\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 179, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/179\hfil Regularity for Hall-mhd systems] {Global regularity for generalized Hall magneto-hydrodynamics systems} \author[R. Wan \hfil EJDE-2015/179\hfilneg] {Renhui Wan} \address{Renhui Wan \newline Department of mahtematics \\ Zhejiang University \\ Hangzhou, Zhejiang 310027, China} \email{rhwanmath@zju.edu.cn, rhwanmath@163.com} \thanks{Submitted November 11, 2014. Published June 29, 2015.} \subjclass[2010]{35Q35, 35B65, 76W05} \keywords{Generalized Hall-mhd system; global regularity; classical solutions} \begin{abstract} In this article, we consider the tridimensional generalized Hall magneto-hydrodynamics (Hall-MHD) system, with $(-\Delta)^\alpha u$ and $(-\Delta)^\beta b$. For $\alpha\ge 5/4$, $\beta\ge 7/4$, we obtain the global regularity of classical solutions. For $0<\alpha<5/4$ and $1/2<\beta<7/4$, with small data, the system also possesses global classical solutions. In addition, for the standard Hall-MHD system, $\alpha=\beta=1$, by adding a suitable condition, we give a positive answer to the open question in \cite{[3]}. At last, we study the regularity criterions of generalized Hall-MHD system. In particular, we prove the regularity criterion in terms of horizontal gradient $\nabla_{h}u,\nabla_{h}b$ for $1<\alpha<5/4$, $5/4\le\beta<7/4$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The tridimensional incompressible generalized Hall-MHD system is governed by \begin{equation} \label{a1} \begin{gathered} \partial_{t}u+u\cdot\nabla u+(-\Delta)^\alpha u+\nabla p=b\cdot\nabla b,\\ \partial_{t}b+u\cdot\nabla b-b\cdot\nabla u+(-\Delta)^\beta b =-\nabla\times(J\times b),\\ \operatorname{div}u=\operatorname{div}b=0,\\ u(0,x)=u_0(x),\quad b(0,x)=b_0(x), \end{gathered} \end{equation} where $t\ge 0$, $x\in \mathbb{R}^3$, $p,u,b$ stand for scalar pressure, velocity vector and magnetic field vector, respectively, $J=\nabla\times b$ is the current density, $u_0(x)$, $b_0(x)$ are the initial velocity and magnetic field, $\alpha,\beta\ge0$ are constants and $(-\Delta)^\alpha$ is defined by $$ \widehat{(-\Delta)^\alpha f}(\xi)=|\xi|^{2\alpha}\widehat{f}(\xi), $$ and we denote $(-\Delta)^{1/2}$ by $\Lambda$. For $\alpha=\beta=1$, the system reduces to the standard Hall-MHD system, which can be obtained from kinetic models (cf. \cite{[1]}). Hall-MHD is required in many physics problem, such as magnetic reconnection \cite{[6]}, star formation \cite{[7]}. In \cite{[2]}, for $\alpha=0$, $\beta=1$, local classical solutions were obtained and Beale-Kato-Majda type blow-up criterion was also established. In \cite{[3]}, for $\alpha=\beta=1$, some blow up criterions and small data results on global existence were established. Recently, Chae, Wan and Wu \cite{[4]} considered the generalized Hall-MHD \eqref{a1}, and obtained the local well-posedness for $\alpha=0$ (without velocity diffusion), $\beta>1/2$. So it is natural to ask a question: \begin{quote} Can the global classical solutions of \eqref{a1} be obtained with some conditions on $(\alpha,\beta)$? \end{quote} One of the main goals is to give a positive answer to the question. Some related work about generalized Navier-Stokes equations and generalized MHD equations can be seen \cite{[12],[13],[14],[15],[16],[17]}. Our first result is stated as follows. \begin{theorem} \label{thm1.1} Let $T>0,\alpha\ge5/4$, $\beta\ge 7/4$. Let $(u_0,b_0)\in H^s(\mathbb{R}^3)$, $s>5/2$ satisfying $\operatorname{div}u_0=\operatorname{div}b_0=0$. Then \eqref{a1} has a unique global classical solution $(u,b)$ such that $$ (u,b)\in L^\infty([0,T]; H^s(\mathbb{R}^3)). $$ \end{theorem} \begin{remark} \label{rmk10} \rm The space $H^s(\mathbb{R}^3)$ can be equipped with the norm $$ \|f\|_{H^s}=\|f\|_{L^2}+\|f\|_{\dot{H}^s}, $$ where $$ \|f\|_{\dot{H}^s}^2=\sum_{j\in \mathbb{Z}}2^{2js}\|\Delta_j f\|_{L^2}^2. $$ More details can be seen in section 2. \end{remark} \begin{remark} \label{rmk1} \rm If $b=0$, \eqref{a1} reduces to the generlized Navier-Stokes equations. Under the scaling transformation $u_{l}=l^{2\alpha-1}u(l^{2\alpha}{t},lx)$, $p_{l}=l^{4\alpha-2}p(l^{2\alpha}t,lx)$, for $\alpha\ge\frac{5}{4}$, it is well-known that the generalized Navier-Stokes equations is critical and subcritical, which can lead the global regular solutions. We refer to \cite{[12]} and \cite{[13]}. If $u=0$, \eqref{a1} reduces to the following simple Hall problem \begin{equation}{\label{a2}} \partial_{t}b+(-\Delta)^\beta b=\nabla\times ((\nabla \times b)\times b), \end{equation} which is scaling invariance under $b_{l}=l^{2\beta-2}b(l^{2\beta}t,lx)$. The corresponding energy is \begin{align*} E(b_{l})&=\operatorname{ess\,sup}_{l^{2\beta}t}\|b_{l}\|_{L^2}^2 +\int_0^{t}\|\Lambda^{\beta}b_{l}\|_{L^2}^2d\tau\\ &=l^{4\beta-7}\big\{\operatorname{ess\,sup}_{t}\|b\|_{L^2}^2 +\int_0^{t}\|\Lambda^\beta b\|_{L^2}^2d\tau\big\} =l^{4\beta-7}E(b). \end{align*} This implies that the simple Hall problem \eqref{a2} is critical system for $\beta=7/4$ and subcritical system with $\beta>7/4$. As generalized Navier-Stokes equations, the condition on $(\alpha,\beta)$ seems optimal. \end{remark} In addition, with small initial data, we can obtain the global small classical solution for $\alpha\in(0,5/4)$ and $\beta \in(1/2,7/4)$. \begin{theorem} \label{thm1.3} Let $u_0,b_0,s$ be as Theorem \ref{thm1.1}. Let $\alpha\in(0,5/4)$, $\beta \in(1/2,7/4)$, and if \begin{equation}{\label{a3}} \|u_0\|_{H^s}+\|b_0\|_{H^s}<\epsilon, \end{equation} where $\epsilon$ is sufficient small, then there exists a unique global classical solution $(u,b)$ of \eqref{a1}. \end{theorem} \begin{remark}\label{rmk2} \rm For $\alpha=\beta=1$, this work was proved in \cite{[2]}, which can be considered a special case