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APPROXIMATING SOLUTIONS OF NONLINEAR PBVPS OF
SECOND-ORDER DIFFERENTIAL EQUATIONS VIA HYBRID

FIXED POINT THEORY

BAPURAO C. DHAGE, SHYAM B. DHAGE

Abstract. In this article we prove the existence and approximations of solu-

tions of periodic boundary-value problems of second-order ordinary nonlinear

hybrid differential equations. We rely our results on Dhage iteration prin-
ciple or method embodied in a recent hybrid fixed point theorem of Dhage

(2014) in partially ordered normed linear spaces. Our resutls are proved under

weaker continuity and Lipschitz conditions. An example illustrates the theory
developed in this article.

1. Statement of the problem

Given a closed and bounded interval J = [0, T ] of the real line R for some T > 0,
consider the periodic boundary value problem (in short PBVP) of second-order
ordinary nonlinear hybrid differential equation (in short HDE),

x′′(t) = f(t, x(t)) + g(t, x(t)),

x(0) = x(T ), x′(0) = x′(T ),
(1.1)

for all t ∈ J , where f, g : J × R→ R are continuous functions.
By a solution of the HDE (1.1) we mean a function x ∈ C2(J,R) that satisfies

(1.1), where C2(J,R) is the space of twice continuously differentiable real-valued
functions defined on J .

The HDE (1.1) is a hybrid differential equation with a linear perturbation of
first type and can be tackled with the hybrid fixed point theory (cf. Dhage [1, 2]).
The existence theorems proved via classical fixed point theorems on the lines of
Krasnoselskii [10] requires the condition that the nonlinearities involved in (1.1)
to satisfy a strong Lipschitz and compactness type conditions and do not yield
any algorithm to find the numerical solutions. Very recently, Dhage and Dhage [7]
relaxed the above conditions and proved the existence as well as algorithms for the
initial and periodic boundary value problems of nonlinear second order differential
equations. The similar study is continued in Dhage et al [8] for the initial value
problems of hybrid differential equations. However, we do not find any work in the
literature for hybrid PBVPs along this line. This is the main motivation of this
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article and it is proved that the existence as well as algorithm of the solutions may
be proved for periodic boundary value problems of nonlinear second-order ordinary
differential equations under weaker partially continuity and partially compactness
type conditions.

The article is organized as follows. In Section 2 we give some preliminaries and
key fixed point theorem that will be used in subsequent part of the paper. In Section
3 we establish the main existence result and we provide an example to illustrate
our main result.

2. Auxiliary results

Unless otherwise mentioned, throughout this paper that follows, let E denote a
partially ordered real normed linear space with an order relation � and the norm
‖ · ‖. It is known that E is regular if {xn} is a nondecreasing (resp. nonincreasing)
sequence in E such that xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗)
for all n ∈ N. The conditions guaranteeing the regularity of E may be found in
Heikkilä and Lakshmikantham [9] and the references therein. We need the following
definitions in the sequel.

Definition 2.1. A mapping T : E → E is called isotone or monotone nondecreas-
ing if it preserves the order relation �, that is, if x � y implies T x � T y for all
x, y ∈ E. Similarly, T is called monotone nonincreasing if x � y implies T x � T y
for all x, y ∈ E. Finally, T is called monotonic or simply monotone if it is either
monotone nondecreasing or monotone nonincreasing on E..

An operator T on a normed linear space E into itself is called compact if T (E)
is a relatively compact subset of E. T is called totally bounded if for any bounded
subset S of E, T (S) is a relatively compact subset of E. If T is continuous and
totally bounded, then it is called completely continuous on E.

Definition 2.2 (Dhage [3]). A mapping T : E → E is called partially continuous
at a point a ∈ E if for ε > 0 there exists a δ > 0 such that ‖T x−T a‖ < ε whenever
x is comparable to a and ‖x − a‖ < δ. T called partially continuous on E if it is
partially continuous at every point of it. It is clear that if T is partially continuous
on E, then it is continuous on every chain C contained in E.

