\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 190, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/190\hfil Two types of ground state solutions] {Two types of ground state solutions for a periodic Schr\"odinger equations with zero on the boundary of the spectrum} \author[D. Qin, X. Tang \hfil EJDE-2015/190\hfilneg] {Dongdong Qin, Xianhua Tang} \address{Dongdong Qin \newline School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, China} \email{qindd132@163.com} \address{Xianhua Tang (corresponding author) \newline School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, China} \email{tangxh@mail.csu.edu.cn} \thanks{Submitted March 2, 2015. Published July 20, 2015.} \subjclass[2010]{35J10, 35J20} \keywords{Schr\"odinger equation; spectrum point zero; superlinear; \hfill\break\indent ground states; Nehari-Pankov manifold} \begin{abstract} This article concerns the Schr\"odinger equation \begin{gather*} -\Delta u+V(x)u=f(x, u), \quad \text{for } x\in\mathbb{R}^N,\\ u(x)\to 0, \quad \text{as } |x| \to \infty\,. \end{gather*} Assuming that $V$ and $f$ are periodic in $x$, and $0$ is a boundary point of the spectrum $\sigma(-\Delta+V)$, two types of ground state solutions are obtained with some super-quadratic conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction and main results} We consider the Schr\"odinger equation \begin{equation} \label{ps} \begin{gathered} -\Delta u+V(x)u=f(x, u), \quad \text{for } x\in\mathbb{R}^N,\\ u(x)\to 0, \quad \text{as } |x| \to \infty, \end{gathered} \end{equation} where $V:\mathbb{R}^N\to \mathbb{R}$ and $f:\mathbb{R}^N\times\mathbb{R}\to \mathbb{R}$ is superlinear as $|u|\to \infty$. \eqref{ps} has been widely investigated in the literature over the past several decades for both its importance in applications and mathematical interest, see, e.g., \cite{BD1, BJ, CR, D2, D3, D4, FTZD1, FTZD2, FTZD3, KS, L1, LS,LW, LWZ,M, P,Q,Q2,Q3, R, SW,SW2, T2, T1,T3,T4,T5,W, WZ, Y, YCD,ZZ} and the references therein. In this paper, we mainly study the case that $V$ and $f$ are periodic in $x$ and $0$ is a boundary point of the spectrum $\sigma(-\Delta+V)$, i.e. \begin{itemize} \item[(V1)] $V\in C(\mathbb{R}^N, \mathbb{R})$ is 1-periodic in each of $x_1, x_2, \ldots, x_N$, $0\in \sigma(-\Delta +V)$, and there exists a $b_0>0$ such that $(0, b_0]\cap \sigma(-\Delta +V)=\emptyset$; \end{itemize} Compared to the situation that $0$ lies in a gap of $\sigma(-\Delta+V)$, this case is very difficult because $H^1(\mathbb{R}^N)$ is no longer the working space on which the variational functional associated with \eqref{ps} defines. Indeed, the working space is only a Banach space, not a Hilbert space. In particular, there are considerably fewer results, see \cite{BD1,M,Q2,Q3,T3, WZ, YCD}. Bartsch and Ding \cite{BD1} obtained a weak solution with a stronger version of the classic condition \begin{itemize} \item[(AR)] there exist constants $\mu >2$ such that $$ 0<\mu F(x, t)\le tf(x, t), \quad \forall (x, t)\in \mathbb{R}^N\times (\mathbb{R}\setminus \{0\}). $$ \end{itemize} Their main idea is to use an approximation argument to construct some kind of Palais-Smale sequence and show that after translations a subsequence converges in certain sense to a weak solution $u$ of \eqref{ps}. Later, this result was improved by Willem and Zou \cite{WZ} by using an generalized weak link theorem. In a recent publication, Yang et al.\cite{YCD} established existence of one weak solution of \eqref{ps} with the following Nehari type assumption: \begin{itemize} \item[(Ne)] $t\mapsto \frac{f(x,t)}{|t|}$ is strictly increasing on $(-\infty,0)\cup(0,\infty)$. \end{itemize} Their main technique is the same as that used in \cite{BD1, WZ}. Later, this result was improved by authors's recent paper \cite{Q3} by using a generalized linking theorem established in \cite{KS,LS}. The following condition seems to be necessary to obtain the existence of one weak solution of \eqref{ps} in \cite{BD1, WZ, YCD}. \begin{itemize} \item[(F0)] there exist constants $c_0>0$, $2< \varrho <2^*$ such that $$ tf(x, t)\ge c_0|t|^{\varrho}, \quad \forall (x, t)\in \mathbb{R}^N\times \mathbb{R}. $$ \end{itemize} However, (F0) it is a severe restriction, since it strictly controls the growth of $f(x, t)$ as $|t|\to \infty$. There are functions which are superlinear at both zero and infinity, but do not satisfy the condition (F0). For example $f(x, t)=at|t|^{\alpha-2}\ln(1+|t|^{1/N})$ with $a>0$ and $\alpha\in (2, 2^*-1/N)$. Recently, with the aid of a proper variational framework, Tang \cite{T3} weakened (AR), (F0) and (Ne) to the following assumptions: \begin{itemize} \item[ (F1)] $f\in C(\mathbb{R}^{N+1}, \mathbb{R})$ is 1-periodic in each of $x_1, x_2, \ldots, x_N$, and there exist constants $c_1, c_2>0$ and $2<\varrho\le p<2^*$ such that $$ c_1\min\{|t|^{\varrho}, |t|^2\}\le tf(x, t)\le c_2(|t|^{\varrho}+|t|^{p}), \quad \forall (x, t)\in \mathbb{R}^N\times \mathbb{R}; $$ \item[(F2)] $\lim_{|t|\to \infty} F(x, t)/t^2=\infty$, a.e. $x\in \mathbb{R}^N$. \item[(DL)] $\mathcal{F}(x, t):=\frac{1}{2}tf(x, t)-F(x, t)>0$ for all $x\in \mathbb{R}^N, t\in \mathbb{R}\setminus \{0\}$, and there exist $r_0>0$, $c_0>0$ and $\sigma>\max\{1, N/2\}$ such that $$ |f(x, t)|^{\sigma}\le c_0|t|^{\sigma}\mathcal{F}(x, t), \quad \forall (x, t)\in \mathbb{R}^{N}\times \mathbb{R}, \; |t|\ge