in Theorem \ref{thm1.3}. \end{remark} For $\alpha=\beta=1$, the authors in \cite{[3]} improved the condition \eqref{a3} by only assuming that \begin{equation} \label{a4} \|u_0\|_{\dot{H}^{3/2}}+\|b_0\|_{\dot{H}^{3/2}}<\epsilon\quad \text{or} \quad \|u_0\|_{\dot{B}_{2,1}^{1/2}} + \|b_0\|_{{\dot{B}}_{2,1}^{3/2}}<\epsilon, \end{equation} where \[ \|f\|_{\dot{B}_{2,1}^s}=\sum_{j\in\mathbb{Z}}2^{js}\|\Delta_j f\|_{L^2} \] (For more details see section 2.), $\epsilon$ is sufficient small. And they also gave an open question, whether the condition \begin{equation}{\label{a5}} \|u_0\|_{\dot{H}^{1/2}}+\|b_0\|_{\dot{H}^{3/2}}<\epsilon \end{equation} can lead the the desired result? Motivated by these, we give a theorem as follows. \begin{theorem} \label{thm1.5} Let $u_0,b_0,s$ be as Theorem \ref{thm1.1}. Let $\alpha=\beta=1$. If $(u_0,b_0)$ satisfies \eqref{a5}, with an additional condition, for all $t\ge0$, \begin{equation}{\label{a6}} \|b(t)\|_{L^\infty}\le C_0<2, \end{equation} then there exists a unique global classical solution $(u,b)$ of \eqref{a1}. \end{theorem} \begin{remark}\label{rmk3} \rm It seems that the condition \eqref{a6} is too strong due to global assumption. However, we find that \eqref{a4} can be propagated to any $t$, which lead to the global small of $ \|b(t)\|_{{\dot{{H}}}^{3/2}}$ or $ \|b(t)\|_{{\dot{{B}}}_{2,1}^{3/2}}$, while \eqref{a6} fails. In addition, ${\dot{B}}_{2,1}^{3/2}\hookrightarrow L^{\infty}$, and we do not need sufficient small of $\|b(t)\|_{L^{\infty}}$, which seems to make \eqref{a5} and \eqref{a6} weaker than the second condition of \eqref{a4} in some sense. \end{remark} For $\alpha=\beta=1$, the authors in \cite{[3]} also establish some regularity criterions involving $u$ and $\nabla b$. Since the presence of Hall-term $\nabla\times((\nabla\times b)\times b)$, we find that $$ (u,b)\in L^\infty(0,T;H^1(\mathbb{R}^3))\cap L^2(0,T;H^2(\mathbb{R}^3)) $$ can not ensure the regularity criterion established in \cite{[3]}. Therefore, unlike MHD system, establishing the regularity criterion in terms of horizontal gradient $\nabla_{h} u$ and $\nabla_{h} b$ seems formidable and interesting. But for system \eqref{a1} with $1<\alpha<5/4 $, $5/4 \le \beta<7/4 $, we can achieve this goal. We have the following theorems, where Theorem \ref{thm1.6} can be considered as a component of the proof of Theorem \ref{thm1.7}. \begin{theorem} \label{thm1.6} Let $T>0$, $\alpha\in(1,5/4)$, $\beta\in(1,7/4)$. Let $u_0,b_0,s$ be as Theorem \ref{thm1.1} and $(u,b)$ be the local classical solution to \eqref{a1}. If \begin{equation}{\label{a30}} \int_0^{T}\|u\|_{L^{p_{1}}}^{q_{1}}+\|\nabla b\|_{L^{p_2}}^{q_2}dt<\infty \end{equation} for \begin{gather*} \frac{3}{p_{1}}+\frac{2\alpha}{q_{1}} \le\min\big\{2\alpha-1,(1-\frac{\alpha}{\beta})\frac{3}{p_{1}} +(2-\frac{1}{\beta})\alpha\big\}, \\ p_{1}\in (\frac{3}{2\beta-1},\frac{3}{\beta-1}] \cap(\frac{3}{2\alpha-1},\frac{3}{\alpha-1}], \\ \frac{3}{p_2}+\frac{2\beta}{q_2}\le2\beta-1, \quad p_2\in(\frac{3}{2\beta-1},\frac{3}{\beta-1}], \end{gather*} then $(u,b)$ remains regular in $[0,T]$. \end{theorem} \begin{remark}\label{rmk4} \rm For $1<\alpha=\beta<5/4 $, the condition of index reduce to $$ \frac{3}{p_{1}}+\frac{2\alpha}{q_{1}}\le2\alpha-1\quad\text{and}\quad \frac{3}{p_2}+\frac{2\alpha}{q_2}\le2\beta-1, $$ which is scaling invariance under the transformation in Remark \ref{rmk1}. We can also establish the regularity criterion in terms of $\nabla u$ and $\nabla b$, that is $$ \int_0^{T}\|\nabla u\|_{L^{p_{1}}}^{q_{1}} +\|\nabla b\|_{L^{p_2}}^{q_2}d\tau<\infty $$ for \begin{gather*} \frac{3}{p_{1}}+\frac{2\alpha}{q_{1}} \le\min\big\{2\alpha,(1-\frac{\alpha}{\beta})\frac{3}{p_{1}}+2\alpha\big\},\quad \max\big\{\frac{3}{2\alpha},\frac{3}{2\beta}\big\}0$, $\alpha\in(1,5/4),\beta\in[5/4,\frac{7}{4})$. Let $u_0,b_0,s$ be as Theorem \ref{thm1.1} and $(u,b)$ be the local classical solution to \eqref{a1}. If \begin{equation}{\label{a31}} \int_0^{T}\|\nabla_{h}u\|_{L^{p_{1}}}^{q_{1}} +\|\nabla_{h} b\|_{L^{p_2}}^{q_2}dt<\infty \end{equation} for \begin{gather*} \frac{3}{p_{1}}+\frac{2\alpha}{q_{1}}\le2\alpha,\quad \frac{3}{2\alpha}0$, and $(p,q)\in [1,\infty]^2$, the inhomogeneous Besov space $B_{p,q}^s$ can be defined as follows $$ {B}_{p,q}^{s}=\{f\in \mathcal{S'}(\mathbb {R}^d): \|f\|_{{B}_{p,q}^{s}}<\infty\}, $$ where $$ \|f\|_{B_{p,q}^s}=\|f\|_{L^p}+\|f\|_{\dot{B}_{p,q}^s}. $$ Additionally, when $p=q=2$, the Besov space and Sobolev space are equivalence; that is $$ \dot{H}^s\approx\dot{B}_{2,2}^s,\quad H^s\approx B_{2,2}^s. $$ Bernstein's inequalities are useful in this paper, so that we give it in the following proposition. \begin{proposition}\label{prop2.1} Let $\alpha\ge0$. Let $1\le p\le q\le \infty$. \begin{itemize} \item[(1)] If $f$ satisfies $$ \operatorname{supp} \widehat{f} \subset \{\xi\in \mathbb{R}^d: |\xi| \le K 2^j \}, $$ for some integer $j$ and a constant $K>0$, then $$ \|(-\Delta)^\alpha f\|_{L^q(\mathbb{R}^d)} \le C_1\, 2^{2\alpha j + j d(\frac{1}{p}-\frac{1}{q})} \|f\|_{L^p(\mathbb{R}^d)}. $$ \item[(2)] If $f$ satisfies \begin{equation*}%\label{spp} \operatorname{supp} \widehat{f} \subset \{\xi\in \mathbb{R}^d: K_12^j \le |\xi| \le K_2 2^j \} \end{equation*} for some integer $j$ and constants $00$, \begin{equation}\label{A1} \|f\|_{H^s}\approx \|f\|_{L^2}+(\sum_{j\ge 0}2^{2js}\|\Delta_j f\|_{L^2}^2)^{1/2}, \end{equation} which will be frequently used in our proof. \begin{proposition}[\cite{[11]}] \label{prop2.2} Let $1\le p_{1}$, $p_2\le\infty$, $\sigma>0$, $\frac{d}{p_i}-\sigma_i>0(i=1,2)$ and assume that $\sigma-\sigma_2+\frac{d}{p_2}>0$. Then the following inequality holds \begin{equation}\label{a7} \begin{aligned} &\Big(\sum_{j\in \mathbb{Z}}2^{2j\sigma}\|[f,\Delta_j]\cdot\nabla g\|_2^2\Big)^{1/2}\\ &\le C\Big(\|\nabla