Definition 2.3 (Dhage [2, 3]). An operator T on a partially normed linear space
E into itself is called partially bounded if T (C) is bounded for every chain C in
E. T is called uniformly partially bounded if all chains T (C) in E are bounded by
a unique constant. T is called partially compact if T (C) is a relatively compact
subset of E for all totally ordered sets or chains C in E. T is called partially totally
bounded if for any totally ordered and bounded subset C of E, T (C) is a relatively
compact subset of E. If T is partially continuous and partially totally bounded,
then it is called partially completely continuous on E.

Remark 2.4. Note that every compact mapping on a partially normed linear
space is partially compact and every partially compact mapping is partially totally
bounded, however the reverse implications do not hold. Again, every completely
continuous mapping is partially completely continuous and every partially com-
pletely continuous mapping is partially continuous and partially totally bounded,
but the converse may not be true.
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Definition 2.5 (Dhage [2]). The order relation � and the metric d on a non-
empty set E are said to be compatible if {xn} is a monotone, that is, monotone
nondecreasing or monotone nondecreasing sequence in E and if a subsequence {xnk

}
of {xn} converges to x∗ implies that the whole sequence {xn} converges to x∗.
Similarly, given a partially ordered normed linear space (E,�, ‖ · ‖), the order
relation � and the norm ‖ · ‖ are said to be compatible if � and the metric d
defined through the norm ‖ · ‖ are compatible.

Clearly, the set R of real numbers with usual order relation ≤ and the norm
defined by the absolute value function has this property. Similarly, the finite di-
mensional Euclidean space Rn with usual componentwise order relation and the
standard norm possesses the compatibility property.

Definition 2.6. Let (E,�, ‖ · ‖) be a partially ordered normed linear space. A
mapping T : E → E is called partially nonlinear D-Lipschitz if there exists an
upper semi-continuous nondecreasing function ψ : R+ → R+ such that

‖T x− T y‖ ≤ ψ(‖x− y‖) (2.1)

for all comparable elements x, y ∈ E, where ψ(0) = 0. If ψ(r) = kr, k > 0, then
T is called a partially Lipschitz with a Lipschitz constant k. If k < 1, T is called
a partially contraction with contraction constant k. Finally, T is called nonlinear
D-contraction if it is a nonlinear D-Lipschitz with ψ(r) < r for r > 0.

The Dhage iteration principle or method (in short DIP or DIM) developed in
Dhage [2, 3, 4, 5] may be formulated as “monotonic convergence of the sequence of
successive approximations to the solutions of a nonlinear equation beginning with
a lower or an upper solution of the equation as its initial or first approximation”
and which is a powerful tool in the existence theory of nonlinear analysis. It is
clear that Dhage iteration method is different from the usual Picard’s successive
iteration method and embodied in the following applicable hybrid fixed point the-
orems proved in Dhage [4] which forms a useful key tool for our work contained in
this paper. A few other hybrid fixed point theorems involving the Dhage iteration
method may be found in Dhage [2, 3, 4, 5, 6].

Theorem 2.7 (Dhage [3]). Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete

normed linear space such that the order relation � and the norm ‖·‖ are compatible
in E. Let A,B : E → E be two nondecreasing operators such that

(a) A is partially bounded and partially nonlinear D-contraction,
(b) B is partially continuous and partially compact, and
(c) there exists an element x0 ∈ E such that x0 � Ax0+Bx0 or x0 � Ax0+Bx0.

Then the operator equation Ax+ Bx = x has a solution x∗ in E and the sequence
{xn} of successive iterations defined by xn+1 = Axn +Bxn, n = 0, 1, . . ., converges
monotonically to x∗.

Remark 2.8. The conclusion of Theorem 2.7 also remains true if we replace the
compatibility of E with respect to the order relation � and the norm ‖ · ‖ by a
weaker condition of the compatibility of every compact chain C in E with respect
to the order relation � and the norm ‖ · ‖. The later condition holds in particular
if every partially compact subset of E possesses the compatibility property.



