\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 181, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/181\hfil Trigonometric series] {Trigonometric series adapted for the study of Dirichlet boundary-value problems of Lam\'e systems} \author[B. Merouani, R. Boufenouche \hfil EJDE-2015/181\hfilneg] {Boubakeur Merouani, Razika Boufenouche} \address{Boubakeur Merouani \newline Department of Mathemaics, Univ. Setif 1, Algeria} \email{mermathsb@hotmail.fr} \address{Razika Boufenouche \newline Department of Mathemaics, Univ. Jijel, Algeria} \email{r\_boufenouche@yahoo.fr} \thanks{Submitted February 6, 2015. Published July 1, 2015.} \subjclass[2010]{35B40, 35B65, 35C20} \keywords{Sector; crack; singularity; Lam\'e system; series} \begin{abstract} Several authors have used trigonometric series for describing the solutions to elliptic equations in a plane sector; for example, the study of the biharmonic operator with different boundary conditions, can be found in \cite{c2,m4,t1}. The main goal of this article is to adapt those techniques for the study of Lam\'e systems in a sector. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} Let $S$ be the truncated plane sector of angle $\omega \leq 2\pi ,$ and positive radius $\rho $: \begin{equation} S=\{ ( r\cos \theta ,r\sin \theta ) \in\mathbb{R}^2,\, 0< r< \rho ,\; 0< \theta < \omega \}\,. \label{e1.1} \end{equation} Let $\Sigma $ be the circular boundary part \begin{equation} \Sigma =\{ ( \rho \cos \theta ,\rho \sin \theta ) \in \mathbb{R} ^2,\, 0< \theta < \omega \} . \label{e1.2} \end{equation} We are interested in the study of functions $u$ belonging to the Sobolev space $[ H^1( S) ] ^2$, and that are solutions to the Lam\'e type system \begin{equation} \begin{gathered} Lu=\Delta u+\nu _0\nabla ( \operatorname{div}u) =0\quad \text{in }S \\ u=0\quad \text{for }\theta =0,\, \omega\,, \end{gathered} \label{e1.3} \end{equation} where \begin{equation*} \nu _0=( 1-2\nu ) ^{-1}=\frac{\lambda +\mu }{\mu }, \end{equation*} $\lambda $, $\mu $ are the Lam\'e constants, with $\lambda \geq 0$, $\mu >0$ and $\nu $ is a real number ($0< \nu < 1/2)$ called Poisson coefficient. We shall analyze the solutions $u$ of this problem which can be written in series of the form: \begin{equation} u( r,\theta ) =\sum_{\alpha \in E} c_{\alpha }r^{\alpha }v_{\alpha }( \theta ) . \label{e1.4} \end{equation} Here $E$ stands for the set of solutions of the equation in a complex variable $\alpha ( \nu _0) $, \begin{equation} \sin ^2\alpha \omega =\Big( \frac{\nu _0}{\nu _0+2}\text{ }\alpha \big) ^2\sin ^2\omega ,\quad \operatorname{Re}\alpha \succ 0 \label{e1.5} \end{equation} For further studies of the set $E$, see, for example Lozi \cite{l1}. We will adapt the technique used in \cite{c2,m4,t1}, for the bilaplacian. The novelty is that, here, we treat a system of PDE's instead of the equations studied before. For this purpose we introduce a Betti formula instead of a Green formula. To compute the coefficients of the the