r_0; $$ \item[(Ta)] there exists a $\theta_0\in (0, 1)$ such that $$ \frac{1-\theta^2}{2}tf(x, t) \ge \int_{\theta t}^{t}f(x, s)\mathrm{d}s =F(x, t)-F(x, \theta t), \quad \forall \theta\in [0, \theta_0], \; (x, t)\in \mathbb{R}^N\times \mathbb{R}. $$ \end{itemize} Under basic assumptions (V1), (F1) and (F2), assuming moreover (DL) or (Ta) holds, {\it least energy solutions} were obtained by Tang \cite{T3}, i.e. a nontrivial solution $u_0\in E$ such that $\Phi(u_0)=\inf_{\mathcal{M}}\Phi$, where \begin{equation}\label{M} \mathcal{M} = \{u\in E\setminus \{0\} : \Phi'(u)=0 \}, \end{equation} $E$ is the working space on which the energy functional $\Phi$ associated with \eqref{ps} defines. In recent paper \cite{M}, Mederski studied \eqref{ps} under (Ne) by using the generalized Nehari manifold method due to Szulkin and Weth \cite{SW,SW2}, moreover (F0) was weakened to a similar version of (F1) there. For multiple results of \eqref{ps}, we refer to papers \cite{BD1,M,Q2}. Condition (DL) was introduced by Ding and Lee \cite{D2}, and it is commonly used instead of condition (AR), see for instance \cite{D4,Q,T1,Ta,T3} and the references therein. Clearly, (AR) is much stronger than (DL), (F2) and (Ta). On the other hand, (Ta) was introduced by Tang \cite{T2} and is weaker than the following mild version of (Ne): \begin{itemize} \item[(WN)] $t\mapsto\frac{f(x,t)}{|t|}$ is non-decreasing on $(-\infty,0)\cup(0,\infty)$. \end{itemize} In addition, (F1) weakens (F0) greatly and is satisfied by many functions, such as $f(x, t)=at|t|^{\alpha-2}\ln(1+|t|^{1/N})$ with $a>0$ and $\alpha\in (2, 2^*-1/N)$. We point out that Liu \cite{L1} first uses (WN) to replace of (Ne) for the case that $0$ lies in a gap of $\sigma(-\Delta+V)$, and obtains a least energy solution. Later, this result is improved by Tang in \cite{T2} by taking advantage of (Ta). It is well known that for periodic potential $V$, the operator $\mathcal{A}:=-\Delta +V$ has purely continuous spectrum $\sigma (\mathcal{A})$ which is bounded below and consists of closed disjoint intervals (see \cite[Theorem XIII.100]{RS}). Before stating our main results, we first present the following weaker version of (DL) which was introduced by Tang in recent paper \cite{T5}: \begin{itemize} \item[(F3)] $\mathcal{F}(x,t)\ge0$, and there exist constants $c_3>0$, $\delta_0\in(0,\Lambda_0)$ and $\sigma>\max\{1,N/2\}$ such that $$ \frac{f(x,t)}{t}\ge(\Lambda_0-\delta_0) \Longrightarrow \big(\frac{f(x,t)}{t}\big)^{\sigma}\le c_3\mathcal{F}(x,t), $$ where $\Lambda_0:=\inf[\sigma(-\Delta +V)\cap (0, \infty)]$. \end{itemize} Clearly, $\Lambda_0\ge b_0$ by (V1), and (DL) {\it implies} (F3) {\it under} (F1). More precisely, (F3) holds under (DL) and basic conditions that $f\in C(\mathbb{R}^{N+1}, \mathbb{R})$ is 1-periodic in each of $x_1, x_2, \ldots, x_N$ and $f(x,t)=o(|t|)$ as $|t|\to0$ uniformly in $x\in\mathbb{R}^{N}$. Thus (F3) weakens (DL), and there are some functions satisfying (F3), but not (DL), see Example \ref{examp1.7} and \ref{examp1.8}. Moreover, it is more convenient to use, see Lemma \ref{lem3.6}. In this article, we continue to study problem \eqref{ps}, and construct two types of ground state solutions of \eqref{ps}, i.e. {\it the least energy solution} and {\it the Nehari-Pankov type}. We first weaken (Ne) to (WN), and establish the existence of a ground state solution of Nehari-Pankov type. The {\it generalized Nehari manifold method} introduced by Szulkin and Weth \cite{SW,SW2} can not be adopted due to the lack of strict monotonicity, see Remark \ref{rmk1.4}. So a new method is looked forward to being introduced which is the right issue this paper intends to address. Inspired by the works \cite{BD1, LWZ,P,R,SW,Ta,T3,T4,T5}, a more direct approach is used in the present paper. The main ingredient in our approach is the observation that a minimizing Cerami sequence for the energy functional can be found outside the Nehari-Pankov manifold $\mathcal{N}^{-}$ by using the diagonal method, see Lemma \ref{lem3.5}, part of which derives from recent papers of Tang \cite{Ta,T4}. Moreover, under weaker condition (F3), a least energy solution is obtained with the aid of a generalized linking theorem established in \cite{T3}. Let $E$, $E^-$ be the Banach space defined in Section 2. Under assumptions (V1) and (F1), the functional \begin{equation}\label{16} \Phi(u)=\int_{\mathbb{R}^N}(|\nabla u|^2+V(x)u^2) \mathrm{d}x -\int_{\mathbb{R}^N}F(x,u) \mathrm{d}x, \end{equation} is well defined for all $u\in E$, moreover $\Phi\in C^1(E,\mathbb{R})$, see Lemma \ref{lem2.2}. Denote the Nehari-Pankov manifold by \begin{equation}\label{Ne} \mathcal{N}^-=\{u\in E\setminus{E^-}: \langle\Phi'(u),u\rangle =\langle\Phi'(u),v\rangle=0, \; \forall v\in E^-\}. \end{equation} The set $\mathcal{N}^-$ was introduced by Pankov \cite{P}, which is a subset of the Nehari manifold \begin{equation}\label{Ne-} \mathcal{N} = \{u\in E\setminus \{0\} : \langle \Phi'(u), u \rangle=0\}. \end{equation} Now, we are ready to state the main results of this article. \begin{theorem} \label{thm1.1} Let {\rm (V1), (F1), (F2), (WN)} be satisfied, then \eqref{ps} has a solution $u_0\in E$ such that $\Phi(u_0)=\inf_{\mathcal{N}^-}\Phi\geq\kappa$, where $\kappa$ is a positive constant. \end{theorem} \begin{theorem} \label{thm1.2} Let {\rm (V1), (F1), (F2), (F3)} be satisfied, then \eqref{ps} has a solution $u_0\in E$ such that $\Phi(u_0)=\inf_{\mathcal{M}}\Phi$, where $\mathcal{M}$ is defined by \eqref{M}. \end{theorem} Note that, $u\in\mathcal{N}^{-}$ if $u\neq0$ and $\Phi'(u)=0$. Hence $\mathcal{N}^{-}$ contains all nontrivial critical points of $\Phi$, i.e. $\mathcal{M}$ is a very small subset of $\mathcal{N}^-$. In general, $\mathcal{N}^{-}$ contains infinitely many elements of $E$. In fact, for any $u\in E^+\setminus \{0\}$, there exist $t=t(u)>0$ and $w=w(u)\in E^{-}$ such that $w+tu\in \mathcal{N}^{-}$ which is the global maximum of $\Phi|_{E^{-}\oplus\mathbb{R}^{+}u}$, see Corollary \ref{coro2.6} and Lemma \ref{lem3.3}. As a consequence of Theorem \ref{thm1.1}, the least energy value $m:=\inf_{\mathcal{N}^-}\Phi$ has a minimax characterization given by \[ m=\Phi(u_0)=\inf_{u\in E^{+}\setminus \{0\}} \max_{v\in E^{-}\oplus\mathbb{R}^{+}u}\Phi(v). \] Note that this minimax principle is much simpler than the usual characterizations related to the concept of linking. Since $u_0$ is a solution at which $\Phi$ has least ``energy" in set $\mathcal{N}^{-}$, it was called a ground state solution of Nehari-Pankov type in \cite{Ta,T4}. We remark that Theorems \ref{thm1.1} and \ref{thm1.2} generalize and improve the results in \cite{BD1,M,Q2,T3, WZ, YCD}. As a motivation we recall the generalized Nehari manifold method introduced by Szulkin and Weth \cite{SW,SW2}. For the case that $0$ lies in a gap of $\sigma(-\Delta+V)$, they obtained a ground state solution of Nehari-Pankov type under (Ne) and some additional conditions. The generalized Nehari manifold method developed there is based on a direct and simple reduction of the strongly indefinite problem to a definite one. More precisely, a homeomorphism between the Nehari-Pankov manifold $\mathcal{N}^-$ and a unit sphere $S^{+}$ in $E^{+}$ is established which allows to find a minimizing sequence on the sphere and hence on the Nehari-Pankov manifold. We point out that the assumption ``strictly increasing" in (Ne) is very crucial in the argument of Szulkin and Weth \cite{SW, SW2}. In fact, the starting point of their approach is to show that for each $u\in E\setminus E^-$, the Nehari-Pankov manifold $\mathcal{N}^-$ intersects $\hat{E}(u):=E^-\oplus \mathbb{R}^+u$ in exactly one point $\hat{m}(u)$. The uniqueness of $\hat{m}(u)$ enables one to define a map $u\mapsto \hat{m}(u)$, which is crucial to construct the homeomorphism between $\mathcal{N}^-$ and $S^{+}$, see \cite[Chapter 4]{SW2}. \begin{remark} \label{rmk1.4}\rm The ground state solution of Nehari-Pankov type can not be established by using the generalized Nehari manifold method if (Ne) was weakened to (WN). Indeed, without the strict monotonicity, the uniqueness of $\hat{m}(u)$ can not be guaranteed unless some additional conditions on the nonlinearity are assumed, and so the homeomorphism between the Nehari-Pankov manifold and the sphere can not be established (see \cite[(A.2) and Prop. 2.3]{SW} and \cite{ZZ}). Thus, it is infeasible to find a minimizing sequence on the Nehari-Pankov manifold by reducing the problem on the sphere which is a definite case. Compared to the generalized Nehari manifold method, the approach used in this paper seems more direct and simpler. \end{remark} Before proceeding to the proof of Theorems \ref{thm1.1} and \ref{thm1.2}, we give some examples to illustrate the assumptions. \begin{example} \label{examp1.5}\rm $F(x, t)=h(x)|t|^2\ln (1+|t|^{1/N})$, where $h\in C(\mathbb{R}^N, (0,+\infty))$ is 1-periodic in each of $x_1, x_2, \ldots$, $x_N$. It is not difficult to show that if $\mathcal{{F}}(x,t)=1/(2N)|t|^{2+1/N}(1+|t|^{1/N})^{-1}\ge0$, then $F$ satisfies (WN) and (F1)--(F3) with $\sigma>\max\{1,N/2\}$, but it does not satisfies (AR) and (F0). \end{example} \begin{example} \label{examp1.6}\rm $F(x, t)=h(x)\min\{|t|^{\varrho_1}, |t|^{\varrho_2}\}$, where $2<\varrho_1<\varrho_2<2^*$ and $h\in C(\mathbb{R}^N, (0,+\infty))$ is 1-periodic in each of $x_1, x_2, \ldots, x_N$. Clearly, (F1)--(F3) and (WN) hold for $F$ with $\sigma=\rho_1/(\rho_1-2)>\max\{1,N/2\}$ , but (F0) fails. \end{example} \begin{example} \label{examp1.7}\rm $F(x,t)=2\sum^{m}_{i=1}|t|^{\beta_i}\sin^2(2\pi x_1)$, where $2^{*}>\beta_1 >\beta_2>\cdots >\beta_m\ge 2$. It is easy to see that $\mathcal{{F}}(x,t)=\sum^{m}_{i=1}(\beta_i-2)|t|^{\beta_i}\sin^2(2\pi x_1)\ge0$. Then $F$ does not satisfies (AR) and (DL), but it satisfies (F3) with $\sigma=\beta_1/(\beta_1-2)>\max\{1,N/2\}$. \end{example} \begin{example} \label{examp1.8}\rm $F(x,t)=a({8}/{5}|t|^{13/4}-4|t|^{11/4}+{9}/{2}|t|^{9/4})$, where $a>0$ and $N\le4$. By simple computation, one has $\mathcal{{F}}(x,t)=a|t|^{9/4}(\sqrt{ |t|}-{3}/{4})^2\ge0$. Then $F$ does not satisfies (AR) and (DL), but it satisfies (F3) with $\sigma=12/5$ if $a\in(0,8\Lambda_0/81)$. \end{example} The remaining of this article is organized as follows. In Section 2, some preliminary results are presented. The proofs of main results will be given in the last Section. \section{Variational setting and preliminaries} In this section, as in \cite{T3}, we introduce the variational framework associated with problem \eqref{ps}. Throughout this paper, we denote by $\|\cdot\|_s$ the usual $L^s(\mathbb{R}^N)$ norm for $s\in [1,\infty)$ and $C_i$, $i\in\mathbb{N}$ for different positive constants. Let $\mathcal{A}=-\Delta+V$, then $\mathcal{A}$ is self-adjoint in $L^2(\mathbb{R}^N)$ with domain $\mathfrak{D}(\mathcal{A})=H^2(\mathbb{R}^N)$. Let $\{\mathcal{E}(\lambda):-\infty\le\lambda\le+\infty\}$ be the spectral family of $\mathcal{A}$, and $|\mathcal{A}|^{1/2}$ be the square root of $|\mathcal{A}|$. Set $\mathcal{U}=id-\mathcal{E}(0)-\mathcal{E}(0-)$. Then $\mathcal{U}$ commutes with $\mathcal{A}$, $|\mathcal{A}|$ and $|\mathcal{A}|^{1/2}$, and $\mathcal{A}=\mathcal{U}|\mathcal{A}|$ is the polar decomposition of $\mathcal{A}$ (see \cite[Theorem 4.3.3]{EE}). Let $E_*=\mathfrak{D}(|\mathcal{A}|^{1/2})$, the domain of $|\mathcal{A}|^{1/2}$, then $\mathcal{E}(\lambda)E_*\subset E_*$ for all $\lambda\in \mathbb{R}$. On $E_*$ define an inner product \begin{equation*} (u,v)_0=(|\mathcal{A}|^{1/2}u,|\mathcal{A}|^{1/2}v)_{L^2}+(u,v)_{L^2}, \quad \forall u,v\in E_*, \end{equation*} and the norm \begin{equation*} \|u\|_0=\sqrt{(u,v)_0}, \quad \forall u\in E_*, \end{equation*} where and in the sequel, $(\cdot,\cdot)_{L^2}$ denotes the usual $L^2(\mathbb{R}^N)$ inner product. By (V1), we can choose $a_0>0$ such that \begin{equation}\label{30} V(x)+a_0>0, \quad \forall x\in \mathbb{R}^N. \end{equation} For $u\in C^{\infty}_0(\mathbb{R}^N)$, one has \begin{equation}\label{31} \begin{aligned} \|u\|_0^2 & = (|\mathcal{A}|u, u)_{L^2} +\|u\|_2^2 \\ &= ((\mathcal{A}+a_0)\mathcal{U} u, u)_{L^2} -a_0(\mathcal{U} u, u)_{L^2}+\|u\|_2^2 \\ & \le \|\mathcal{U} (\mathcal{A}+a_0)^{1/2}u\|_2\|(\mathcal{A}+a_0)^{1/2}u\|_2 +a_0\|\mathcal{U} u\|_2\|u\|_2+\|u\|_2^2 \\ & \le \|(\mathcal{A}+a_0)^{1/2}u\|_2^2+(a_0+1)\|u\|_2^2 \\ & \le (1+2a_0+M)\|u\|_{H^1(\mathbb{R}^N)}^2 \end{aligned} \end{equation} and \begin{equation}\label{32} \begin{aligned} \|u\|_{H^1(\mathbb{R}^N)}^2 & \le ((\mathcal{A}+a_0+1)u, u)_{L^2} \\ &= (\mathcal{A}u, u)_{L^2}+(a_0+1)\|u\|_2^2 \\ & = (\mathcal{U}|\mathcal{A}|^{1/2}u, |\mathcal{A}|^{1/2}u)_{L^2}+(a_0+1)\|u\|_2^2 \\ & \le \||\mathcal{A}|^{1/2}u\|_2^2+(a_0+1)\|u\|_2^2 \le (1+a_0)\|u\|_{0}^2, \end{aligned} \end{equation} where $M=\sup_{x\in\mathbb{R}^N}|V(x)|$. Since $C^{\infty}_0(\mathbb{R}^N)$ is dense in $(E_*,\|\cdot\|_0)$ and $H^1(\mathbb{R}^N)$, thus \begin{equation}\label{33} \frac{1}{1+a_0}\|u\|^2_{H^1(\mathbb{R}^N)}\le \|u\|^2_0 \le (1+2a_0+M)\|u\|^2_{H^1(\mathbb{R}^N)}, \quad \forall u\in E_*=H^1(\mathbb{R}^N). \end{equation} Let \begin{equation*} E^{-}_*=\mathcal{E}(0)E_*,\quad E^{+}=[\mathcal{E}(+\infty)-\mathcal{E}(0)]E_*, \end{equation*} and \begin{equation}\label{34} (u,v)_*=\big(|\mathcal{A}|^{1/2}u,|\mathcal{A}|^{1/2}v\big)_{L^2},\quad \|u\|_*=\sqrt{(u,u)_*}, \quad \forall u,v\in E_*. \end{equation} \begin{lemma}[{\cite[Lemma 3.1]{T3}}] \label{lem2.1} Suppose that {\rm (V1)} is satisfied. Then $E_*=E^{-}_*\oplus E^{+}$, \begin{gather}\label{35} (u,v)_*=(u,v)_{L^2}=0, \quad \forall u\in E^{-}_*, \; v\in E^{+}, \\ \label{36} \|u^{+}\|^2_*\ge \Lambda_0\|u^{+}\|^2_{2}, \quad \|u^{-}\|^2_*\le a_0 \|u^{-}\|^2_2, \quad \forall u=u^{-}+u^{+}\in E_*=E^{-}_*\oplus E^{+}, \end{gather} where $b_0$ is given by {\rm (V1)} and $a_0$ by \eqref{30}. \end{lemma} It is easy to see that $\|\cdot\|_*$ and $\|\cdot\|_{H^1(\mathbb{R}^N)}$ are equivalent norms on $E^{+}$, and if $u\in E_*$ then $u\in E^{+} \Leftrightarrow \mathcal{E}(0)u=0$. Thus $E^{+}$ is a closed subset of $(E_*,\|\cdot\|_0)=H^1(\mathbb{R}^N)$. We introduce a new norm on $E^{-}_*$ by setting \begin{equation}\label{313} \|u\|_{-}=(\|u\|^2_*+\|u\|^2_{\varrho})^{1/2}, \quad \forall u\in E^{-}_*. \end{equation} Let $E^{-}$ be the completion of $E^{-}_*$ with respect to $\|\cdot\|_{-}$. Then $E^{-}$ is separable and reflexive, $E^{-}\cap E^{+}=\{0\}$ and $(u,v)_*=0$, $\forall u\in E^{-}$, $v \in E^{+}$. Let $E=E^{-}\oplus E^{+}$ and define norm $\|\cdot\|$ as follows \begin{equation}\label{314} \|u\|=(\|u^{-}\|_{-}^2+\|u^{+}\|^2_*)^{1/2}, \quad \forall u=u^{-}+u^{+}\in E=E^{-}\oplus E^{+}. \end{equation} It is easy to verify that $(E,\|\cdot\|)$ is a Banach space, and \begin{equation}\label{315} \sqrt{\Lambda_0}\|u^{+}\|_2\le \|u^{+}\|_*=\|u^{+}\|,\quad \|u^{+}\|_s\le {\gamma}_s\|u^{+}\|,\quad \forall u\in E,\; s\in[2,2^*], \end{equation} where ${\gamma}_s\in (0,+\infty)$ is imbedding constant. \begin{lemma}[{\cite[Lemma 3.2]{T3}}] \label{lem2.2}() Suppose that {\rm (V1)} is satisfied. Then the following conclusions hold. \begin{itemize} \item[(i)] $E^{-}\hookrightarrow L^s(\mathbb{R}^N)$ for $\varrho\le s\le 2^*$; \item[(ii)] $E^{-}\hookrightarrow H^1_{\rm loc}(\mathbb{R}^N)$ and $E^{-}\hookrightarrow \hookrightarrow L^s_{\rm loc}(\mathbb{R}^N)$ for $2\le s<2^*$; \item[(iii)] For $\varrho\le s\le 2^*$, there exists a constant $C_s>0$ such that \begin{equation}\label{316} \|u\|_{s}^s\le C_s\Big[\|u\|^s_*+\Big(\int_{\Omega}|u|^{\varrho}\mathrm{d}x \Big)^{s/{\varrho}} +\Big(\int_{{\Omega}^c}|u|^2\mathrm{d}x\Big)^{s/2}\Big], \quad \forall u\in E^{-}, \end{equation} where $\Omega\subset \mathbb{R}^N$ is any measurable set, ${\Omega}^c=\mathbb{R}^N\setminus{\Omega}$. \end{itemize} \end{lemma} The following linking theorem is an extension of \cite{KS} (see also \cite[Theorem 6.10]{W}), which plays an important role in proving our main results. \begin{proposition}[{\cite[Theorem 2.4]{T3}}] \label{prop2.3} Let $X$ be real Banach space with $X=Y\oplus Z$, where $Y$ and $Z$ are subspaces of $X$, $Y$ is separable and