f\|_{\dot{B}_{p_{1},\infty}^{\sigma_{1}}} \|g\|_{\dot{B}_{2,2}^{\sigma-\sigma_{1} +\frac{d}{p_{1}}}}+\|\nabla g\|_{\dot{B}_{p_2,\infty}^{\sigma_2}} \|f\|_{\dot{B}_{2,2}^{\sigma-\sigma_2+\frac{d}{p_2}}}\Big). \end{aligned} \end{equation} \end{proposition} \section{Proof of Theorem \ref{thm1.1}} From \cite{[4]}, one can see that the local well-posedness of \eqref{a1} holds for $\alpha\ge0, \beta>1/2$. So we only need establish the global regularity, i.e. for all $0\le t\le T$, $$ \|u(t)\|_{H^s}+\|b(t)\|_{H^s}\le C(s,T,\|u_0\|_{H^s},\|u_0\|_{H^s}). $$ At first, we give the energy estimate. Taking inner product with $(u,b)$, integrating by parts and integrating in time $[0,t]$, \begin{equation}{\label{a8}} \|(u(t),b(t)\|_{L^2}^2+2\int_0^{t}\|\Lambda^\alpha u\|_{L^2}^2d\tau +2\int_0^{t}\|\Lambda^\beta b\|_{L^2}^2d\tau\le\|(u_0,b_0)\|_{L^2}^2. \end{equation} Then we establish the $H^s$ estimate. Applying the operator $\Delta_{q}$ to \eqref{a1}, taking the inner product with $(\Delta_{q}u,\Delta_{q}b)$, by cancelation property, integrating by parts, we obtain \begin{equation}\label{a9} \begin{aligned} &\frac{1}{2}\frac{d}{dt}(\|\Delta_{q} u\|_{L^2}^2 +\|\Delta_{q} b\|_{L^2}^2)+ \|\Lambda^\alpha\Delta_{q} u\|_{L^2}^2 + \|\Lambda^\beta\Delta_{q} b\|_{L^2}^2\\ &=-\int_{\mathbb{R}^3}[\Delta_{q},u\cdot\nabla] u\cdot\Delta_{q}u +\int_{\mathbb{R}^3}[\Delta_{q},b\cdot\nabla] b\cdot\Delta_{q}u -\int_{\mathbb{R}^3}[\Delta_{q},u\cdot\nabla] b\cdot\Delta_{q}b\\ &\quad +\int_{\mathbb{R}^3}[\Delta_{q},b\cdot\nabla] u\cdot\Delta_{q}b +\int_{\mathbb{R}^3}[\Delta_{q},b\times]J\cdot\Delta_{q}J\\ &\le \|[\Delta_{q},u\cdot\nabla] u\|_{L^2}\|\Delta_{q}u\|_{L^2} +\|[\Delta_{q},b\cdot\nabla ] b\|_{L^2}\|\Delta_{q}u\|_{L^2}\\ &\quad +\|[\Delta_{q},u\cdot\nabla] b\|_{L^2}\|\Delta_{q}b\|_{L^2} +\|[\Delta_{q},b\cdot\nabla] u\|_{L^2}\|\Delta_{q}b\|_{L^2} \\ &\quad +\|[\Delta_{q},b\times]J\|_{L^2}\|\Delta_{q}J\|_{L^2}\\ &=L_{1}(t)+L_2(t)+L_3(t)+L_{4}(t)+L_{5}(t). \end{aligned} \end{equation} By the paraproduct decomposition, H\"{o}lder's inequality, commutator estimate \cite[page. 110]{[8]}, and Bernstein's inequality, \begin{equation}{\label{a10}} \begin{aligned} |L_{1}(t)| &\le\sum_{|k-q|\le4}\|\Delta_{q}(S_{k-1}u\cdot\nabla\Delta_{k}u) -S_{k-1}u\cdot\nabla\Delta_{q}\Delta_{k}u\|_{L^2}\|\Delta_{q}u\|_{L^2}\\ &\quad +\sum_{|k-q|\le4}\|\Delta_{q}(\Delta_{k}u\cdot\nabla S_{k-1}u) -\Delta_{k}u\cdot\nabla\Delta_{q}S_{k-1}u\|_{L^2}\|\Delta_{q}u\|_{L^2}\\ &\quad +\sum_{k\ge q-3}\|\Delta_{q}(\tilde{\Delta}_{k}u\cdot\nabla\Delta_{k}u) -\tilde{\Delta}_{k}u\cdot\nabla\Delta_{q}\Delta_{k}u\|_{L^2} \|\Delta_{q}u\|_{L^2}\\ &\le C\|\nabla S_{q-1}u\|_{L^\infty}\|\Delta_{q}u\|_{L^2}^2 +C\|\Delta_{q}u\|_{L^2}\sum_{k\ge q-3} \|\nabla\Delta_{k}u\|_{L^\infty}\|\tilde{\Delta}_{k}u\|_{L^2}, \end{aligned} \end{equation} where $\tilde{\Delta}_{k}= \Delta_{k-1}+\Delta_{k}+\Delta_{k+1}$. Similarly, \begin{gather*} |L_2(t)|\le C\|\nabla S_{q-1}b\|_{L^\infty}\|\Delta_{q}b\|_{L^2} \|\Delta_{q}u\|_{L^2}+C\|\Delta_{q}u\|_{L^2}\sum_{k\ge q-3} \|\nabla\Delta_{k}b\|_{L^\infty}\|\tilde{\Delta}_{k}b\|_{L^2}, \\ \begin{aligned} |L_3(t)|&\le C\|\nabla S_{q-1}u\|_{L^\infty}\|\Delta_{q}b\|_{L^2}^2 +\|\nabla S_{q-1}b\|_{L^\infty}\|\Delta_{q}u\|_{L^2}\|\Delta_{q}b\|_{L^2}\\ &\quad +C\|\Delta_{q}b\|_{L^2}\sum_{k\ge q-3}\|\nabla\Delta_{k}b\|_{L^\infty} \|\tilde{\Delta}_{k}u\|_{L^2}, \end{aligned} \\ \begin{aligned} |L_{4}(t)|&\le C\|\nabla S_{q-1}b\|_{L^\infty}\|\Delta_{q}u\|_{L^2} \|\Delta_{q}b\|_{L^2}+\|\nabla S_{q-1}u\|_{L^\infty}\|\Delta_{q}b\|_{L^2}^2\\ &\quad +C\|\Delta_{q}b\|_{L^2}\sum_{k\ge q-3}\|\nabla\Delta_{k}u\|_{L^\infty} \|\tilde{\Delta}_{k}b\|_{L^2}, \end{aligned} \\ |L_{5}(t)|\le C2^q\|\nabla S_{q-1}b\|_{L^\infty}\|\Delta_{q}b\|_{L^2}^2 + C2^q\|\Delta_{q}b\|_{L^2}\sum_{k\ge q-3}\|\nabla\Delta_{k}b\|_{L^\infty} \|\tilde{\Delta}_{k}b\|_{L^2}. \end{gather*} Multiplying $2^{2sq}$ and taking the summation over $q\ge0$ in \eqref{a9}, \begin{equation}{\label{a11}} \begin{aligned} &\frac{1}{2}\frac{d}{dt} \Big\{\sum_{q\ge0}2^{2sq}(\|\Delta_{q} u\|_{L^2}^2+\|\Delta_{q} b\|_{L^2}^2)\Big\}\\ &+ \sum_{q\ge0}2^{2(s+\alpha) q}\|\Delta_{q} u\|_{L^2}^2 +\sum_{q\ge0}2^{2(s+\beta) q}\|\Delta_{q} b\|_{L^2}^2\\ &\le\sum_{q\ge0}2^{2sq}(L_{1}(t)+\dots+L_{5}(t)). \end{aligned} \end{equation} By \eqref{a10}, we have \begin{align*} \sum_{q\ge0}2^{2sq}|L_{1}(t)| &\le C\sum_{q\ge0}2^{2sq}\|\nabla S_{q-1}u\|_{L^\infty}\|\Delta_{q}u\|_{L^2}^2\\ &\quad +C\sum_{q\ge0}2^{2sq}\|\Delta_{q}u\|_{L^2} \sum_{k\ge q-3}\|\nabla\Delta_{k}u\|_{L^\infty}\|\tilde{\Delta}_{k}u\|_{L^2}\\ &=L_{11}(t)+L_{12}(t). \end{align*} For the estimate of $L_{11}(t)$. Using Bernstein's inequality, H\"{o}lder's inequality and Young's inequality, \begin{align*} |L_{11}(t)| &\le C\sum_{q\ge0}2^{2sq}\|\Delta_{q}u\|_{L^2}^2 \sum_{m\le q-2}2^{5m/2}\|\Delta_{m}u\|_{L^2}\\ &\le C\sum_{q\ge0}2^{(s+\alpha)q}\|\Delta_{q}u\|_{L^2}2^{(s-\alpha)q} \|\Delta_{q}u\|_{L^2}\sum_{m\le q-2}2^{5m/2}\|\Delta_{m}u\|_{L^2}\\ &\le \frac{1}{8}\|\Lambda^\alpha u\|_{\dot{H}^s}^2 +\underbrace{C\sum_{q\ge0}2^{2(s-\alpha)q}\|\Delta_{q}u\|_{L^2}^2 \Big(\sum_{m\le q-2}2^{5m/2}\|\Delta_{m}u\|_{L^2}\Big)^2}_{L_{111}}, \end{align*} where \begin{align*} |L_{111}| &= C\sum_{q\ge0}2^{2sq}\|\Delta_{q}u\|_{L^2}^2 \Big(\sum_{m\le q-2}2^{\frac{5}{2}m-\alpha q}\|\Delta_{m}u\|_{L^2}\Big)^2\\ &=C\sum_{q\ge0}2^{2sq}\|\Delta_{q}u\|_{L^2}^2 \Big(\sum_{m\le -2}2^{\frac{5}{2}m-\alpha q}\|\Delta_{m}u\|_{L^2}\\ &\quad +\sum_{-1\le m\le q-2}2^{(\frac{5}{2}-\alpha)m-\alpha q}\|\Lambda^\alpha \Delta_m u\|_{L^2}\Big)^2\\ &\le C \sum_{q\ge0}2^{2sq}\|\Delta_{q}u\|_{L^2}^2 \Big(\sum_{m\le -2}2^{5m/2}\|u\|_{L^2}\\ &\quad +\sum_{-1\le m\le q-2} 2^{\alpha(m-q)}2^{(\frac{5}{2}-2\alpha)m} \|\Lambda^\alpha u\|_{L^2}\Big)^2\\ &\le C(\|u\|_{L^2}^2+\|\Lambda^\alpha