4 B. C. DHAGE, S. B. DHAGE EJDE-2015/20

3. Main results

The equivalent integral formulation of the HDE (1.1) is considered in the function
space C(J,R) of continuous real-valued functions defined on J . We define a norm
‖ · ‖ and the order relation ≤ in C(J,R) by

‖x‖ = sup
t∈J
|x(t)|, (3.1)

x ≤ y ⇐⇒ x(t) ≤ y(t) (3.2)

for all t ∈ J . Clearly, C(J,R) is a Banach space with respect to above supremum
norm and also partially ordered with respect to the above partially order relation
≤. It is known that the partially ordered Banach space C(J,R) has some nice
properties with respect to the above order relation in it. The following lemma
follows by an application of Arzela-Ascolli theorem.

Lemma 3.1. Let (C(J,R),≤, ‖ · ‖) be a partially ordered Banach space with the
norm ‖ · ‖ and the order relation ≤ defined by (3.1) and (3.2) respectively. Then
‖ · ‖ and ≤ are compatible in every partially compact subset of C(J,R).

Proof. Let S be a partially compact subset of C(J,R) and let {xn} be a monotone
nondecreasing sequence of points in S. Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · , (∗)
for each t ∈ R+.

Suppose that a subsequence {xnk
} of {xn} is convergent and converges to a point

x in S. Then the subsequence {xnk
(t)} of the monotone real sequence {xn(t)} is

convergent. By monotone characterization, the whole sequence {xn(t)} is conver-
gent and converges to a point x(t) in R for each t ∈ R+. This shows that the
sequence {xn(t)} converges to x(t) point-wise in S. To show the convergence is
uniform, it is enough to show that the sequence {xn(t)} is equicontinuous. Since
S is partially compact, every chain or totally ordered set and consequently {xn}
is an equicontinuous sequence by Arzelá-Ascoli theorem. Hence {xn} is convergent
and converges uniformly to x. As a result ‖ · ‖ and ≤ are compatible in S. This
completes the proof. �

Definition 3.2. A function u ∈ C2(J,R) is said to be a lower solution of the HDE
(1.1) if it satisfies

u′′(t) ≤ f(t, u(t)) + g(t, u(t)),

u(0) ≤ u(T ), u′(0) ≤ u′(T ),
(3.3)

for all t ∈ J . Similarly, an upper solution v ∈ C2(J,R) for the HDE (1.1) is defined
on J .

We consider the following set of assumptions:
(A1) There exist constants λ > 0 and µ > 0, with λ ≥ µ, such that

0 ≤ [f(t, x) + λx]− [f(t, y) + λy] ≤ µ(x− y),

for all t ∈ J and x, y ∈ R, x ≥ y.
(B1) There exists a constant k2 > 0 such that |g(t, x)| ≤ k2 for all t ∈ J and

x ∈ R.
(B2) g(t, x) is nondecreasing in x for all t ∈ J .
(B3) The HDE (1.1) has a lower solution u ∈ C2(J,R).
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Consider the PBVP of the HDE
x′′(t) + λx(t) = f̃(t, x(t)) + g(t, x(t)),

x(0) = x(T ), x′(0) = x′(T ),
(3.4)

for all t ∈ J , where f̃ , g : J × R→ R and

f̃(t, x) = f(t, x) + λx. (3.5)

Remark 3.3. A function u ∈ C2(J,R) is a solution of the HDE (3.4) if and only
if it is a solution of the HDE (1.1) defined on J .

Consider the following assumption.
(A2) There exists a constant k1 > 0 such that |f̃(t, x)| ≤ k1 for all t ∈ J and

x ∈ R.
The following useful lemma may be found in Torres [11].