reflexive, and there exists a constant $\zeta_{0}>0$ such that the following inequality holds \begin{equation}\label{201} \|P_1u\|+\|P_2u\|\le \zeta_{0}\|u\|, \quad \forall u\in X, \end{equation} where $P_1: X\to Y, \ P_2: X\to Z$ are the projections. Let $\{\mathfrak{f}_k\}_{k\in \mathbb{N}}\subset Y^*$ be the dense subset with $\|\mathfrak{f}_k\|_{Y^*}=1$, and the $\tau$-topology on $X$ be generated by the norm \begin{equation}\label{202} \|u\|_{\tau}:=\max\Big\{\|P_2u\|, \sum^{\infty}_{k=1}\frac{1}{2^k}| \langle\mathfrak{f}_k,P_1u\rangle|\Big\} , \quad \forall u\in X. \end{equation} Suppose that the following assumptions are satisfied: \begin{itemize} \item[(H1)] $\varphi \in C^1(X,\mathbb{R})$ is $\tau$-upper semi-continuous and $\varphi':(\varphi_a,\|\cdot\|_{\tau}) \to (X^*,\mathcal{T}_{w^*})$ is continuous for every $a\in \mathbb{R}$; \item[(H2)] there exists $r>\rho>0$ and $e\in Z$ with $\|e\|=1$ such that \begin{equation*} \kappa:=\inf\varphi(S_{\rho})>0\ge \sup\varphi(\partial Q), \end{equation*} where \begin{equation*} S_{\rho}=\{u\in Z: \|u\|=\rho\}, \quad Q=\{v+se: v\in Y, \; s\ge 0, \; \|v+se\|\le r\}. \end{equation*} \end{itemize} Then there exist $c\in[\kappa,\ \sup_{ Q}\varphi]$ and a sequence $\{u_n\}\subset X$ satisfying \begin{equation}\label{23} \varphi(u_n)\to c, \quad \|\varphi'(u_n)\|_{X^*}(1+\|u_n\|)\to 0. \end{equation} Such a sequence is called a Cerami sequence on the level $c$, or a $(C)_c$-sequence. \end{proposition} Let $X=E$, $Y=E^{-}$ and $Z=E^{+}$. Then \eqref{201} is obvious true by \eqref{314}. Since $E^{-}$ is separable and reflective subspace of $E$, then $(E^{-})^*$ is also separable. Thus we can choose a dense subset $\{\mathfrak{f}_k\}_{k\in\mathbb{N}}\subset (E^{-})^*$ with $\|\mathfrak{f}_k\|_{(E^{-})^*}=1$. Hence, it follows from \eqref{202} that \begin{equation}\label{332} \|u\|_{\tau}:=\max\Big\{\|u^{+}\|, \sum^{\infty}_{k=1}\frac{1}{2^k}| \langle\mathfrak{f}_k,u^{-}\rangle|\Big\}, \quad \forall u\in E. \end{equation} It is clear that \begin{equation}\label{333} \|u^{+}\|\le \|u\|_{\tau}\le \|u\|, \quad \forall u\in E. \end{equation} By Lemma \ref{lem2.2}, it is easy to see that the functional $\Phi$ defined by \eqref{16} is of class $C^1$, moreover \begin{equation}\label{334} \langle\Phi'(u),v\rangle=\int_{\mathbb{R}^N}(\nabla u\nabla v+V(x)uv) \mathrm{d}x-\int_{\mathbb{R}^N}f(x,u)v \mathrm{d}x, \ \ \forall u,v \in E. \end{equation} This shows that critical points of $\Phi$ are the solutions of \eqref{ps}. Furthermore \begin{gather}\label{335} \Phi(u)=\frac{1}{2}(\|u^{+}\|^2-\|u^{-}\|^2_*) -\int_{\mathbb{R}^N}F(x,u)\mathrm{d}x,\quad \forall u=u^{+}+u^{-}\in E^{-}\oplus E^{+}=E,\\ \label{336} \langle\Phi'(u),v\rangle=(u^{+},v)_*-(u^{-},v)_* -\int_{\mathbb{R}^N}f(x,u)v \mathrm{d}x,\quad \forall u,v \in E. \end{gather} \begin{lemma}[{\cite[Lemma 3.3]{T3}}] \label{lem2.4} Suppose that {\rm (V1), (F1)} are satisfied. Then $\Phi\in C^1(E,\mathbb{R})$ is $\tau$-upper semi-continuous and $\Phi':(\Phi_a,\|\cdot\|_{\tau})\to (E^*,\mathcal{T}_{w^*})$ is continuous for every $a\in \mathbb{R}$. \end{lemma} \begin{lemma} \label{lem2.5} Suppose that {\rm (V1), (F1), (WN)} are satisfied. Then $$ \Phi(u)\geq\Phi(tu+w)+\frac{1}{2}\|w\|^2_* +\frac{1-t^2}{2}\langle\Phi'(u),u\rangle -t\langle\Phi'(u),w\rangle, $$ for all $u\in E$, $w\in E^-$, $t\geq0$. \end{lemma} The proof of the above lemma is the same as one of \cite[Lemma 2.4]{T4}, we omit it here. From Lemma \ref{lem2.5}, we have the following two corollaries. \begin{corollary} \label{coro2.6} Suppose that {\rm (V1), (F1), (WN)} are satisfied, assume moreover $u\in \mathcal{N}^-$. Then \begin{equation}\label{3402} \Phi(u)\geq\Phi(tu+w), \quad \forall w\in E^-,\; t\geq0. \end{equation} \end{corollary} \begin{corollary} \label{coro2.7} Suppose that {\rm (V1), (F1), (WN)} are satisfied. Then $$ \Phi(u)\geq\Phi(tu^+)+\frac{t^2\|u^-\|^2_*}{2} +\frac{1-t^2}{2}\langle\Phi'(u),u\rangle+t^2\langle\Phi'(u),u^-\rangle, \quad \forall u\in E, \; t\geq0. $$ \end{corollary} \section{Proof of main results} \begin{lemma} \label{lem3.1} Suppose that {\rm (V1), (F1)} are satisfied. Then \begin{itemize} \item[(i)] there exists $\rho>0$ such that \[ m:=\inf_{\mathcal{N}^-}\Phi\geq \kappa: =\inf\{\Phi(u):u\in E^+, \|u\|=\rho\}>0; \] \item[(ii)] $\|u^+\|\geq\max\{\|u^-\|_*,\sqrt{2m}\}$ for all $u\in \mathcal{N}^-$; \end{itemize} \end{lemma} \begin{proof} (i) The first inequality is a direct consequence of Corollary \ref{coro2.6}, since for every $u\in \mathcal{N}^-$ there is $t>0$ such that $\|t u^+\|=\rho$. For any $\varepsilon>0$, (F1) implies the existence of $C_{\varepsilon}>0$ such that \begin{equation}\label{3-3} |F(x,t)|\le \varepsilon|t|^{2}+C_{\varepsilon} |t|^{p}, \quad \forall (x,t)\in \mathbb{R}^N \times \mathbb{R}, \end{equation} which, together with \eqref{335} and Lemma \ref{lem2.2}, yields \begin{equation}\label{33b} \begin{aligned} \Phi(u)&=\frac{1}{2}\|u\|^2-\int_{\mathbb{R}^N}F(x,u)\mathrm{d}x \\ &\ge \frac{1}{2}\|u\|^2-C_1(\varepsilon\|u\|^{\varrho} +C_{\varepsilon}\|u\|^{p}), \quad \forall u\in E^+. \end{aligned} \end{equation} Choosing an appropriate $\varepsilon$ we see that the second inequality holds for some $\rho>0$. (ii) For $u\in \mathcal{N}^-$, it follows from (i), (F1) and \eqref{335} that \begin{equation*} m\le \frac{1}{2}(\|u^+\|^2-\|u^-\|_{*}^2)-\int_{\mathbb{R}^N}F(x,u)\mathrm{d}x \le \frac{1}{2}(\|u^+\|^2-\|u^-\|_{*}^2), \end{equation*} hence, $\|u^+\|\ge \max\{\|u^-\|_{*},\sqrt{2m}\}$. \end{proof} \begin{lemma}[{\cite[Lemma 4.2]{T3}}] \label{lem3.2} Suppose that {\rm (V1), (F1), (F2)} are satisfied. Let $e\in E^+$ with $\|e\|=1$. Then there is a $r_1>0$ such that $\sup\Phi(\partial Q)\leq 0$ for $r\ge r_1$, where \begin{equation}\label{41} Q=\{w+se: w\in E^-, s\geq0, \|w+se\|\leq r\}. \end{equation} \end{lemma} \begin{lemma} \label{lem3.3} Suppose that {\rm (V1), (F1), (F2), (WN)} are satisfied. Then for any $u\in E^{+}\setminus \{0\}$, $\mathcal{N}^{-}\cap (E^{-}\oplus \mathbb{R}^{+}u)\ne \emptyset$, i.e., there exist $t(u)>0$ and $w(u)\in E^{-}$ such that $t(u)u+w(u)\in \mathcal{N}^{-}$. \end{lemma} \begin{proof} By Lemma \ref{lem3.2}, there exists $R>0$ such that $\Phi(v)\le 0$ for $v\in (E^{-}\oplus \mathbb{R}^{+} u)\setminus B_{R}(0)$. By Lemma \ref{lem3.1} (i), $\Phi(tu)>0$ for small $t>0$. Thus, $0<\sup\Phi(E^{-}\oplus \mathbb{R}^{+} u)<\infty$. It is easy to see that $\Phi$ is weakly upper semi-continuous on $E^{-}\oplus \mathbb{R}^{+} u$, therefore, $\Phi(u_0)=\sup\Phi(E^{-}\oplus \mathbb{R}^{+} u)$ for some $u_0\in E^{-}\oplus \mathbb{R}^{+} u$. This $u_0$ is a critical point of $\Phi|_{E^{-}\oplus \mathbb{R} u}$, so $\langle \Phi'(u_0), u_0 \rangle= \langle \Phi'(u_0), v \rangle=0$ for all $v\in E^{-}\oplus \mathbb{R}\ u$. Consequently, $u_0\in \mathcal{N}^{-}\cap (E^{-}\oplus \mathbb{R}^{+} u)$. \end{proof} \begin{lemma} \label{lem3.4} Suppose that {\rm (V1), (F1), (F2)} are satisfied. Then there exist a constant $c_0\in [\kappa, \sup \Phi(Q)]$ and a sequence $\{u_n\}\subset E$ satisfying \begin{equation}\label{Ce1} \Phi(u_n)\to c_0, \quad \|\Phi'(u_n)\|(1+\|u_n\|)\to 0, \end{equation} where $Q$ is defined by \eqref{41}. \end{lemma} The above lemma is a direct corollary of Lemmas \ref{lem2.4}, \ref{lem3.1} (i), \ref{lem3.2} and Proposition \ref{prop2.3}. \begin{lemma} \label{lem3.5} Suppose that {\rm (V1), (F1), (F2), (WN)} are satisfied. Then there exist a constant $c_*\in [\kappa,\ m]$ and a sequence $\{u_n\}\subset E$ satisfying \begin{equation}\label{44} \Phi(u_n)\to c_*, \quad \|\Phi'(u_n)\|(1+\|u_n\|)\to 0. \end{equation} \end{lemma} Using the diagonal method and taking into account Lemmas \ref{lem3.1}, \ref{lem3.2}, \ref{lem3.4} and Corollary \ref{coro2.6}, one can prove the above lemma by the same argument as in the proof of \cite[Lemma 3.8]{Ta}. Lemma \ref{lem3.5} shows that a minimizing Cerami sequence for the energy functional can be found outside the Nehari-Pankov manifold, from which one can easily demonstrate a ground state solution of Nehari-Pankov type for problem \eqref{ps}. \begin{lemma} \label{lem3.6} Suppose that {\rm (V1), (F1), (F2), (F3)} are satisfied. Then any sequence $\{u_n\}\subset E$ satisfying \begin{equation}\label{411} \Phi(u_n)\to c\ge 0,\quad \langle\Phi'(u_n),u^{\pm}_n\rangle\to 0, \end{equation} is bounded in $E$. \end{lemma} \begin{proof} The following argument is essentially contained in \cite[Lemma 3.5]{T5}, for the reader convenience we choose to write it in detail. It follows from (F3) and \eqref{411} that \begin{equation}\label{L63} C_2\ge\Phi(u_n)-\frac{1}{2}\langle\Phi'(u_n),u_n\rangle =\int_{\mathbb{R}^{N}}\mathcal{{F}}(x,u_n)\mathrm{d}x\ge 0. \end{equation} First we prove that $\{\|u_n\|_*\}$ is bounded. To this end, arguing by contradiction, suppose that $\|u_n\|_*\to \infty$. Let $v_n=u_n/\|u_n\|_*$, then $\|v_n\|_*=1$. If \begin{equation*} \delta:=\limsup_{n\to \infty}\sup_{y\in\mathbb{R}^N} \int_{B(y,1)}|v^+_n|^2\mathrm{d}x=0, \end{equation*} then by Lions's concentration compactness principle \cite{L} or \cite[Lemma 1.21]{W}, $v^+_n\to 0$ in $L^s(\mathbb{R}^N)$ for $2\max\{1,N/2\}$. It follows from (F1) and \eqref{315} that \begin{equation}\label{L65} \int_{{\Omega_n}}\frac{f(x,u_n)}{u_n}(v_n^{+})^2\mathrm{d}x \le (\Lambda_0-\delta_0)\|v^+_n\|_2^2 \le (1- \frac{\delta_0}{\Lambda_0})\|v^+_n\|_{*}^2 \le 1- \frac{\delta_0}{\Lambda_0}. \end{equation} On the other hand, by virtue of (F3), \eqref{L63} and H\"{o}lder inequality, one can get that \begin{equation}\label{L66} \begin{aligned} \int_{\mathbb{R}^N\setminus{\Omega_n}}\frac{f(x,u_n)}{u_n}(v_n^{+})^2\mathrm{d}x &\le \Big[\int_{\mathbb{R}^N\setminus{\Omega_n}} (\frac{f(x,u_n)}{u_n})^{\sigma}\mathrm{d}x\Big]^{1/\sigma} \|v^{+}_n\|^{2}_{2\sigma'} \\ &\le \Big[c_3\int_{\mathbb{R}^N\setminus{\Omega_n}}\mathcal{{F}}(x,u_n) \mathrm{d}x\Big]^{1/\sigma} \|v^{+}_n\|^{2}_{2\sigma'} \\ &\le (c_3C_2)^{1/\sigma}\|v^{+}_n\|^{2}_{2\sigma'}=o(1). \end{aligned} \end{equation} Combining \eqref{L65} and \eqref{L66}, and using (F1), \eqref{336} and \eqref{411}, one has \begin{equation}\label{-416} \begin{aligned} 1+o(1) & = \frac{\|u_n\|_{*}^2-\langle\Phi'(u_n),u_n^{+}-u_n^{-}\rangle}{\|u_n\|_{*}^2} \\ & = \int_{u_n\neq0}\frac{f(x,u_n)}{u_n} [(v_n^{+})^2-(v_n^{-})^2]\mathrm{d}x \\ & \le \int_{\Omega_n}\frac{f(x,u_n)}{u_n}(v_n^{+})^2\mathrm{d}x +\int_{\mathbb{R}^N\setminus{\Omega_n}}\frac{f(x,u_n)}{u_n}(v_n^{+})^2\mathrm{d}x \\ & \le 1- \frac{\delta_0}{\Lambda_0}+ o(1). \end{aligned} \end{equation} This contradiction shows that $\delta>0$. The rest of the argument is the same as in the proof of \cite[Lemma 4.4]{T3}. \end{proof} Note that condition (WN) is stronger than (Ta), then one gets directly the following