u\|_{L^2}^2)\|u\|_{H^s}^2. \end{align*} Thus, we obtain $$ |L_{11}(t)|\le C(\|u\|_{L^2}^2+\|\Lambda^\alpha u\|_{L^2}^2)\|u\|_{H^s}^2 +\frac{1}{8}\|\Lambda^\alpha u\|_{\dot{H}^s}^2. $$ Similarly, \begin{align*} &|L_{12}(t)|\\ &\le C\sum_{q\ge0}2^{2sq}\|\Delta_{q}u\|_{L^2} \sum_{k\ge q-3}\|\Delta_{k}u\|_{L^2}2^{5k/2}\|\tilde{\Delta}_{k}u\|_{L^2}\\ &\le C \Big(\sum_{p\ge 0}2^{2sq}\|\Delta_q u\|_{L^2}^2\Big)^{1/2} \Big\{\sum_{q\ge 0}2^{2sq}(\sum_{k\ge q-3}\|\tilde{\Delta}_k u\|_{L^2}2^{k(\frac{5}{2}-\alpha)} \|\Lambda^\alpha \Delta_k u\|_{L^2})^2\Big\}^{1/2}\\ &\le C\|\Lambda^\alpha u\|_{L^2}\|u\|_{H^s} \Big\{\sum_{q\ge 0}2^{2sq}(\sum_{k\ge q-3}2^{k(\frac{5}{2}-2\alpha)} \|\tilde{\Delta}_k\Lambda^\alpha u\|_{L^2})^2\Big\}^{1/2}\\ &\le C\|\Lambda^\alpha u\|_{L^2}\|u\|_{H^s} \Big\{\sum_{q\ge 0}2^{2sq}(\sum_{k\ge q-3}\|\tilde{\Delta}_k\Lambda^\alpha u\|_{L^2})^2\Big\}^{1/2}\\ &\le C\|\Lambda^\alpha u\|_{L^2}\|u\|_{H^s}\|u\|_{\dot{H}^{s+\alpha}}\\ &\le C\|\Lambda^\alpha u\|_{L^2}^2\|u\|_{H^s}^2 +\frac{1}{8}\|u\|_{\dot{H}^{s+\alpha}}^2, \end{align*} here we have used Young's inequality for series for the fifth inequality; that is, \begin{align*} \Big\{\sum_{q\ge 0}2^{2sq}(\sum_{k\ge q-3} \|\tilde{\Delta}_k\Lambda^\alpha u\|_{L^2})^2\Big\}^{1/2} &\le \Big\{\sum_{q\in\mathbb{Z}}(\sum_{k\ge q-3}2^{s(q-k)}2^{sk} \|\tilde{\Delta}_k\Lambda^\alpha u\|_{L^2})^2\Big\}^{1/2}\\ &\le C\|2^{-sk}\mathbf{1}_{k\ge -3}\|_{l^1(\mathbb{Z})} \|2^{sk}\|\tilde{\Delta}_k\Lambda^\alpha u\|_{L^2}\|_{l^2(\mathbb{Z})}\\ &\le C\|u\|_{\dot{H}^{s+\alpha}}. \end{align*} Collecting the estimates above, we have $$ \sum_{q\ge0}2^{2sq}|L_{1}(t)|\le C(\|u\|_{L^2}^2 +\|\Lambda^\alpha u\|_{L^2}^2)\|u\|_{H^s}^2 +\frac{1}{4}\|\Lambda^\alpha u\|_{H^s}^2. $$ Similarly, \begin{gather*} \sum_{q\ge0}2^{2sq}|L_2(t)|\le C(\|b\|_{L^2}^2 +\|\Lambda^\beta b\|_{L^2}^2)\|b\|_{H^s}^2 +\frac{1}{4}\|\Lambda^\alpha u\|_{H^s}^2, \\ \sum_{q\ge0}2^{2sq}|L_3(t)|\le C(\|(u,b)\|_{L^2}^2 +\|(\Lambda^\alpha u,\Lambda^\beta b)\|_{L^2}^2)\|b\|_{H^s}^2 +\frac{1}{4}\|(\Lambda^\alpha u,\Lambda^\beta b)\|_{H^s}^2, \\ \sum_{q\ge0}2^{2sq}|L_{4}(t)| \le C(\|(u,b)\|_{L^2}^2+\|(\Lambda^\alpha u,\Lambda^\beta b)\|_{L^2}^2) \|b\|_{H^s}^2+\frac{1}{4}\|(\Lambda^\alpha u,\Lambda^\beta b)\|_{H^s}^2. \end{gather*} Now, we estimate the last term. \begin{align*} \sum_{q\ge0}2^{2sq}|L_{5}(t)| &\le C\sum_{q\ge0}2^{(2s+1)q}\|\Delta_{q}b\|_{L^2}^2\sum_{m\le q-2} \|\nabla\Delta_{m}b\|_{L^\infty}\\ &\quad +C\sum_{q\ge0}2^{(2s+1)q}\|\Delta_{q}b\|_{L^2}\sum_{k\ge q-3} \|\nabla\Delta_{k}b\|_{L^\infty}\|\tilde{\Delta}_{k}b\|_{L^2}\\ &=L_{51}(t)+L_{52}(t). \end{align*} Similar to the estimate of $L_{11}(t)$, we have \begin{align*} &|L_{51}(t)|\\ &\le C\sum_{q\ge0}2^{(s+\beta)q}\|\Delta_{q}b\|_{L^2}2^{(s+1-\beta)q} \|\Delta_{q}b\|_{L^2}\sum_{m\le q-2}2^{5m/2}\|\Delta_{m}b\|_{L^2}\\ &\le \frac{1}{8}\sum_{q\ge0}2^{2(s+\beta)q}\|\Delta_{q}b\|_{L^2}^2 +\underbrace{C\sum_{q\ge0}2^{2(s+1-\beta)q}\|\Delta_{q}b\|_{L^2}^2 \Big(\sum_{m\le q-2}2^{5m/2}\|\Delta_{m}b\|_{L^2}\Big)^2}_{L_{511}}, \end{align*} where \begin{align*} |L_{511}| &\le C\sum_{q\ge0}2^{2sq}\|\Delta_{q}b\|_{L^2}^2 \Big(\sum_{m\le -2}2^{(1-\beta)q}2^{5m/2}\|\Delta_{m}b\|_{L^2}\\ &\quad +\sum_{-1\le m\le q-2}2^{(1-\beta)q} 2^{(\frac{5}{2}-\beta)m} \|\Lambda^\beta\Delta_m b\|_{L^2}\Big)^2\\ &\le C \sum_{q\ge0}2^{2sq}\|\Delta_{q}b\|_{L^2}^2 \sum(\sum_{m\le -2}2^{5m/2}\|b\|_{L^2}\\ &\quad +\sum_{-1\le m\le q-2}2^{(1-\beta)(q-m)}2^{(\frac{7}{2}-2\beta)m} \|\Lambda^\beta \Delta_m b\|_{L^2}\Big)^2\\ &\le C (\|b\|_{L^2}^2+\|\Lambda^\beta b\|_{L^2}^2) \sum_{q\ge0}2^{2sq}\|\Delta_{q}b\|_{L^2}^2\\ &\le C(\|b\|_{L^2}^2+\|\Lambda^\beta b\|_{L^2}^2)\|b\|_{H^s}^2. \end{align*} So we have $$ |L_{51}(t)|\le \frac{1}{8}\|b\|_{\dot{H}^{s+\beta}}^2 + C(\|b\|_{L^2}^2+\|\Lambda^\beta b\|_{L^2}^2)\|b\|_{H^s}^2. $$ Similar to the estimate of $L_{12}(t)$, we have \begin{align*} |L_{52}(t)| &\le C\sum_{q\ge 0}2^{sq}\|\Delta_q b\|_{L^2}2^{(s+1)q} \sum_{k\ge q-3}\|\nabla \Delta_q b\|_{L^\infty}\|\tilde{\Delta}_k b\|_{L^2}\\ &\le C \Big(\sum_{q\ge 0}2^{2sq}\|\Delta_q b\|_{L^2}^2\Big)^{1/2} \Big\{\sum_{q\ge 0}2^{2(s+1)q}(\sum_{k\ge q-3}\|\nabla\Delta_k b\|_{L^\infty} \|\tilde{\Delta}_k b\|_{L^2})^2\Big\}^{1/2} \\ &\le C\|b\|_{H^s}\Big\{\sum_{q\ge 0}2^{2(s+1)q} \Big(\sum_{k\ge q-3}2^{k(\frac{5}{2}-\beta)} \|\Lambda^\beta\Delta_k b\|_{L^2}2^{-k\beta}\|\Lambda^\beta \tilde{\Delta}_k b\|_{L^2} \Big)^2\Big\}^{1/2}\\ &\le C\|b\|_{H^s}\Big\{\sum_{q\ge 0}2^{2(s+1)q}(\sum_{k\ge q-3} 2^{-k}2^{k(\frac{7}{2}-2\beta)} \|\Lambda^\beta\Delta_k b\|_{L^2}\|\Lambda^\beta b\|_{L^2} )^2\Big\}^{1/2}\\ &\le C\|\Lambda^\beta b\|_{L^2} \|b\|_{H^s} \Big\{\sum_{q\ge 0}(\sum_{k\ge q-3}2^{(s+1)(q-k)}2^{ks} \|\Lambda^\beta\Delta_k b\|_{L^2})^2\Big\}^{1/2}\\ &\le C\|\Lambda^\beta b\|_{L^2} \|b\|_{H^s}\|b\|_{\dot{H}^{s+\beta}} \le C\|\Lambda^\beta b\|_{L^2}^2 \|b\|_{H^s}^2 +\frac{1}{8}\|b\|_{\dot{H}^{s+\beta}}^2, \end{align*} here we have used Young's inequality for the fifth inequality. Therefore, $$ \sum_{q\ge0}2^{2sq}|L_{5}(t)|\le C(\|\Lambda^\beta b\|_{L^2}^2 +\|b\|_{L^2}^2)\|b\|_{H^s}^2+\frac{1}{4}\|\Lambda^\beta b\|_{\dot{H}^s}^2. $$ Collecting the estimate above in \eqref{a9}, integrating in $[0,t]$, together with \eqref{a8} and \eqref{A1} yields \begin{align*} &\|u(t)\|_{H^s}^2+\|b(t)\|_{H^s}^2 +\int_0^{t}\|\Lambda^\alpha u(\tau)\|_{H^s}^2d\tau +\int_0^{t}\|\Lambda^\beta b(\tau)\|_{H^s}^2d\tau\\ &\le C(\|(\Lambda^\alpha u,\Lambda^\beta b)\|_{L^2}^2 +\|(u,b)\|_{L^2}^2)(\|u\|_{H^s}^2+\|b\|_{H^s}^2) +\|u_0\|_{H^s}^2+\|b_0\|_{H^s}^2. \end{align*} Applying Gronwall's lemma, with \eqref{a8}, for $0\le t\le T$, \begin{align*} &\|u(t)\|_{H^s}^2+\|b(t)\|_{H^s}^2+\int_0^{t}\|\Lambda^\alpha u(\tau)\|_{H^s}^2d\tau+\int_0^{t}\|\Lambda^\beta b(\tau)\|_{H^s}^2d\tau\\ &\le (\|u_0\|_{H^s}^2+\|b_0\|_{H^s}^2)\exp \Big\{C\int_0^{t}(\|(\Lambda^\alpha u,\Lambda^\beta b)\|_{L^2}^2 +\|(u,b)\|_{L^2}^2)d\tau\Big\}\\ &\le (\|u_0\|_{H^s}^2+\|b_0\|_{H^s}^2) \exp\left(C\|(u_0,b_0)\|_{L^2}^2(1+T)\right). \end{align*} This completes the proof of Theorem \ref{thm1.1}. \section{Proof of Theorem \ref{thm1.3}} As in the proof of Theorem \ref{thm1.1}, we only need to show the global regularity. Since $\|u\|_{H^s}=\|u\|_{L^2}+\|u\|_{\dot{H}^s}$, we obtain \begin{align*} &\|u(t)\|_{H^s}^2+\|b(t)\|_{H^s}^2+2\int_0^{t}\|\Lambda^\alpha u(\tau)\|_{H^s}^2d\tau+2\int_0^{t}\|\Lambda^\beta b(\tau)\|_{H^s}^2d\tau\\ &\le \|(u_0,b_0)\|_{H^s}^2+C\int_0^{t}\|(\nabla u,\nabla b) \|_{L^\infty}\|(u,b)\|_{\dot{H}^s}^2d\tau+2\int_0^{t} \|\nabla b\|_{L^\infty}\|b\|_{\dot{H}^{s+\frac{1}{2}}}^2d\tau\\ &\le \|(u_0,b_0)\|_{H^s}^2+C\int_0^{t}\|(u,b)\|_{H^s} (\|\Lambda^\alpha u\|_{H^s}^2+\|\Lambda^\beta b\|_{H^s}^2)d\tau. \end{align*} A similar estimate can be found in \cite{[4]}. Choosing $\epsilon$ so small that $\|(u_0,b_0)\|_{H^s}^2<\frac{1}{2C^2}$, which implies that $C\|(u_0,b_0)\|_{H^s}< 1$. Suppose there exists a first time $T^\star$, such that \begin{equation}\label{A2} \|u(T^\star)\|_{H^s}^2+\|b(T^\star)\|_{H^s}^2\ge\frac{1}{2C^2}. \end{equation} This leads to $$ \|u(T^\star)\|_{H^s}^2+\|u(T^\star)\|_{H^s}^2+\int_0^{T^\star} \|\Lambda^\alpha u(t)\|_{H^s}^2 +\|\Lambda^\beta b(t)\|_{H^s}^2dt\le \|(u_0,b_0)\|_{H^s}^2 <\frac{1}{2C^2}, $$ which contradicts \eqref{A2}. Hence, for all $t\ge0$, we get global small solution satisfying $$ \|u(t)\|_{H^s}^2+\|b(t)\|_{H^s}^2 +\int_0^{t}\|\Lambda^\alpha u(\tau)\|_{H^s}^2d\tau +\int_0^{t}\|\Lambda^\beta b(\tau)\|_{H^s}^2d\tau\le\|(u_0,b_0)\|_{H^s}^2. $$ This concludes the proof of Theorem \ref{thm1.3}. \section{Proof of Theorem \ref{thm1.5}} It suffices to establish the following, for all $t\ge0$, $$ \int_0^{t}\|u\|_{\dot{H}^{3/2}}^2+\|\nabla b\|_{\dot{H}^{3/2}}^2d\tau<\infty, $$ since \cite{[3]} provided the blow up criterion in the $BMO$ space and $\dot{H}^{3/2}\hookrightarrow BMO$ \cite{[8]}. As the operation in section 3, we obtain \begin{equation}\label{a12} \begin{aligned} &\frac{1}{2}\frac{d}{dt}(\|\Delta_{q} u\|_{L^2}^2+\|\Delta_{q} b\|_{L^2}^2) + \|\nabla\Delta_{q} u\|_{L^2}^2+ \|\nabla\Delta_{q} b\|_{L^2}^2\\ &=-\int_{\mathbb{R}^3}[\Delta_{q},u\cdot\nabla] u\cdot\Delta_{q}u +\int_{\mathbb{R}^3}[\Delta_{q},b\cdot\nabla] b\cdot\Delta_{q}u -\int_{\mathbb{R}^3}[\Delta_{q},u\cdot\nabla] b\cdot\Delta_{q}b\\ &\quad -\int_{\mathbb{R}^3}[\Delta_{q},b\cdot\nabla] u\cdot\Delta_{q}b +\int_{\mathbb{R}^3}[\Delta_{q},b\times]J\cdot\Delta_{q}J\\ &\le\|[\Delta_{q},u\cdot\nabla] u\|_{L^2}\|\Delta_{q}u\|_{L^2} +\|[\Delta_{q},b\cdot\nabla ] b\|_{L^2}\|\Delta_{q}u\|_{L^2}\\ &\quad +\|[\Delta_{q},u\cdot\nabla] b\|_{L^2}\|\Delta_{q}b\|_{L^2} +\|[\Delta_{q},b\cdot\nabla] u\|_{L^2}\|\Delta_{q}b\|_{L^2}\\ &\quad +\|[\Delta_{q},b\times]J\|_{L^2}\|\Delta_{q}J\|_{L^2}\\ &=IL_{1}(t)+\dots+IL_{5}(t). \end{aligned} \end{equation} Multiplying \eqref{a12} by $2^q$ and summing over $q\in\mathbb{Z}$, \begin{equation}\label{a13} \frac{1}{2}\frac{d}{dt}(\| u\|_{\dot{H}^{1/2}}^2 +\|b\|_{\dot{H}^{1/2}}^2)+ \|\nabla u\|_{\dot{H}^{1/2}}^2 + \|\nabla b\|_{\dot{H}^{1/2}}^2\le \sum_{q\in\mathbb{Z}}2^{q}|IL_{1}(t) +\dots +IL_{5}(t)|. \end{equation} By H\"{o}lder's inequality and choosing $\sigma=\sigma_i=\frac{1}{2}$, $p_i=2$, $i=1,2$ in \eqref{a7}, $$ \sum_{q\in\mathbb{Z}}2^q|IL_{1}(t)| \le\Big(\sum_{q\in \mathbb{Z}}2^q\|[\Delta_{q},u]\cdot\nabla u\|_{L^2}^2\Big)^{1/2} \|u\|_{\dot{H}^{1/2}}\le C\|u\|_{\dot{H}^{1/2}}\|u\|_{\dot{H}^{3/2}}^2. $$ Similarly, \begin{gather*} \sum_{q\in\mathbb{Z}}2^q|IL_2(t)| \le C\|u\|_{\dot{H}^{1/2}}\|b\|_{\dot{H}^{3/2}}^2,\\ \sum_{q\in\mathbb{Z}}2^q|IL_3(t)| \le C\|u\|_{\dot{H}^{1/2}}(\|u\|_{\dot{H}^{3/2}}^2+\|b\|_{\dot{H}^{3/2}}^2), \\ \sum_{q\in\mathbb{Z}}2^q|IL_{4}(t)|\le C\|u\|_{\dot{H}^{1/2}} (\|u\|_{\dot{H}^{3/2}}^2+\|b\|_{\dot{H}^{3/2}}^2),\quad \sum_{q\in\mathbb{Z}}2^q|IL_{5}(t)|\le C\|b\|_{\dot{H}^{3/2}}^3. \end{gather*} Plugging the inequalities above in \eqref{a12}, we have \begin{equation}\label{a14} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\|(u,b)\|_{\dot{H}^{1/2}}^2 +\|\nabla u\|_{\dot{H}^{1/2}}^2+\|\nabla b\|_{\dot{H}^{1/2}}^2\\ &\le C(\|(u,b)\|_{\dot{H}^{1/2}}+\|b\|_{\dot{H}^{3/2}})(\|u\|_{\dot{H}^{3/2}}^2 +\|b\|_{\dot{H}^{3/2}}^2). \end{aligned} \end{equation} Next, we give the $\dot{H}^{3/2}$ estimate of $b$. With a similar process, we obtain \begin{align*} &\frac{1}{2}\frac{d}{dt}\|\Delta_{q} b\|_{L^2}^2 +\|\nabla\Delta_{q} b\|_{L^2}^2\\ &=\int_{\mathbb{R}^3}[\Delta_{q},b\cdot\nabla] u\cdot\Delta_{q}b +\int_{\mathbb{R}^3}b\cdot\nabla\Delta_{q}u\cdot \Delta_{q}b\\ &\quad -\int_{\mathbb{R}^3}[\Delta_{q},u\cdot\nabla] b\cdot\Delta_{q}b +\int_{\mathbb{R}^3}[\Delta_{q},b\times]J\cdot\Delta_{q}J\\ &\le \|[\Delta_{q},b\cdot\nabla] u\|_{L^2}\|\Delta_{q}b\|_{L^2} +\|b\cdot\nabla\Delta_{q}u\|_{L^2}\|\Delta_{q}b\|_{L^2}\\ &\quad +\|[\Delta_{q},u\cdot\nabla] b\|_{L^2}\|\Delta_{q}b\|_{L^2} +\|[\Delta_{q},b\times]J\|_{L^2}\|\Delta_{q}J\|_{L^2}\\ &=K_{1}(t)+\dots+K_{5}(t). \end{align*} Multiplying $2^{3q}$ and summing over $q\in\mathbb{Z}$, \begin{equation}\label{a15} \frac{1}{2}\frac{d}{dt}\|b\|_{\dot{H}^{3/2}}^2 +\|b\|_{\dot{H}^{5/2}}^2 \le \sum_{q\in\mathbb{Z}}2^{3q}|K_{1}(t)+\dots+K_{5}(t)|. \end{equation} By H\"{o}lder's inequality and choosing $\sigma=\sigma_i=\frac{1}{2}$, $p_i=2$, $i=1,2$ in \eqref{a7}, \begin{align*} \sum_{q\in\mathbb{Z}}2^{3q}|K_{1}(t)| &=\sum_{q\in\mathbb{Z}}2^{3q}\|[\Delta_{q},b\cdot\nabla] u\|_{L^2} \|\Delta_{q}b\|_{L^2}\\ &\le \Big(\sum_{q\in \mathbb{Z}}2^q\|[\Delta_{q},b\cdot\nabla] u \|_{L^2}^2 \Big)^{1/2}\|b\|_{\dot{H}^{5/2}}\\ &\le C\|b\|_{\dot{H}^{3/2}}(\|u\|_{\dot{H}^{3/2}}^2+\|b\|_{\dot{H}^{5/2}}^2). \end{align*} Similarly, $$ \sum_{q\in\mathbb{Z}}2^{3q}|K_3(t)| \le C\|b\|_{\dot{H}^{3/2}}(\|b\|_{\dot{H}^{5/2}}^2+\|u\|_{\dot{H}^{3/2}}^2). $$ By H\"{o}lder's inequality and choosing $\sigma=3/2$, $\sigma_i=\frac{1}{2}$, $p_i=2$, $i=1,2$ in \eqref{a7}, then $$ \sum_{q\in\mathbb{Z}}2^{3q}|K_{4}(t)| \le \Big(\sum_{q\in\mathbb{Z}}2^{3q}\|[\Delta_{q},b\times]J\|_{L^2}^2\Big)^{1/2} \|J\|_{\dot{H}^{3/2}}\le C\|b\|_{\dot{H}^{3/2}}\|b\|_{\dot{H}^{5/2}}^2. $$ Using H\"{o}lder's inequality and condition \eqref{a6}, \begin{align*} \sum_{q\in\mathbb{Z}}2^{3q}|K_2(t)| &\le\Big(\sum_{q\in\mathbb{Z}}2^q\|b\cdot\nabla\Delta_{q}u\|_{L^2}^2\Big)^{1/2} \|b\|_{\dot{H}^{5/2}}\\ &\le \|b\|_{L^\infty}\|u\|_{\dot{H}^{3/2}}\|b\|_{\dot{H}^{5/2}}\\ &\le \frac{C_0}{2}(\|u\|_{\dot{H}^{3/2}}^2+\|b\|_{\dot{H}^{5/2}}^2). \end{align*} Plugging the inequalities above in \eqref{a15}, combining with \eqref{a14} and integrating the resulting inequality in $[0,t]$ gives \begin{align*} &\|(u(t),b(t))\|_{\dot{H}^{1/2}}^2 +\|b(t)\|_{\dot{H}^{3/2}}^2+(2-C_0)\int_0^{t} \|(u(\tau),b(\tau))\|_{\dot{H}^{3/2}}^2+\|b(\tau)\|_{\dot{H}^{5/2}}^2d\tau\\ &\le C\int_0^{t}(\|(u(\tau),b(\tau))\|_{\dot{H}^{1/2}} +\|b(\tau)\|_{\dot{H}^{3/2}})(\|(u(\tau),b(\tau))\|_{\dot{H}^{3/2}}^2 +\|b(\tau)\|_{\dot{H}^{5/2}}^2)d\tau\\ &\quad +\|(u_0,b_0)\|_{\dot{H}^{1/2}}^2+\|b_0\|_{\dot{H}^{3/2}}^2. \end{align*} Choose $\epsilon$ so small that $3(\|u_0\|_{\dot{H}^{1/2}}^2+\|b_0\|_{\dot{H}^{1/2}}^2 +\|b_0\|_{\dot{H}^{3/2}}^2)<(\frac{2-C_0}{4C})^2$, which implies $$ C\Big(\|u_0\|_{\dot{H}^{1/2}}+\|b_0\|_{\dot{H}^{1/2}} +\|b_0\|_{\dot{H}^{3/2}}\Big)<\frac{2-C_0}{4}. $$ Suppose there exists a first time $T^\star$ such that $$ 3\Big(\|u(T^\star)\|_{\dot{H}^{1/2}}^2 +\|b(T^\star)\|_{\dot{H}^{1/2}}^2+\|b(T^\star)\|_{\dot{H}^{3/2}}^2\Big) \ge\big(\frac{2-C_0}{4C}\big)^2, $$ which can easily get a contradiction. Hence, for all $t\ge0$, we obtain \begin{align*} &\|(u(t),b(t))\|_{\dot{H}^{1/2}}^2+\|b(t)\|_{\dot{H}^{3/2}}^2+ {(2-C_0)}\int_0^{t}\|(u(\tau),b(\tau))\|_{\dot{H}^{3/2}}^2 +\|b(\tau)\|_{\dot{H}^{5/2}}^2d\tau\\ &\le \|(u_0,b_0)\|_{\dot{H}^{1/2}}^2+\|b_0\|_{\dot{H}^{3/2}}^2. \end{align*} This completes the proof of Theorem \ref{thm1.5}. \section{Proof of Theorem \ref{thm1.6}} Our proof contains two steps, $H^1$ estimates and $H^s$ estimates. \smallskip \noindent\textbf{Step 1: $H^1$ Estimates.} Using a similar procedure as in \cite{[3]}, we have \begin{equation}\label{a32} \begin{aligned} &\frac{1}{2}\frac{d}{dt}(\|\nabla u\|_{L^2}^2 +\|\nabla b\|_{L^2}^2)+\|\nabla\Lambda^\alpha u\|_{L^2}^2 +\|\nabla\Lambda^\beta b\|_{L^2}^2\\ &=-\int_{\mathbb{R}^3}\nabla(u\cdot\nabla u)\cdot \nabla u\,dx +\int_{\mathbb{R}^3}\nabla(b\cdot\nabla b)\cdot \nabla u\,dx +\int_{\mathbb{R}^3}\nabla(b\cdot\nabla u)\cdot \nabla b\,dx\\ &\quad -\int_{\mathbb{R}^3}\nabla(u\cdot\nabla b)\cdot \nabla b\,dx -\int_{\mathbb{R}^3}\nabla(J \times b)\cdot\nabla J\, dx\\ &=I_{1}(t)+\dots+I_{5}(t). \end{aligned} \end{equation} By integrate by parts, H\"{o}lder's inequality, interpolation inequality and Young's inequality, let $\theta_{1}=\frac{3-(\alpha-1)p_{1}}{\alpha p_{1}}$, we obtain \begin{align*} |I_{1}(t)| &\le |\int_{\mathbb{R}^3}(u\cdot \nabla)u \cdot\Delta u\,dx|\\ &\le\|u\|_{L^{p_{1}}}\|\nabla u\|_{L^{\frac{6p_{1}}{(1+2\alpha)p_{1}-6}}} \|\Delta u\|_{L^{\frac{6}{5-2\alpha}}}\\ &\le\|u\|_{L^{p_{1}}}\|\nabla u\|_{L^2}^{1-\theta_{1}} \|\nabla\Lambda^{\alpha}u\|_{L^2}^{1+\theta_{1}}\\ &\le C\|u\|_{L^{p_{1}}}^\frac{2\alpha p_{1}}{(2\alpha-1)p_{1}-3} \|\nabla u\|_{L^2}^2+\frac{1}{8}\|\nabla \Lambda^\alpha u\|_{L^2}^2. \end{align*} By cancelation property, $$ \int_{\mathbb{R}^3}(b\cdot\nabla)\partial_ib\cdot\partial_iu\,dx +\int_{\mathbb{R}^3}(b\cdot\nabla)\partial_iu\cdot\partial_ib\,dx=0, $$ integrate by parts, H\"{o}lder inequality and Young's inequality, \begin{align*} |I_2(t)+I_3(t)| &=\Big|\int_{\mathbb{R}^3}(b\cdot\nabla)\partial_ib\cdot\partial_iu\,dx +\int_{\mathbb{R}^3}(\partial_ib\cdot\nabla)b\cdot\partial_iu\,dx\\ &\quad +\int_{\mathbb{R}^3}(b\cdot\nabla)\partial_iu\cdot\partial_ib\,dx +\int_{\mathbb{R}^3}(\partial_ib\cdot\nabla)u\cdot\partial_ib\,dx\Big|\\ &=\Big| \int_{\mathbb{R}^3}(\partial_ib\cdot\nabla)b\cdot\partial_iu\,dx +\int_{\mathbb{R}^3}(\partial_ib\cdot\nabla)u\cdot\partial_ib\,dx\Big|\\ &\le \int_{\mathbb{R}^3}{|u||\nabla b||\nabla^2 b|}\,dx\\ &\le C\|u\|_{L^{p_{1}}}^\frac{2\beta p_{1}}{(2\beta-1)p_{1}-3}\|\nabla b|_{L^2}^2 +\frac{1}{8}\|\nabla \Lambda^\beta b|_{L^2}^2. \end{align*} Similarly, \begin{gather*} |I_{4}(t)|\le C\|u\|_{L^{p_{1}}}^\frac{2\beta p_{1}}{(2\beta-1)p_{1}-3} \|\nabla b\|_{L^2}^2+\frac{1}{8}\|\nabla \Lambda^\beta b|_{L^2}^2, \\ |I_{5}(t)|=\int_{\mathbb{R}^3}|\nabla b||\nabla b||\nabla^2 b| \le C\|\nabla b\|_{L^{p_2}}^\frac{2\beta p_2}{(2\beta-1)p_2-3} \|\nabla b\|_{L^2}^2+\frac{1}{8}\|\nabla \Lambda^\beta b|_{L^2}^2, \end{gather*} where it would be used $$ \int_{\mathbb{R}^3}\ [(\nabla J)\times b]\cdot (\nabla J)\,dx=0. $$ Collecting the inequalities above in \eqref{a32}, together with energy estimate, integrating in time and by Gronwall's lemma yields that \begin{equation}\label{a41} \begin{aligned} &\|u\|_{H^1}^2+\|b\|_{H^1}^2+\int_0^{t}\|\Lambda^\alpha u\|_{H^1}^2d\tau +\int_0^{t}\|\Lambda^\beta b\|_{H^1}^2d\tau\\ &\le \|(u_0,b_0)\|_{H^1}^2 \exp\big\{C\int_0^{t}(\|u\|_{L^{p_{1}}}^\frac{2\alpha p_{1}}{(2\alpha-1)p_{1}-3} +\|u\|_{L^{p_{1}}}^\frac{2\beta p_{1}}{(2\beta-1)p_{1}-3} +\|\nabla b\|_{L^{p_2}}^\frac{2\beta p_2}{(2\beta-1)p_2-3})d\tau\big\}. \end{aligned} \end{equation} \noindent\textbf{Step 2: $H^s$ Estimates.