singularities which can occur in the solutions, this technique is easier and more direct than the classical one used in \cite{g2}. We will focus on the important case of the crack, i.e. $\omega =2\pi $. The calculations in that case are more explicit and give the known results for the Laplacian as just a particular case. \section{Separation of variables} Replacing $u$ by $r^{\alpha }v_{\alpha }( \theta ) =r^{\alpha }( v_{1,\alpha }( \theta ) ,v_{2,\alpha }( \theta ) ) $ in the problem \eqref{e1.3} and using the change of variables \begin{equation} \begin{gathered} w_{1,\alpha }( \theta ) =\cos \theta v_{1,\alpha }( \theta ) +\sin \theta v_{2,\alpha }( \theta ), \\ w_{2,\alpha }( \theta ) =-\sin \theta v_{1,\alpha }( \theta ) +\cos \theta v_{2,\alpha }( \theta ) \end{gathered} \label{e2.1} \end{equation} leads us the system \begin{equation} \begin{gathered} w_{1,\alpha }''( \theta ) +( \nu _0+1) ( \alpha ^2-1) w_{1,\alpha }( \theta ) +(\nu _0( \alpha -1) -2)w_{2,\alpha }'( \theta ) =0; \\ ( \nu _0+1) w_{2,\alpha }''( \theta ) +( \alpha ^2-1) w_{2,\alpha }( \theta ) +(\nu _0( \alpha +1) +2)w_{1,\alpha }'( \theta ) =0. \\ w_{1,\alpha }( 0) =w_{2,\alpha }( 0) =0. \\ \cos \omega w_{1,\alpha }( \omega ) -\sin \omega w_{2,\alpha }( \omega ) =\sin \omega w_{1,\alpha }( \omega ) +\cos \omega w_{2,\alpha }( \omega ) =0. \end{gathered} \label{e2.2} \end{equation} By Merouani \cite{m2}, the solutions of \eqref{e2.2} are linear combination of the functions \begin{equation} \varphi _{\alpha }( \theta ) = \begin{pmatrix} 2\alpha v_0[ \cos ( \alpha -2) \theta -\cos \alpha \theta] \\ -2\alpha v_0\sin ( \alpha -2) \theta +2(v_0(\alpha -2)-4)\sin \alpha \theta \end{pmatrix} \label{e2.3} \end{equation} and \begin{equation} \psi _{\alpha }( \theta ) = \begin{pmatrix} 2\alpha v_0\sin ( \alpha -2) \theta -2(v_0(\alpha +2)+4)\sin \alpha \theta \\ 2\alpha v_0[ \cos ( \alpha -2) \theta -\cos \alpha \theta] \end{pmatrix} \quad 0< \theta < \omega , \label{e2.4} \end{equation} A relationship, similar to classical orthogonality, for this system is given by the following theorem. \begin{theorem} \label{thm1} Let $w_{\alpha }=( w_{1,\alpha },w_{2,\alpha }) $ and $w_{\beta }=( w_{1,\beta },w_{2,\beta }) $ be solutions of \eqref{e2.2} with $\alpha $ and $\beta $ solutions of \eqref{e1.5}. Then, for $\beta \neq \overline{\alpha }$, we have \begin{equation} \begin{aligned} &[ w_{\alpha },w_{\beta }]\\ &= \int_0^\omega \Big[ \big[ \frac{1}{( \overline{\beta }-\alpha ) }\nu _0( w_{2,\alpha }',w_{1,\alpha }') +( (v_0+1)w_{1,\alpha },w_{2,\alpha }) \big] \begin{pmatrix} \overline{w}_{1,\beta } \\ \overline{w}_{2,\beta } \end{pmatrix} \Big] d\theta =0 \end{aligned} \label{e2.5} \end{equation} \end{theorem} \begin{proof} We shall use Betti formula \begin{equation} \int_S ( vLu-uLv) dx=\int_\Gamma [ v\sigma ( u) \cdot\eta -u\sigma ( v) \cdot\eta ] d\sigma \label{e2.6} \end{equation} where \begin{equation*} \sigma ( u) = \begin{pmatrix} \sigma _{11}( u) & \sigma _{12}( u) \\ \sigma _{12}( u) & \sigma _{22}( u) \end{pmatrix} \end{equation*} is the tensor of stress, $\eta = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} $ is the outward unit vector normal to $\Sigma ,$ and $\Gamma $ is the boundary of $S$. For two functions $u,v$ which are solutions of \eqref{e1.3}, using Betti's formula we obtain \begin{equation} \int_{\Sigma } [ v\sigma ( u) .