lemma from \cite[Lemma 4.4]{T3}. \begin{lemma} \label{lem3.7} Suppose that {\rm (V1), (F1), (F2), (WN)} are satisfied. Then any sequence $\{u_n\}\subset E$ satisfying \eqref{411} is bounded in $E$. \end{lemma} \begin{lemma}[{\cite[Corollary 2.3]{BD1}}] \label{lem3.8} Suppose that {\rm (V1)} is satisfied. If $u\subset E$ is a weak solution of the Schr\"odinger equation \begin{equation}\label{423} -\Delta u+V(x)u=f(x, u), \quad x\in\mathbb{R}^N, \end{equation} i.e. \begin{equation}\label{424} \int_{\mathbb{R}^N}(\nabla u\nabla \psi+V(x)u\psi)\mathrm{d}x =\int_{\mathbb{R}^N}f(x,u)\psi\mathrm{d}x, \quad \forall \psi\in C^{\infty}_0(\mathbb{R}^N), \end{equation} then $u_n\to 0$ as $|x|\to \infty$. \end{lemma} \begin{proof}[Proof of Theorem \ref{thm1.1}] Lemma \ref{lem3.5} and \ref{lem3.7} imply the existence of a bounded sequence $\{u_n\}\subset E$ satisfying \eqref{44}. By \eqref{315} and Lemma \ref{lem2.2} (i), $\|u_n\|^{\varrho}_{\varrho}+\|u_n\|^{p}_{p}$ is also bounded. If \begin{equation*} \delta:=\limsup_{n\to \infty}\sup_{y\in\mathbb{R}^N}\int_{B(y,1)} |u_n^+|^2\mathrm{d}x=0, \end{equation*} then by Lions's concentration compactness principle, $u^+_n\to 0$ in $L^s(\mathbb{R}^N)$ for $20$. Going if necessary to a subsequence, we may assume the existence of $k_n\in \mathbb{Z}^N$ such that \[ \int_{B(k_n,1+\sqrt{N})} |u^+_n|^2\mathrm{d}x>\frac{\delta}{2}. \] Let us define $v_n(x)=u_n(x+k_n)$ so that \begin{equation}\label{425} \int_{B(0,1+\sqrt{N})} |v^+_n|^2\mathrm{d}x>\frac{\delta}{2}. \end{equation} Since $V(x)$ and $f(x,t)$ are periodic in $x$, we have $\|v_n\|=\|u_n\|$ and \begin{equation}\label{426} \Phi(v_n)\to c_*\in [\kappa,\ m], \quad \|\Phi'(v_n)\|(1+\|v_n\|)\to 0. \end{equation} Passing to a subsequence, we have $v_n\rightharpoonup v_0$ in $E$, $v_n\to v_0$ in $L^s_{\rm loc}(\mathbb{R}^N)$ for $2\leq s<2^*$ and $v_n\to v_0$ a.e. on $\mathbb{R}^N$. \eqref{425} implies that $v_0\neq0$. By a standard argument, one can prove that $\langle\Phi'(v_0),\psi\rangle=0$ for any $\psi\in C^{\infty}_0(\mathbb{R}^N)$. It follows that $\Phi'(v_0)=0$ since $C^{\infty}_0(\mathbb{R}^N)$ is dense in $E$. Then $v_0\in \mathcal{N}^-$ and so $\Phi(v_0)\geq m$. On the other hand, by \eqref{426}, (WN) and Fatou's Lemma, we have \begin{align*} m&\geq c_*=\lim_{n\to \infty} \big[\Phi(v_n)-\frac{1}{2}\langle\Phi'(v_n),v_n\rangle\big]\\ &=\lim_{n\to \infty}\int_{\mathbb{R}^N} \big[\frac{1}{2}f(x,v_n)-F(x,v_n)\big]\mathrm{d}x \\ &\geq \int_{\mathbb{R}^N}\lim_{n\to \infty} \big[\frac{1}{2}f(x,v_n)-F(x,v_n)\big]\mathrm{d}x\\ &=\int_{\mathbb{R}^N}\big[\frac{1}{2}f(x,v_0)-F(x,v_0)\big]\mathrm{d}x \\ &= \Phi(v_0)-\frac{1}{2}\langle\Phi'(v_0),v_0\rangle=\Phi(v_0). \end{align*} Then $\Phi(v_0)\leq m$ and so $\Phi(v_0)=m=\inf_{\mathcal{N}^-}\Phi\ge \kappa$ by Lemma \ref{lem3.1} (i). It follows from Lemma \ref{lem3.8} that $v_0$ is a ground state solution of problem \eqref{ps}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] Applying Lemmas \ref{lem3.4} and \ref{lem3.6}, there exists a bounded sequence $\{u_n\}\subset E$ satisfying \eqref{Ce1}. Similar to the argument as in the proof of Theorem \ref{thm1.1}, we can show that $\Phi'(\bar{u})=0$ for some $\bar{u}\in E\setminus\{0\}$, i.e. $\mathcal{M}\neq0$. Let $\hat{c}:=\inf_{\mathcal{M}}\Phi$. By (F3), for any $u\in \mathcal{M}$, one has $$ \Phi(u)=\Phi(u)-\frac{1}{2}\langle\Phi'(u),u\rangle =\int_{\mathbb{R}^N}\mathcal{{F}}(x,u)\mathrm{d}x\ge0; $$ therefore $\hat{c}\ge0$. Let $\{u_n\}\subset \mathcal{M}$ such that $\Phi(u_n)\to \hat{c}$. Then $\langle\Phi'(u_n),v\rangle=0$ for any $v\in E$. It follows from Lemma \ref{lem3.6} that $\{u_n\}$ is bounded in $E$. The rest of the argument is the same as in the proof of Theorem \ref{thm1.1} by using (F3) instead of (WN). \end{proof} \subsection*{Acknowledgments} The authors would like to thank the anonymous referees their valuable comments and suggestions. The first author wishes to thank the China Scholarship Council for supporting his visit to the University of Nevada, Las Vegas. This work is partially supported by the NNSF (No: 11171351) and Hunan Provincial Innovation Foundation for Postgraduates (CX2015B037). \begin{thebibliography}{00} \bibitem{AL} S. Alama, Y. Y. Li; \emph{On multibump bound states for certain semilinear elliptic equations}, Indiana Univ. Math. J. 41 (1992), 983-1026. \bibitem{AR} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}, J. Funct. Anal. 14 (1973), 349-381. \bibitem{BD1} T. Bartsch, Y. H. Ding; \emph{On a nonlinear Schr\"odinger equation with periodic potential}, Math. Ann. 313 (1999), 15-37. \bibitem{BJ} B. Buffoni, L. Jeanjean, C. A. Stuart; \emph{Existence of nontrivial solutions to a strongly indefinite semilinear equation}, Proc. Amer. Math. Soc. 119 (1993), 179-186. \bibitem{CR} V. Coti-Zelati, H. P. Rabinowitz; \emph{Homoclinic type solutions for a smilinear elliptic PDE on ${\mathbb{R}}^N$}, Comm. Pure Appl. Math. XIV 46 (1992), 1217-1269. \bibitem{D1} Y. H. Ding; \emph{Varitional Methods for Strongly Indefinite Problems}, World Scientific, Singapore, 2007. \bibitem{D2} Y. H. Ding, C. Lee; \emph{Multiple solutions of Schr\"odinger equations with indefinite linear part and super or asymptotically linear terms}, J. Differential Equations 222 (2006), 137-163. \bibitem{D3} Y. H. Ding, S. X. Luan; \emph{Multiole solutions for a class of