} Applying the operator $\Lambda^s$ to \eqref{a1}, taking the inner product with $(\Lambda^s u,\Lambda^s b)$, with energy estimate, we have \begin{equation}\label{a33} \begin{aligned} &\frac{1}{2}\frac{d}{dt}(\|u\|_{H^s}^2+\|b\|_{H^s}^2) +\|\Lambda^\alpha u\|_{H^s}^2+\|\Lambda^\beta b\|_{H^s}^2\\ &=-\int_{\mathbb{R}^3}\Lambda^s(u\cdot\nabla)u\cdot\Lambda^s u\,dx +\int_{\mathbb{R}^3}\Lambda^s(b\cdot\nabla)b\cdot\Lambda^s u\,dx +\int_{\mathbb{R}^3}\Lambda^s(b\cdot\nabla)u\cdot\Lambda^s b\,dx\\ &\quad -\int_{\mathbb{R}^3}\Lambda^s(u\cdot\nabla)b\cdot\Lambda^s b\,dx -\int_{\mathbb{R}^3}\Lambda^s((\nabla\times b)\times b)\cdot \Lambda^s(\nabla\times b)dx\\ &=II_{1}(t)+\dots+II_{5}(t). \end{aligned} \end{equation} Using H\"{o}lder's inequality and Young's inequality, \begin{align*} |II_{1}(t)| &\le\|\Lambda^{s+1-\alpha}(u\otimes u)\|_{L^2}\|\Lambda^{s+\alpha}u\|_{L^2}\\ &\le C\|u\|_{L^\infty}\|u\|_{H^{s+1-\alpha}}\|\Lambda^\alpha u\|_{H^s}\\ &\le C\|u\|_{L^\infty}^2\|u\|_{H^s}^2+\frac{1}{8}\|\Lambda^\alpha u\|_{H^s}^2. \end{align*} Similarly, \begin{gather*} |II_2(t)|\le C\|b\|_{L^\infty}^2\|b\|_{H^s}^2+\frac{1}{8} \|\Lambda^\alpha u\|_{H^s}^2,\\ |II_3(t),II_{4}(t)|\le C(\|u\|_{L^\infty}^2 +\|b\|_{L^\infty}^2)(\|u\|_{H^s}^2+\|b\|_{H^s}^2) +\frac{1}{8}\|\Lambda^\beta b\|_{H^s}^2. \end{gather*} For the estimate of $II_{5}(t)$, let $\theta_2=\frac{3-(\beta-1)p_2}{\beta p_2}$, then \begin{align*} |II_{5}(t)| &\le\|\Lambda^s[(\nabla\times b)\times b]-[\Lambda^s(\nabla\times b)] \times b\|_{L^\frac{6}{2\beta+1}}\|\nabla\Lambda^s b\|_{L^\frac{6}{5-2\beta}}\\ &\le C\|\nabla b\|_{L^{p_2}}\|\Lambda^s b\|_{L^\frac{6p_2}{(1+2\beta)p_2-6}} \|\Lambda^\beta b\|_{H^s}\\ &\le C\|\nabla b\|_{L^{p_2}}\|\Lambda^s b\|_{L^2}^{1-\theta_2} \|\Lambda^\beta b\|_{H^s}^{1+\theta_2}\\ &\le C\|\nabla b\|_{L^{p_2}}^{\frac{2\beta p_2}{(2\beta-1)p_2-3}} \|\Lambda^s b\|_{L^2}^2+\frac{1}{8}\|\Lambda^\beta b\|_{L^2}^2. \end{align*} Plugging the estimate above in \eqref{a33}, applying Gronwall's lemma, we have \begin{align*} &\|u\|_{H^s}^2+\|b\|_{H^s}^2+\int_0^{t}\|\Lambda^\alpha u\|_{H^s}^2d\tau +\int_0^{t}\|\Lambda^\beta b\|_{H^s}^2d\tau\\ &\le \|(u_0,b_0)\|_{H^s}^2\exp\{C\exp\int_0^{t}(\|(u,b)\|_{L^\infty}^2 +\|\nabla b\|_{L^{p_2}}^\frac{2\beta p_2}{(2\beta-1)p_2-3})d\tau\}. \end{align*} Combining the interpolation $$ \|u\|_{L^\infty}\le C\|u\|_{H^1}^{1-\frac{1}{2\alpha}} \|\nabla\Lambda^\alpha u\|_{L^2}^\frac{1}{2\alpha},\quad \|b\|_{L^\infty}\le C\| b\|_{H^1}^{1-\frac{1}{2\beta}} \|\nabla\Lambda^\beta b\|_{L^2}^\frac{1}{2\beta} $$ with \eqref{a30} and \eqref{a41} yields the desired results. This completes the proof of Theorem \ref{thm1.6}. \section{Proof of Theorem \ref{thm1.7}} Using similar operation as the proof of Theorem \ref{thm1.6}, we obtain \begin{equation}\label{a34} \begin{aligned} &\frac{1}{2}\frac{d}{dt}(\|\nabla u\|_{L^2}^2+\|\nabla b\|_{L^2}^2) + \|\Delta u\|_{L^2}^2+ \|\Delta b\|_{L^2}^2\\ &=\sum_{i,j,k=1}^3\int_{\mathbb{R}^3}\partial_{k}(u_i\partial_iu_j) \partial_{k}u_j + \sum_{i,j,k=1}^3\int_{\mathbb{R}^3}\partial_{k}(b_i\partial_ib_j) \partial_{k}u_j\\ &\quad + \sum_{i,j,k=1}^3\int_{\mathbb{R}^3} \partial_{k}(b_i\partial_iu_j)\partial_{k}b_j -\sum_{i,j,k=1}^3\int_{\mathbb{R}^3}\partial_{k}(u_i\partial_i b_j)\partial_{k}b_j \\ &\quad -\sum_{i=1}^3\int_{\mathbb{R}^3}\partial_i(J\times b) \cdot\partial_iJ \\ &=III_{1}(t)+\dots+III_{5}(t). \end{aligned} \end{equation} Integrating by parts, and using $$ \int_{\mathbb{R}^3}\ u_i\partial_i \partial_k u_j \partial_k u_j\,dx=0, $$ we can rewrite $III_{1}(t)$ as \begin{align*} III_{1}(t) &=-\sum_{i,j,k=1}^3\int_{\mathbb{R}^3}\partial_{k}u_i \partial_iu_j\partial_{k}u_j\\ &=-\sum_{i=1}^2\sum_{j,k=1}^3\int_{\mathbb{R}^3}\partial_{k}u_i \partial_iu_j\partial_{k}u_j - \sum_{k=1}^2\sum_{j=1}^3\int_{\mathbb{R}^3}\partial_{k}u_3 \partial_3u_j\partial_{k}u_j\\ &\quad +\sum_{j=1}^3\int_{\mathbb{R}^3}(\partial_{1}u_{1} +\partial_2u_2)\partial_3u_j\partial_3u_j. \end{align*} Similarly, \begin{align*} &III_2(t)+III_3(t)\\ &=\sum_{i,j,k=1}^3\int_{\mathbb{R}^3}\partial_{k}b_i\partial_i b_j\partial_{k}u_j +\sum_{i,j,k=1}^3\int_{\mathbb{R}^3}\partial_{k}b_i\partial_i u_j\partial_{k}b_j\\ &=\sum_{k=1}^2\sum_{i,j=1}^3\int_{\mathbb{R}^3}\partial_{k}b_i \partial_ib_j\partial_{k}u_j +\sum_{i=1}^2\sum_{j=1}^3\int_{\mathbb{R}^3}\partial_3b_i \partial_ib_j\partial_3u_j\\ &\quad +\sum_{i=1}^2\sum_{j=1}^3\int_{\mathbb{R}^3}\partial_3b_i \partial_iu_j\partial_3b_j -\sum_{j=1}^3\int_{\mathbb{R}^3}(\partial_{1}b_{1}+\partial_2b_2) (\partial_3b_j\partial_3u_j+\partial_3u_j\partial_3b_j), \end{align*} \begin{align*} III_{4}(t)&=-\sum_{i,j,k=1}^3\int_{\mathbb{R}^3}\partial_{k}u_i \partial_ib_j\partial_{k}b_j\\ &=\sum_{k=1}^2\sum_{i,j=1}^3\int_{\mathbb{R}^3}\partial_{k}u_i \partial_ib_j\partial_{k}b_j +\sum_{i=1}^2\sum_{j=1}^3\int_{\mathbb{R}^3}\partial_3u_i \partial_ib_j\partial_3b_j\\ &\quad +\sum_{j=1}^3\int_{\mathbb{R}^3}(\partial_{1}u_{1} +\partial_2u_2)\partial_3b_j\partial_3b_j. \end{align*} Using the cancelation property as before, \begin{align*} III_{5}(t) &=-\sum_{i=1}^3\int_{\mathbb{R}^3}\{\partial_i((\nabla\times b)\times b) \cdot\partial_i(\nabla\times b)-(\partial_i(\nabla\times b)\times b) \cdot\partial_i(\nabla\times b)\}\\ &=-\sum_{i=1}^2\int_{\mathbb{R}^3}(\nabla\times b)\times \partial_ib\cdot\partial_i(\nabla\times b) \underbrace{-\int_{\mathbb{R}^3}(\nabla\times b)\times \partial_3b\cdot\partial_3(\nabla\times b)}_{III_{51}}, \end{align*} where \begin{align*} III_{51} &=-\int_{\mathbb{R}^3}\{\partial_3b_3(\partial_3b_{1}-\partial_{1}b_3) -\partial_3b_2(\partial_{1}b_2-\partial_2b_{1})\}\partial_3 (\partial_2b_3-\partial_3b_2)\\ &\quad -\int_{\mathbb{R}^3}\{\partial_3b_{1}(\partial_{1}b_2 -\partial_2b_{1}) -\partial_3b_3(\partial_2b_3-\partial_3b_2)\} \partial_3(\partial_3b_{1}-\partial_{1}b_3)\\ &\quad -\int_{\mathbb{R}^3}\{\partial_3b_2(\partial_2b_3-\partial_3b_2) -\partial_3b_{1}(\partial_3b_{1}-\partial_{1}b_3)\} \partial_3(\partial_{1}b_2-\partial_2b_2). \end{align*} Therefore, we can easily