0,+∞),

∂ūa
∂t
− ∂2ūa

∂x2
+ b(x)

∂ūa
∂x

= 2f(c0) + f(c0)b(x)(a− 2x) ≥ f(c0) ≥ f(ūa),

(x, t) ∈ (0, a)× (0,+∞).

The comparison principle shows that ua ≤ ūa ≤ c0 in (0, a)× (0,+∞). �

Lemma 2.3. If a > 0 is sufficiently large, then T∗(a) < +∞.

Proof. Set

ua(x, t) =
t

4T
f(0)x(a− x), (x, t) ∈ [0, a]× [0, T ]

with T = max
{

1
4a

2, a(‖b‖L∞([0,+∞)) + 1)
}

. Then, ua satisfies

∂ua
∂t
− ∂2ua

∂x2
+ b(x)

∂ua
∂x

=
1

4T
f(0)x(a− x) +

t

2T
f(0) +

t

4T
f(0)b(x)(a− 2x)

≤ f(0) ≤ f(ua), (x, t) ∈ (0, a)× (0, T ).

The comparison principle shows ua ≥ ua in (0, a)×(0, T ). Particularly, ua(a/2, T ) ≥
1
16f(0)a2, which yields T∗(a) < +∞ if a ≥ 4

√
c/
√
f(0). �

Lemma 2.4. For any 0 < a1 < a2, we have ua1 < ua2 in (0, a1)× (0, T∗(a2)) and
∂ua1
∂x (0, ·) < ∂ua2

∂x (0, ·) in (0, T∗(a2)).

Proof. Proposition 2.1 shows T∗(a1) ≥ T∗(a2) and ua2(a1, t) > 0 for each t ∈
(0, T∗(a2)). Set

w(x, t) = ua1(x, t)− ua2(x, t), (x, t) ∈ [0, a1]× [0, T∗(a2)).

Then w solves
∂w

∂t
− ∂2w

∂x2
+ b(x)

∂w

∂x
= h(x, t)w, (x, t) ∈ (0, a1)× (0, T∗(a2)),

w(0, t) = 0, w(a1, t) = ua2(a1, t) > 0, t ∈ (0, T∗(a2)),

w(x, 0) = 0, x ∈ (0, a1),

where

h(x, t) =
∫ 1

0

f ′(σua1(x, t) + (1− σ)ua2(x, t))dσ, (x, t) ∈ (0, a1)× (0, T∗(a2)).
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The strong maximum principle leads to w < 0 in (0, a1)× (0, T∗(a2)), and thus the
Hopf Lemma yields ∂w

∂x (0, ·) < 0 in (0, T∗(a2)). �

Lemma 2.5. There exists at most one a > 0 such that ua quenches at the infinite
time.

Proof. Assume that ua0 quenches at the infinite time for some a0 > 0. For each
a > a0, let us show that ua quenches at a finite time by contradiction. Otherwise,
Lemma 2.4 shows that ua must quench at the infinite time. Proposition 2.1 and
Lemma 2.4 yield

ua(a0, t) > ua(a0, 1) > 0, t ∈ (1,+∞), (2.1)

ua(x, 1) > ua0(x, 1), x ∈ (0, a0) and
∂ua
∂x

(0, t) >
∂ua0

∂x
(0, t), t ∈ (1,+∞).

(2.2)

Let

ua(x, t) = ua0(x, t) + δ

∫ x

0

exp
{∫ y

0

b(s)ds
}
dy, (x, t) ∈ [0, a0]× [1,+∞).