Lemma 3.4. For any h ∈ L1(J,R+) and σ ∈ L1(J,R), x is a solution to the
differential equation

x′′(t) + h(t)x(t) = σ(t), t ∈ J,
x(0) = x(T ), x′(0) = x′(T ),

(3.6)

if and only if it is a solution of the integral equation

x(t) =
∫ T

0

Gh(t, s)σ(s) ds, (3.7)

where, Gh(t, s) is a Green’s function associated with the homogeneous PBVP

x′′(t) + h(t)x(t) = 0, t ∈ J,
x(0) = x(T ), x′(0) = x′(T ).

(3.8)

Notice that the Green’s function Gh is continuous an nonnegative on J × J and
therefore, the number

Mh := max{|Gh(t, s)| : t, s ∈ [0, T ]}
exists for all h ∈ L1(J,R+).

As an application of Lemma 3.4 we obtain the following result.

Lemma 3.5. Suppose that hypotheses (A2) and (B1) hold. Then a function u ∈
C(J,R) is a solution of the HDE (3.4) if and only if it is a solution of the nonlinear
integral equation

x(t) =
∫ T

0

G(t, s)f̃(s, x(s)) ds+
∫ T

0

G(t, s)g(s, x(s)) ds (3.9)

for all t ∈ J , where G(t, s) is a Green’s function associated with the homogeneous
PBVP

x′′(t) + λx(t) = 0, t ∈ J,
x(0) = x(T ), x′(0) = x′(T ).

(3.10)

Theorem 3.6. Assume that hypotheses (A1)-(A2) and (B1)-(B3) hold. Further-
more, if λMT < 1, then the HDE (1.1) has a solution x∗ defined on J and the
sequence {xn} of successive approximations defined by

xn+1(t) =
∫ T

0

G(t, s)f̃(s, xn(s)) ds+
∫ T

0

G(t, s)g(s, xn(s)) ds (3.11)
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for all t ∈ J , where x0 = u converges monotonically to x∗.

Proof. Set E = C(J,R). Then by Lemma 3.1, every compact chain in E is com-
patible with respect to the norm ‖ · ‖ and order relation ≤. Define two operators
A and B on E by

Ax(t) =
∫ T

0

G(t, s)f̃(s, x(s)) ds, t ∈ J, (3.12)

Bx(t) =
∫ T

0

G(t, s)g(s, x(s)) ds, t ∈ J. (3.13)

From the continuity of the integrals, it follows that A and B define the maps
A,B : E → E. Now, by Lemma 3.5, the HDE (3.4) is equivalent to the operator
equation

Ax(t) + Bx(t) = x(t), t ∈ J. (3.14)

We shall show that the operators A and B satisfy all the conditions of Theorem
2.7. This is achieved in the series of following steps.

Step I: A and B are nondecreasing operators on E. Let x, y ∈ E be such that
x ≥ y. Then by hypothesis (A1), we obtain

Ax(t) =
∫ T

0

G(t, s)f̃(s, x(s)) ds

≥
∫ T

0

G(t, s)f̃(s, y(s)) ds

= Ay(t),

for all t ∈ J . This shows that A is nondecreasing operator on E into E. Similarly
using hypothesis (B2), it is shown that B is also nondecreasing on E into itself.
Thus A and B are nondecreasing operators on E into itself.

Step II: A is a partially bounded and partially contraction operator on E. Let
x ∈ E be arbitrary. Then by (A2),

|Ax(t)| ≤
∣∣∣ ∫ T

0

G(t, s)|f̃(s, x(s))| ds
∣∣∣

≤
∫ T

0

G(t, s)k1 ds

≤Mk1T

for all t ∈ J . Taking the supremum over t in above inequality, we obtain ‖Ax‖ ≤
k1MT , and so, A is bounded. This further implies that A is partially bounded on
E.