nonlinear Schr\"odinger equations}, J. Differential Equations 207 (2004), 423-457. \bibitem{D4} Y. H. Ding, A. Szulkin; \emph{Bound states for semilinear Schr\"odinger equations with sign-changing potential}, Calc. Var. Partial Differential Equations 29 (3) (2007), 397-419. \bibitem{EE} D. E. Edmunds, W. D. Evans; \emph{Spectral Theory and Differential Operators}, Clarendon Press, Oxford, 1987. \bibitem{Ek} Y. Egorov, V. Kondratiev; \emph{On Spectral Theory of Elliptic Operators}, Birkh\"{a}user, Basel, 1996. \bibitem{FTZD1} F. F. Liao, X. H. Tang, J. Zhang, D. D. Qin; \emph{Super-quadratic conditions for periodic elliptic system on $\mathbb{R}^N$}, Electron. J. Differential Equations 2015 (127) (2015), 1-11. \bibitem{FTZD2} F. F. Liao, X. H. Tang, J. Zhang, D. D. Qin; \emph{Semi-classical solutions of perturbed elliptic system with general superlinear nonlinearity}, Bound. Value Probl. 2014, 2014:208, 13 pp. \bibitem{FTZD3} F. F. Liao, X. H. Tang, J. Zhang; \emph{Existence of solutions for periodic elliptic system with general superlinear nonlinearity}, Z. Angew. Math. Phys. 66 (2015), 689-701. \bibitem{KS} W. Kryszewski, A. Szulkin; \emph{Generalized linking theorem with an application to semilinear Schr\"odinger equations}, Adv. Differential Equations 3 (1998), 441-472. \bibitem{L1} S. Liu; \emph{On superlinear Schr\"{o}dinger equations with periodic potential}, Calc. Var. Partial Differential Equations 45 (2012), 1-9. \bibitem{L} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations}. The locally compact case, part 2, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire 1 (1984), 223-283. \bibitem{LS} G. B. Li, A. Szulkin; \emph{An asymptotically periodic Schr\"odinger equations with indefinite linear part}, Commun. Contemp. Math. 4 (2002), 763-776. \bibitem{LW} Z. L. Liu, Z.-Q. Wang; \emph{On the Ambrosetti-Rabinowitz superlinear condition}, Adv. Nonlinear Stud. 4 (2004), 561-572. \bibitem{LWZ} Y. Q. Li, Z.-Q. Wang, J. Zeng; \emph{Ground states of nonlinear Schr\"odinger equations with potentials}, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire 23 (6) (2006), 829-837. \bibitem{M} J. Mederski; \emph{Solutions to a nonlinear Schr\"odinger equation with periodic potential and zero on the boundary of the spectrum}, arXiv: 1308.4320v1 [math.AP] 20 Aug 2013. \bibitem{P} A. Pankov; \emph{Periodic nonlinear Schr\"odinger equation with application to photonic crystals}, Milan J. Math. 73 (2005), 259-287. \bibitem{Q} D. D. Qin, X. H. Tang, Z. Jian; \emph{Multiple solutions for semilinear elliptic equations with sign-changing potential and nonlinearity}, Electron. J. Differential Equations 2013(207) (2013), 1-9. \bibitem{Q2} D. D. Qin, F. F. Liao, Y. Chen; \emph{Multiple solutions for periodic Schr\"odinger equations with spectrum point zero}, Taiwanese J. Math. 18 (2014), 1185-1202. \bibitem{Q3} D. D. Qin, X. H. Tang; \emph{New conditions on solutions for periodic Schr\"odinger equations with spectrum zero}, Taiwanese J. Math. DOI: 10.11650/tjm.18.2014.4227 \bibitem{R} P. H. Rabinowitz; \emph{On a class of nonlinear Schr\"odinger equations}, Z. Angew. Math. Phys. 43 (1992), 270-291. \bibitem{RS} M. Reed, B. Simon; \emph{Methods of Mordern Mathematical Physics, vol. IV, Analysis of Operators}, Academic Press, New York, 1978. \bibitem{SW} A. Szulkin, T. Weth; \emph{Ground state solutions for some indefinite variational problems}, J. Funct. Anal. 257 (12) (2009), 3802-3822. \bibitem{SW2} A. Szulkin, T. Weth; \emph{The method of Nehari manifold}, Handbook of nonconvex analysis and applications, 597-632, Int. Press, Somerville, 2010. \bibitem{T2} X. H. Tang; \emph{New super-quadratic conditions on ground state solutions for superlinear Schr\"odinger equation}, Adv. Nonlinear Stud. 14 (2014), 361-373. \bibitem{T1} X. H. Tang; \emph{Infinitely many solutins for semilinear Schr\"odinger equation with sign-changing potential and nonlinearity}, J. Math. Anal. Appl. 401 (2013), 407-415. \bibitem{Ta} X. H. Tang; \emph{Non-Nehari manifold method for superlinear Schr\"odinger equation}, Taiwanese J. Math. 18 (2014), 1957-1979. \bibitem{T3} X. H. Tang; \emph{New conditions on nonlinearity for a periodic Schr\"odinger equation having zero as spectrum}, J. Math. Anal. Appl. 413 (2014), 392-410. \bibitem{T4} X. H. Tang; \emph{Non-Nehari manifold method for asymptotically linear Schr\"odinger equation}, J. Australian Math. Soc. 98 (2015), 104-116. \bibitem{T5} X. H. Tang; \emph{New super-quadratic conditions for asymptotically periodic Schr\"odinger equation}, arXiv:1507.02859v1 [math.AP] 10 Jul 2015. \bibitem{W} M. Willem; \emph{Minimax Theorems}, Birkh\"auser, Boston, 1996. \bibitem{WZ} M. Willem, W. Zou; \emph{On a Schr\"odinger equation with periodic potential and spectrum point zero}, Indiana. Univ. Math. J. 52 (2003), 109-132. \bibitem{Y} M. Yang; \emph{Ground state solutions for a periodic Schr\"odinger equation with superlinear nonlinearities}, Nonlinear Anal. 72 (2010), 2620-2627. \bibitem{YCD} M. Yang, W. Chen, Y. Ding; \emph{Solutions for periodic Schr\"odinger equation with spectrum zero and general superlinear nonlinearities}, J. Math. Anal. Appl. 364 (2) (2010), 404-413. \bibitem{ZZ} X. Zhong, W. Zou; \emph{Ground state and multiple solutions via generalized Nehari manifold}, Nonlinear Anal. 102 (2014), 251-263. \end{thebibliography} \end{document}