\eta -u\sigma ( v) .\eta ] d\sigma =0 \label{e2.7} \end{equation} on $\Sigma ,$ for the function $u=r^{\alpha }\varphi _{\alpha }$, taking account of the change of variables \eqref{e2.1}, we have \begin{equation} \sigma ( u) \cdot\eta =\frac{r^{\alpha -1}}{\mu }M_{\alpha ,v_0}(w_{\alpha }) \label{e2.8} \end{equation} with $M_{\alpha ,v_0}(w_{\alpha })$ being the matrix \[ \begin{pmatrix} ((v_0-1)w_{2,\alpha }'+( \alpha ( v_0+1) +(v_0-1)) w_{1,\alpha })\cos \theta -(w_{1,\alpha }'+( \alpha -1) w_{2,\alpha })\sin \theta \\ (w_{1,\alpha }'+( \alpha -1) w_{2,\alpha })\cos \theta +((v_0-1)w_{2,\alpha }'+( \alpha ( v_0+1) +(v_0-1)) w_{1,\alpha })\sin \theta \end{pmatrix} \] The results follow from the application of formula \eqref{e2.7} to the functions $u=r^{\alpha }\varphi _{\alpha }$ and $u=r^{\beta }\psi _{\beta }$, and by using relation \eqref{e2.8}. \end{proof} \begin{corollary} \label{coro2} Let $w_{\alpha }$ and $w_{\beta }$ be solution of \eqref{e2.2} with $ \alpha $ and $\beta $ solution of \eqref{e1.5}. Suppose in addition that \begin{equation} \int_0^\omega ( w_{2,\alpha }',w_{1,\alpha }') \begin{pmatrix} \overline{w}_{1,\beta } \\ \overline{w}_{2,\beta } \end{pmatrix} =0 \label{e2.9} \end{equation} and $\alpha \neq \overline{\beta }$, then \begin{equation} [ w_{\alpha },w_{\beta }] =\int_0^\omega [ ( (v_0+1)w_{1,\alpha },w_{2,\alpha }) ] \begin{pmatrix} \overline{w}_{1,\beta } \\ \overline{w}_{2,\beta } \end{pmatrix} d\theta =0 \label{e2.10} \end{equation} \end{corollary} \begin{proof} Substituting \eqref{e2.9} in \eqref{e2.5}, we obtain \eqref{e2.10}. \end{proof} \begin{remark} \label{rmk3} \rm For $w_{\alpha }=r^{\alpha }( w_{1,\alpha },w_{2,\alpha }) $, we define the operator \begin{equation*} Tw_{\alpha }=r^{\alpha -1} \begin{pmatrix} (v_0+1)w_{1,\alpha } \\ w_{2,\alpha } \end{pmatrix} \end{equation*} \end{remark} \begin{corollary} \label{coro4} From corollary \ref{coro2}, if $\alpha \neq \overline{\beta }$, we have \begin{equation} \int_{\Sigma } ( Tw_{\alpha } \overline{w_{\beta }} +w_{\alpha }T\overline{w_{\beta }}) d\sigma =0. \label{e2.11} \end{equation} \end{corollary} \begin{proof} From the definition of the operator $T$ and Corollary \ref{coro2} we have \begin{equation*} \int_\Sigma ( Tw_{\alpha }\text{.