Next, let x, y ∈ E be such that x ≥ y. Then

|Ax(t)−Ay(t)| =
∣∣∣ ∫ T

0

G(t, s)[f̃(s, x(s))− f̃(s, y(s))] ds
∣∣∣

≤
∫ T

0

G(t, s)µ(x(s)− y(s)) ds

≤
∫ T

0

G(t, s)λ|x(s)− y(s)| ds
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≤
∫ T

0

λM‖x− y‖ ds

= λMT‖x− y‖,

for all t ∈ J . Taking the supremum over t in above inequality, we obtain

‖Ax−Ay‖ ≤ α‖x− y‖,
for all x, y ∈ E with x ≥ y, where 0 ≤ α = λMT < 1. Hence A is a partially
contraction on E which further implies that A is a partially continuous on E.

Step III: B is a partially continuous operator on E. Let {xn} be a sequence in
a chain C in E such that xn → x for all n ∈ N. Then, by dominated convergence
theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

∫ T

0

G(t, s)g(s, xn(s)) ds

=
∫ T

0

G(t, s)
[

lim
n→∞

g(s, xn(s))
]
ds

=
∫ T

0

G(t, s)g(s, x(s)) ds

= Bx(t),

for all t ∈ J . This shows that Bxn converges to Bx pointwise on J .
Next, we show that {Bxn} is an equicontinuous sequence of functions in E. Let

t1, t2 ∈ J be arbitrary with t1 < t2. Then

|Bxn(t2)− Bxn(t1)| =
∣∣∣ ∫ T

0

G(t1, s)g(s, xn(s))ds−
∫ T

0

G(t2, s)g(s, xn(s))ds
∣∣∣

≤
∣∣∣ ∫ T

0

|G(t1, s)−G(t2, s)||g(s, xn(s))| ds
∣∣∣

≤
∫ T

0

|G(t1, s)−G(t2, s)|k2 ds

→ 0 as t2 − t1 → 0

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniformly
and hence B is partially continuous on E.

Step IV: B is a partially compact operator on E. Let C be an arbitrary chain
in E. We show that B(C) is a uniformly bounded and equicontinuous set in E.
First we show that B(C) is uniformly bounded. Let x ∈ C be arbitrary. Then

|Bx(t)| =
∣∣∣ ∫ T

0

G(t, s)g(s, x(s)) ds
∣∣∣

≤
∫ T

0

G(t, s)|g(s, x(s))| ds

≤
∫ T

0

Mk2 ds

≤Mk2T = r,

for all t ∈ J . Taking supremum over t, we obtain ‖Bx‖ ≤ r for all x ∈ C. Hence B is
a uniformly bounded subset of E. Next, we will show that B(C) is an equicontinuous
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set in E. Let t1, t2 ∈ J with t1 < t2. Then

|Bx(t2)− Bx(t1)| =
∣∣∣ ∫ T

0

[G(t1, s)−G(t2, s)]g(s, x(s)) ds
∣∣∣

≤
∫ T

0

|G(t1, s)−G(t2, s)||g(s, x(s))| ds

≤
∫ T

t0

|G(t1, s)−G(t2, s)| k2 ds

→ 0 as t1 → t2

uniformly for all x ∈ C. Hence B(C) is a compact subset of E and consequently B
is a partially compact operator on E into itself.

Step V: u satisfies the operator inequality u ≤ Au + Bu. By hypothesis (H4),
the PBVP (2.1) has a lower solution u. Then we have

u′′(t) ≤ f(t, u(t)) + g(t, u(t)), t ∈ J,
u(0) ≤ u(T ), u′(0) ≤ u′(T ).

(3.15)

Integrating (3.15) twice which together with the definition of the operator T
implies that u(t) ≤ T u(t) for all t ∈ J . See Heikkilä and Lakshmikantham [9,
lemma 4.5.1] and references therein. Consequently, u is a lower solution to the
operator equation x = T x.