By (2.1) and (2.2), there exists δ > 0 such that

ua(a0, t) > ua, t ∈ (1,+∞), ua(x, 1) > ua(x, 1), x ∈ (0, a0). (2.3)

Note that ua satisfies

∂ua
∂t
− ∂2ua

∂x2
+ b(x) pduax = f(ua0) < f(ua), (x, t) ∈ (0, a0)× (1,+∞). (2.4)

Owing to (2.3) and (2.4), the comparison principle gives

ua(x, t) ≥ ua(x, t) = ua0(x, t)+δ
∫ x

0

exp
{∫ y

0

b(s)ds
}
dy, (x, t) ∈ [0, a0]×[1,+∞),

which contradicts that both ua0 and ua quench at the infinite time. �

Theorem 2.6. Assume that f ∈ C1([0, c)) satisfies (1.4). Then there exists a∗ > 0
such that

(i) T∗(a) = +∞ and sup(0,a)×(0,+∞) ua < c if 0 < a < a∗,
(ii) T∗(a) < +∞ if a > a∗.

Proof. Set
S =

{
a > 0 : T∗(a) = +∞ and sup

(0,a)×(0,+∞)

ua < c
}
.

From Lemmas 2.2 and 2.3, S is a bounded set. Denote a∗ = supS. By Lemma 2.4,
a ∈ S for each 0 < a < a∗. For a > a∗, the definition of S shows that T∗(a) < +∞
or ua quenches at the infinite time. Let us prove that the latter case is impossible
by contradiction. Otherwise, assume that ua0 quenches at the infinite time for some
a0 > a∗. From the definition of S and Lemma 2.4, uã must quench at the infinite
time for each a∗ < ã < a0, which contradicts Lemma 2.5. �

Remark 2.7. T∗(a∗) = +∞. However, it is unknown whether ua∗ quenches or not
at the infinite time.

Remark 2.8. To consider the classical solution to problem (1.1)–(1.3), we need
b ∈ C1([0,+∞)) ∩ L∞([0,+∞)). While b ∈ L∞([0,+∞)), we can investigate the
weak solution to (1.1)–(1.3), and it is not hard to show that Lemmas 2.2–2.5 also
hold. Therefore, Theorem 2.6 still holds if b ∈ L∞([0,+∞)).
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3. Quenching properties

Definition 3.1. Assume that the solution u to (1.1)–(1.3) quenches at 0 < T∗ <
+∞. A point x ∈ [0, a] is said to be a quenching point if there exist two sequences
{tn}∞n=1 ⊂ (0, T∗) and {xn}∞n=1 ⊂ (0, a) such that

lim
n→∞

tn = T∗, lim
n→∞

xn = x, lim
n→∞

u(xn, tn) = c.

Theorem 3.2. Assume that f ∈ C1([0, c)) satisfies (1.4) and M =
∫ c
0
f(s)ds <

+∞. Let u be the solution to (1.1)–(1.3) quenching at a finite time T∗. Then the
quenching points belong to [δ, a− δ] with

δ =
c2

2aM
exp

{
− 1

2
‖b‖L∞([0,+∞))T∗

}
.

Proof. For each 0 < s < T∗, multiplying (1.1) by ∂u
∂t and then integrating over

(0, a)× (0, s) by parts with (1.2), one gets∫ s

0

∫ a

0

(∂u
∂t

)2

dx dt+
1
2

∫ s

0

∫ a

0

∂

∂t

(∂u
∂x

)2

dx dt+
∫ s

0

∫ a

0

b(x)
∂u

∂x

∂u

∂t
dx dt

=
∫ s

0

∫ a

0

∂

∂t
F (u) dx dt

with

F (ω) =
∫ ω

0

f(y) dy (ω ≥ 0),

which, together with (1.3), the Young inequality and the Schwarz inequality, lead
to∫ a

0

(∂u
∂x

(x, s)
)2

dx ≤ 2
∫ a

0

F (u(x, s))dx+
1
2
‖b‖L∞([0,+∞))

∫ s

0

∫ a

0

(∂u
∂x

(x, t)
)2

dx dt

≤ 2aM +
1
2
‖b‖L∞([0,+∞))

∫ s

0

∫ a

0

(∂u
∂x

(x, t)
)2

dx dt.