}\overline{w_{\beta }} +w_{\alpha }T\overline{w_{\beta }}) d\sigma =2r^{\alpha +\beta -1} \int_0^\omega ((v_0+1)w_{1,\alpha }w_{1,\overline{ \beta }}+w_{2,\alpha }w_{2,\overline{\beta }})d\theta =0. \end{equation*} \end{proof} \begin{corollary} \label{coro5} Suppose that $u=\sum_{\alpha \in E} c_{\alpha }r^{\alpha }\varphi _{\alpha }$ is uniformly convergent in $\overline{S}$. If $[\varphi _{\overline{\beta }},\varphi _{\beta }] \neq 0$ then \begin{equation*} c_{\overline{\beta }}=\frac{1}{2}\rho ^{-2\overline{\beta }+1}\frac{ \int_\Sigma ( Tu \overline{u_{\beta }}+u T\overline{ u_{\beta }}) d\sigma }{[ \varphi _{\overline{\beta }},\varphi _{\beta }] }. \end{equation*} \end{corollary} \begin{proof} For $u=\sum_{\alpha \in E} c_{\alpha }r^{\alpha }\varphi _{\alpha}$ and taking account the definition of the operator $T$ we have \begin{align*} &\int_\Sigma ( Tu\text{.}\overline{u_{\beta }}+u.T\overline{ u_{\beta }}) d\sigma \\ &=\int_0^\omega \Big( \Big( \sum_{\alpha \in E} c_{\alpha }r^{\alpha -1} \begin{pmatrix} (v_0+1)\varphi _{1,\alpha } \\ \varphi _{2,\alpha } \end{pmatrix} \Big) r^{\overline{\beta }}\varphi _{^{\overline{\beta }}} \\ &\quad +\Big(\sum_{\alpha \in E} c_{\alpha }r^{\alpha }\varphi _{\alpha }\Big) r^{\overline{\beta }-1} \begin{pmatrix} (v_0+1)\varphi _{1,\overline{\beta }} \\ \varphi _{2,\overline{\beta }} \end{pmatrix} \Big) d\theta \\ &=\sum_{\alpha \in E} c_{\alpha }r^{\overline{\beta }+\alpha -1} \int_0^\omega \Big( \begin{pmatrix} (v_0+1)\varphi _{1,\alpha } \\ \varphi _{2,\alpha } \end{pmatrix} \varphi _{^{\overline{\beta }}}+\varphi _{\alpha } \begin{pmatrix} (v_0+1)\varphi _{1,\overline{\beta }} \\ \varphi _{2,\overline{\beta }} \end{pmatrix} \Big) d\theta . \end{align*} From Corollary \ref{coro2}, if $\alpha \neq \overline{\beta }$, then \begin{equation*} \int_\Sigma ( Tu \overline{u_{\beta }}+u T\overline{ u_{\beta }}) d\sigma =2C\overline{_{\beta }}[ \varphi _{\overline{ \beta }},\varphi _{\beta }] \rho ^{2\overline{\beta }-1}. \end{equation*} Expression $c_{\overline{\beta }}$ of Corollary \ref{coro5} results from this last equality. \end{proof} \begin{remark} \label{rmk6} \rm The technique we develop for the study of the trigonometric series is based on Theorem \ref{thm1} and Corollary \ref{coro5}. To illustrate this, we study the following trigonometric series in the particular case of the crack ($\omega =2\pi $), which is an important case of singular domains. The explicit knowledge of the roots of \eqref{e1.5} simplifies the computations. \end{remark} \section{Complete case study of the crack} To simplify the calculations, we decompose every solution $u$ of \eqref{e1.3} into two parts with respect to $\theta $ \begin{equation*} u=\mathfrak{U}_1+\mathfrak{U}_2. \end{equation*} \subsection{Study of first part} The first part is the expression $\varphi _{\alpha }$ and is given by \eqref{e2.3} where \begin{equation*} E=\{ \frac{k}{2},\, k\in \mathbb{N}^{\ast }\} \quad \text{ because }\omega =2\pi . \end{equation*} After some calculation, we obtain that \begin{equation*} [ \varphi _{\beta },\varphi _{\beta }] =[ \beta^2v_0^2(2v_0+3)+4( v_0(\beta -2)-4) ^2] \pi \rho ^{2\beta -1} \neq 0\,. \end{equation*} Define the sub-sector \begin{equation*} S_{\rho _0}=S\cap \{( r\cos \theta ,r\sin \theta ) \in\mathbb{R}^2,r< \rho _0\},\rho _0<\rho . \end{equation*} We define the traces on $\Sigma $, \begin{equation*} \mathfrak{U}_1=\xi_1\in \big( \tilde{H}^{1/2}(\Sigma )\big) ^2\quad \text{and} \quad T\mathfrak{U}_1=\phi_1\in \big( \tilde{H}^{1/2}(\Sigma )\big) ^2. \end{equation*} Let \begin{equation} c_{\alpha }=A_{\alpha ,v_0}\int_0^{2\pi }\Big( \xi _1 \begin{pmatrix} (v_0+1)\varphi _{1,\alpha } \\ \varphi _{2,\alpha } \end{pmatrix} +\rho _0 \begin{pmatrix} \varphi _{1,\alpha } \\ \varphi _{2,\alpha } \end{pmatrix} \phi _1\Big) ( \rho _0,\theta ) d\theta \label{e3.1} \end{equation} with \begin{equation*} A_{\alpha ,v_0}=\frac{\rho _0^{-\alpha }}{2[ \alpha ^2v_0^2(2v_0+3)+4( v_0(\alpha -2)-4) ^2] \pi } \end{equation*} \begin{corollary} \label{coro7} If $\mathfrak{U}_1$ is solution of \eqref{e1.3}, then \begin{equation} \mathfrak{U}_1=\sum_{\alpha \in E} c_{\alpha }r^{\alpha }\varphi _{\alpha } \label{e3.2} \end{equation} where $c_{\alpha }$ is given by \eqref{e3.1}. The series converges uniformly in $\overline{S}_{\rho _0}$ for all $\rho _0<\rho $. Moreover \eqref{e3.2} converges globally in $( H^1(S_{\rho })) ^2$, if $\alpha ^{3/2}c_{\alpha }\rho ^{\alpha }\in l^2$. \end{corollary} \begin{proof} (i) if \eqref{e3.2} occurs, then $c_{\alpha }$ is expressed by \eqref{e3.1} under Corollary \ref{coro5}. (ii) if $\mathfrak{U}_1$ is solution of \eqref{e1.3} and $c_{\alpha }$ given by \eqref{e3.1} then $c_{\alpha }=\circ (\alpha \rho _0^{-\alpha })$. This implies the uniform convergence of the series in $\overline{S}_{\rho _0}$ towards some $ W_1$ satisfying \eqref{e1.3}. From Grisvard-Geymonat \cite{g1}, there exists a positive $\varepsilon$, sufficiently small such that the solution of \eqref{e1.3} is written as \[ \mathfrak{U}_1=\sum_{\alpha \in E} K_{\alpha }r^{\alpha }\varphi _{\alpha } \] which converges for $r< \varepsilon$. Theorem \ref{thm1} implies that $K_{\alpha }=c_{\alpha }$ therefore ${W}_1$ and $\mathfrak{U}_1$ coincide in $S_{\varepsilon }$. They coincide in $S_{\rho _0}$ since they are real analytic. \end{proof} \begin{remark} \label{rmk8} If $\xi _1$ belongs to the space $( H^2(]0,2\pi[ ) ) ^2$ and $\phi _1$ to $(H^1(] 0,2\pi[ ) ) ^2$, then $ c_{\alpha }=\circ (\alpha \rho _0^{-\alpha })$ and we have uniform convergence of the series in $\overline{S}_{\rho _0}$ for all $\rho _0\leq \rho $. \end{remark} \subsection{Study of the second part} The second part is the expression $\psi _{\alpha }$ given by \eqref{e2.4} where \[ E=\{ \frac{k}{2},\, k\in \mathbb{N}^{\ast }\} \] because $\omega =2\pi$. After some calculations, we obtain \[ [ \psi _{\alpha },\psi _{\alpha }] =[ (v_0+3)\alpha ^2v_0^2+4(v_0+1)(v_0(\alpha +2)+4)^2] \pi \rho ^{2\alpha -1} \neq 0\,. \] We define the following trace on $\Sigma $, \[ \mathfrak{U}_2=\xi _2\in ( \tilde{H}^{1/2}(\Sigma )) ^2 \quad \text{and}\quad T\mathfrak{U}_2=\phi _2\in ( \tilde{H}^{1/2}(\Sigma )) ^2. \] Let \begin{equation} d_{\alpha }=B\alpha ,v_0\int_0^{2\pi } \Big( \xi _1 \begin{pmatrix} (v_0+1)\psi _{1,\alpha } \\ \psi _{2,\alpha } \end{pmatrix} +\rho _0 \begin{pmatrix} \psi _{1,\alpha } \\ \psi _{2,\alpha } \end{pmatrix} \phi _1) ( \rho _0,\theta ) d\theta . \label{e3.3} \end{equation} with \begin{equation*} B_{\alpha ,v_0}=\frac{\rho _0^{-\alpha }}{2[ (v_0+3)\alpha ^2v_0^2+4(v_0+1)(v_0(\alpha +2)+4)^2] \pi } \end{equation*} \begin{corollary} \label{coro9} If $\mathfrak{U}_2$ is solution of \eqref{e1.3} then \begin{equation} \mathfrak{U}_2=\sum_{\alpha \in E} d_{\alpha }r^{\alpha }\psi _{\alpha } \label{e3.4} \end{equation} where $d_{\alpha }$ is given by \eqref{e3.3}. The series converges uniformly in $ \overline{S}_{\rho _0}$ for all $\rho _0<\rho $. Moreover \eqref{e3.4} converges globally in $( H^1(S_{\rho })) ^2$, if $\alpha ^{3/2}d_{\alpha }\rho ^{\alpha }\in l^2$. \end{corollary} \begin{remark} \label{rmk10} \rm For $v_0=0$ we obtain the trigonometric series for the Laplace equation in a sector. This is compatible with \eqref{e1.3} with $v_0=0$. \end{remark} \begin{thebibliography}{9} \bibitem{c1} C\'edric Camier; \emph{Mod\'elisation et \'etude num\'e rique de vibrations non-lin\'eaire des plaques circulaires minces imparfaites, Application aux cymbales}. Th\`{e}se Pr\'esent\'ee et soutenue publiquement le 2 f\'evrier 2009 pour l'otention du Docteur de l'Ecole Polytechnique. \bibitem{c2} W. Chikouche, A. Aibeche; \emph{coefficients of singularities of the biharmonic problem of Neumann type: case of the crack}. IJMMS 2003: 5, 305-313, Hindawi Publishing Corp. \bibitem{g1} P. Grisvard, G. Geymonat; \emph{Singularities and constructive methods for treatment}, Proceeding Oberwalfach, Springer-Verlag, 1983, p. 123-126. \bibitem{g2} P. Grisvard; \emph{Boundary value problems in plane polygons. Instructions for use}. E.D.F. Bulletin de la direction des \'etudes et recherches, s\'erie C Math\'ematiques. Informatiques No. 1, 1986.pp.21-59. \bibitem{l1}R. Lozi; \emph{R\'esultats num\'eriques de r\'egularit \'e du probl\`{e}me de Stokes et du Laplatien dans un polygone}, R.A.I.R.O., Aalyse Num\'er., 12, No. 3, 1978, p. 267-282. \bibitem{m1} B. Merouani; \emph{Quelques probl\`{e}mes aux limites pour le syst\`{e}me de Lam\'e dans un secteur plan}, C.R.A.S., t. 304, s\'erie I, no. 13, 1987. \bibitem{m2} B. Merouani; \emph{Solutions singuli\`{e}res du syst\`{e}me de l'\'elasticit\'e dans un polygone pour diff\'erentes conditions aux limites}, Maghreb math, Rev, Vol. 5, Nos. 1\&2, 1996, pp.95-112. \bibitem{m3} B. Merouani; \emph{Comportements singuliers des solutions du syst\`{e}me de l'\'elasticit \'e dans un polygone}, Th\`{e}se de doctorat, U.S.T.H.B., Alger (1990). \bibitem{m4} B. Merouani, R. Boufenouche; \emph{Coefficients of singularities for a simply supported plate problems in plane sectors}, Electronic Jornal of Differential Equations, Vol. 2013(2013), No. 238, p. 1-8. \bibitem{t1} O. Tcha-Kondor; \emph{Nouvelles s\'eries trigonom\'e triques \ adapt\'ees \`{a} l'\'etude de probl\`{e}me aux limite pour l' \'equation biharmonique. Etude du cas de la fissure}. C. R. Acad. Sci. paris, t. 315, S\'erie I, p. 514-544, 1992. \end{thebibliography} \end{document}