Thus A and B satisfy all the conditions of Theorem 2.7 with x0 = u and we
apply it to conclude that the operator equation Ax + Bx = x has a solution.
Consequently the integral equation and the HDE (1.1) has a solution x∗ defined on
J . Furthermore, the sequence {xn} of successive approximations defined by (3.4)
converges monotonically to x∗. This completes the proof. �

Remark 3.7. The conclusion of Theorem 3.6 also remains true if we replace the
hypothesis (B3) with the following one:

(B3’) The HDE (1.1) has an upper solution v ∈ C2(J,R).

Example 3.8. Given a closed and bounded interval J = [0, 1] in R, consider the
PBVP of HDE,

x′′(t) = tan−1 x(t)− x(t) + g(t, x(t)),

x(0) = x(1), x′(0) = x′(1),
(3.16)

for all t ∈ J , where g : J × R→ R is defined as

g(t, x) =

{
1, if x ≤ 1,

2x
1+x , if x > 1.

Here, f(t, x) = tan−1 x − x. Clearly, the functions f and g are continuous on
J × R. The function f satisfies the hypothesis (A1) with λ = 1 > µ. To see this,
we have

0 ≤ tan−1 x− tan−1 y ≤ 1
1 + ξ2

(x− y)

for all x, y ∈ R, x ≥ y, where x > ξ > y. Therefore, λ = 1 > 1
1+ξ2 = µ. Moreover,

the function f̃(t, x) = tan−1 x is bounded on J × R with bound k1 = π
2 and so the

hypothesis (A2) is satisfied.
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Again, since g is bounded on J×R, by 1, the hypothesis (B1) holds. Furthermore,
g(t, x) is nondecreasing in x for all t ∈ J , and thus hypothesis (B2) is satisfied.
Finally the HDE (3.16) has a lower solution

u(t) = −2
∫ 1

0

G(t, s) ds+
∫ 1

0

G(t, s) ds,

defined on J . Thus all hypotheses of Theorem 3.6 are satisfied in view of Remark
2.8. Hence we apply Theorem 3.6 and conclude that the PBVP (3.16) has a solution
x∗ defined on J and the sequence {xn} defined by

xn+1(t) =
∫ 1

0

G(t, s) tan−1 xn(s) ds+
∫ 1

0

G(t, s)g(s, xn(s)) ds, (3.17)

for all t ∈ J , where x0 = u, converges monotonically to x∗.

Remark 3.9. in view of Remark 3.7, the existence of the solutions x∗ of the PBVP
(3.16) may be obtained under the upper solution

v(t) = 2
∫ 1

0

G(t, s) ds+ 2
∫ 1

0

G(t, s) ds,

defined on J and the sequence {xn} defined by

xn+1(t) =
∫ 1

0

G(t, s) tan−1 xn(s) ds+
∫ 1

0

G(t, s)g(s, xn(s)) ds, (3.18)

for all t ∈ J , where x0 = v, converges monotonically to x∗.

Conclusion

From the foregoing discussion it is clear that unlike Krasnoselskii fixed point
theorem, the proof of Theorem 3.6 does not invoke the construction of a non-
empty, closed, convex and bounded subset of the Banach space of navigation which
is mapped into itself by the operators related to the given differential equation. The
convexity hypothesis is altogether omitted from the discussion and still we have
proved the existence of the solutions for the differential equation considered in this
article. Similarly, unlike the use of Banach fixed point theorem, Theorems 3.6 does
not make any use of any type of Lipschitz condition on the nonlinearities involved
in the PBVP (1.1), but even then we proved the algorithms for the solutions of the
hybrid differential equation (1.1) in terms of the Picard’s iteration scheme. The
limitation of the our result lies in the fact that the convergence of the algorithms
are not geometrical and so there is no way to obtain the rate of convergence of the
algorithms to the solutions of the related problems. However, by a way we have been
able to prove the existence results for the PBVP (1.1) under much weaker conditions
with strong conclusion of the monotone convergence of successive approximations
to the solutions than those proved in the existing literature on nonlinear hybrid
differential equations.

Acknowledgments. The authors are thankful to the anonymous referee for point-
ing some misprints in an earlier version of this paper.
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