Then, the Gronwall inequality shows∫ a

0

(∂u
∂x

(x, s)
)2

dx ≤ 2aM exp
{1

2
‖b‖L∞([0,+∞))T∗

}
, t ∈ (0, T∗). (3.1)

By (3.1), (1.2) and the Schwarz inequality, one gets

u(x, t) =
∫ x

0

∂u

∂x
(y, t)dy

≤ x1/2
(∫ a

0

(∂u
∂x

(y, t)
)2

dy
)1/2

≤ (2aMx)1/2 exp
{1

4
‖b‖L∞([0,+∞))T∗

}
, (x, t) ∈ [0, a/2]× (0, T∗)

and

u(x, t) = −
∫ a

x

∂u

∂x
(y, t)dy ≤ (a− x)1/2

(∫ a

0

(∂u
∂x

(y, t)
)2

dy
)1/2

≤ (2aM(a− x))1/2 exp
{1

4
‖b‖L∞([0,+∞))T∗

}
, (x, t) ∈ [a/2, a]× (0, T∗),

which show that there is no quenching point in [0, δ) ∪ (a− δ, a]. �
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Theorem 3.3. Assume that f ∈ C2([0, c)) satisfies (1.4),
∫ c
0
f(s)ds < +∞ and

f ′′ ≥ 0 in (0, c). Let u be the solution to the problem (1.1)–(1.3) quenching at a finite
time T∗. Then the solution u to (1.1)–(1.3) satisfies limt→T−∗ sup(0,a)

∂u
∂t (·, t) = +∞.

Proof. From Theorem 3.2, there exist 0 < x1 < x2 < x3 < x4 < a such that

lim
t→T−∗

sup
(x2,x3)

u(·, t) = c, sup
(0,x2)×(0,T∗)

u < c, sup
(x3,a)×(0,T∗)

u < c. (3.2)

Set

v(x, t) =
∂u

∂t
(x, t), (x, t) ∈ [0, a]× [0, T∗),

which solves

∂v

∂t
− ∂2v

∂x2
+ b(x)

∂v

∂x
= f ′(u)v, (x, t) ∈ (0, a)× (0, T ). (3.3)

Proposition 2.1 gives

v(x, t) > 0, (x, t) ∈ (0, a)× (0, T∗). (3.4)

Let z be the solution to the linear problem

∂z

∂t
− ∂2z

∂x2
+ b(x)

∂z

∂x
= 0, (x, t) ∈ (x1, x4)× (T∗/2, T∗), (3.5)

z(x1, t) = z(x4, t) = 0, t ∈ (T∗/2, T∗), (3.6)

z(x, T∗/2) = δ sin
(π(x− x1)
x4 − x1

)
, x ∈ (x1, x4) (3.7)

with δ = min(x1,x4) v(·, T∗/2). Owing to (3.3) and (3.4), v is a supersolution to
(3.5)–(3.7). The comparison principle and the maximum principle give

v(x, t) ≥ z(x, t) ≥ γ, (x, t) ∈ (x1, x4)× (T∗/2, T∗) (3.8)

with some γ > 0. Set

w(x, t) = v(x, t)− κf(u(x, t)), (x, t) ∈ [x2, x3]× [T∗/2, T∗).

By (3.2) and (3.8), there exists κ > 0 such that

w(x, t) ≥ 0, (x, t) ∈ {x2, x3} × [T∗/2, T∗) ∪ [x1, x2]× {T∗/2}. (3.9)

Thanks to (1.1) and (3.3), v solves

∂w

∂t
− ∂2w

∂x2
+ b(x)

∂w

∂x
− f ′(u)w = κf ′′(u)

(∂w
∂x

)2

≥ 0,

(x, t) ∈ (x2, x3)× (T∗/2, T∗).

Then, it follows from the maximal principle with (3.9) that w ≥ 0 in (x2, x3) ×
[T∗/2, T∗), which, together with (3.2), yields limt→T−∗ sup(x2,x3) v(·, t) = +∞. �

Remark 3.4. As in Remark 2.8, we note that Theorems 3.2 and 3.3 remain valid
if b ∈ L∞([0,+∞)).
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