obtain the estimates \begin{equation}\label{a35} \begin{gathered} |III_{1}(t)|\le C\int_{\mathbb{R}^3}|\nabla_{h}u||\nabla u|^2dx,\\ |III_2(t)+III_3(t)|\le C\int_{\mathbb{R}^3}|\nabla_{h}u||\nabla b|^2dx +\underbrace{\int_{\mathbb{R}^3}|\nabla_{h}b||\nabla b||\nabla u|dx}_{\Xi},\\ |III_{4}(t)|\le C\int_{\mathbb{R}^3}|\nabla_{h}u||\nabla b|^2dx +\int_{\mathbb{R}^3}|\nabla_{h}b||\nabla b|^2dx,\\ |III_{5}(t)|\le C\int_{\mathbb{R}^3}|\nabla_{h}b||\nabla b||\Delta b|dx. \end{gathered} \end{equation} Using H\"{o}lder's inequality, interpolation inequality and Young's inequality, let $\theta_3=\frac{3}{2p_{1}\alpha}$, \begin{align*} |III_{1}(t)| &\le C\|\nabla_{h}u\|_{L^{p_{1}}}\|\nabla u\|_{L^2}^{2(1-\theta_3)} \|\nabla\Lambda^\alpha u\|_{L^2}^{2\theta_3}\\ &\le C\|\nabla_{h}u\|_{L^{p_{1}}}^\frac{1}{1-\theta_3}\|\nabla u\|_{L^2}^2 +\frac{1}{8}\|\nabla\Lambda^\alpha u\|_{L^2}^2\\ &=C\|\nabla_{h}u\|_{L^{p_{1}}}^\frac{2p_{1}\alpha}{2p_{1}\alpha-3} \|\nabla u\|_{L^2}^2+\frac{1}{8}\|\nabla\Lambda^\alpha u\|_{L^2}^2. \end{align*} For the estimate of the second term, let $\theta_{4}=\frac{6-2p_2\alpha}{2\beta p_2}$, we have \begin{align*} \Xi &\le\|\nabla_{h}b\|_{L^{p_2}}\|\nabla b\|_{L^\frac{6p_2}{(3+2\alpha)p_2-6}}\| \nabla u\|_{L^\frac{6}{3-2\alpha}}\\ &\le \|\nabla_{h}b\|_{L^{p_2}}\|\nabla b\|_{L^2}^{1-\theta_{4}} \|\nabla\Lambda^\beta b\|_{L^2}^{\theta_{4}}\|\nabla\Lambda^\alpha u\|_{L^2}\\ &\le C\|\nabla_{h}b\|_{L^{p_2}}^\frac{2}{1-\theta_{4}}\|\nabla b\|_{L^2}^2 +\frac{1}{8}\|(\nabla\Lambda^\alpha u,\nabla\Lambda^\alpha b\|_{L^2}^2\\ &\le C\|\nabla_{h}b\|_{L^{p_2}}^\frac{2p_2\beta}{(\alpha+\beta)p_2-3} \|\nabla b\|_{L^2}^2+\frac{1}{8}\|(\nabla\Lambda^\alpha u, \nabla\Lambda^\alpha b\|_{L^2}^2. \end{align*} Thus, \begin{align*} |III_2(t)+III_3(t)| &\le C(\|\nabla_{h}u\|_{L^{p_{1}}}^\frac{2p_{1}\beta}{2p_{1}\beta-3} +\|\nabla_{h}b\|_{L^{p_2}}^\frac{2p_2\beta}{(\alpha+\beta)p_2-3}) \|\nabla b\|_{L^2}^2\\ &\quad+\frac{1}{8}(\|\nabla\Lambda^\alpha u\|_{L^2}^2 +\|\nabla \Lambda^\beta b\|_{L^2}^2). \end{align*} Similarly, \begin{gather*} |III_{4}(t)|\le C(\|\nabla_{h}u\|_{L^{p_{1}}}^\frac{2p_{1}\beta}{2p_{1}\beta-3} +\|\nabla_{h}b\|_{L^{p_2}}^\frac{2p_2\beta}{2p_2\beta-3})\|\nabla b\|_{L^2}^2 +\frac{1}{4}\|\nabla\Lambda^\beta b\|_{L^2}^2,\\ |III_{5}(t)|\le C\|\nabla_{h}b\|_{L^{p_2}}^\frac{2\beta p_2}{(2\beta-1)p_2-3} \|\nabla b\|_{L^2}^2+\frac{1}{8}\|\nabla \Lambda^\beta b\|_{L^2}^2. \end{gather*} Plugging the inequalities above in \eqref{a34}, integrating in $[0,t]$, with energy estimate, \begin{align*} &\|(u,b)\|_{H^1}^2+\int_0^{t}\|\Lambda^\alpha u\|_{H^1}^2d\tau +\int_0^{t}\|\Lambda^\beta b\|_{H^1}^2d\tau\\ &\le C\int_0^{t}(\|\nabla_{h}b\|_{L^{p_2}}^\frac{2\beta p_2}{(2\beta-1)p_2-3} +\|\nabla_{h}u\|_{L^{p_{1}}}^\frac{2p_{1}\alpha}{2p_{1}\alpha-3} +\|\nabla_{h}u\|_{L^{p_{1}}}^\frac{2p_{1}\beta}{2p_{1}\beta-3}\\ &\quad +\|\nabla_{h}b\|_{L^{p_2}}^\frac{2p_2\beta}{(\alpha+\beta)p_2-3} +\|\nabla_{h}b\|_{L^{p_2}}^\frac{2p_2\beta}{2p_2\beta-3})\|(u,b)\|_{H^1}^2 +\|(u_0,b_0)\|_{H^1}^2. \end{align*} Thanks to Gronwall's lemma, with assumption \eqref{a31}, we obtain $$ \|(u,b)\|_{H^1}^2+\int_0^{T}\|\Lambda^\alpha u\|_{H^1}^2dt +\int_0^{T}\|\Lambda^\beta b\|_{H^1}^2dt<\infty, $$ which implies that $$ \sup_{0\le t\le T}\|u\|_{L^3}<\infty, \quad \int_0^{T}\|\nabla b\|_{L^3}^\frac{\beta}{\beta-1}dt<\infty. $$ Combining with regularity criterion \eqref{a31} can lead the desired result. So we complete the proof of Theorem \ref{thm1.7}. \subsection*{Acknowledgments} The author would like to thank Prof. Dongho Chae and Prof. Zhifei Zhang for their interest and comments. \begin{thebibliography}{99} \bibitem{[1]} M. Acheritogaray, P. Degond, A. Frouvelle, J. Liu; Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, \emph{Kinet. Relat. Models} \textbf{4} (2011), 901-918. \bibitem{[2]} D. Chae, P. Degond, J. Liu; Well-posedness for Hall-magnetohydrodynamic; \emph{Ann. Inst. H. Poincar Anal. Non linaire} \textbf{31} (2014), 555-565. \bibitem{[3]} D. Chae, J. Lee; On the blow-up criterion and small data global existence for the Hall-Magneto-hydrodynamics, \emph{J. Differ. Equ.} \textbf{256} (2014), 3835-3858. \bibitem{[4]} D. Chae, R. Wan, J. Wu; Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion, arXiv:1404.0486v2 [math. AP] 30 Jan 2015, to appear in J. Math. Fluid Mech. \bibitem{[6]} T. Forbes; Magentic reconnection in solar flares, \emph{ Geophys. Astrophys. Fluid Dyn.}, \textbf{62} (1991), 15-36. \bibitem{[7]} M. Wardle; Star formation and the Hall effect, \emph{Astrophys. Space Sci.}, \textbf{292} (2004), 317-323. \bibitem{[8]} H. Bahouri, J.-Y. Chemin, R. Danchin; \emph{Fourier Analysis and Nonliear Partial Differential Equations}, Springer, 2011. \bibitem{[9]} L. Grafakos; \emph{Modern fourier analysis}, secnod ed., Grad. Text in Math., vol. 250, Springer-Verlag, 2008. \bibitem{[10]} G. Galdi; \emph{An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems}, 2nd Edition, Springer, 2011. \bibitem{[11]}Q. Chen, C. Miao; Existence theorem and blow-up criterion of strong solutions to the two-fluid MHD equation in $\mathbb{R}^3$, \emph{J. Differ. Equ.}, \textbf{239} (2007), 251-271. \bibitem{[12]} N. Katz, N. Pavlovi\'c; A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, \emph{Geom. Funct. Anal.} \textbf{12} (2002), 355-379. \bibitem{[13]} T. Tao; Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation. \emph{Anal. PDE}, \textbf{3} (2009), 361-366. \bibitem{[14]} J. Wu; Generalized MHD equations, \emph{J. Differ. Equ.}, \textbf{195} (2003), 284-312. \bibitem{[15]} J. Wu; Global regularity for a class of generalized magnetohydrodynamic equations, \emph{J. Math. Fluid Mech.}, \textbf{13} (2011), 295-305. \bibitem{[16]} Y. Zhou; Reguality criteria for the generalized viscous MHD equations, \emph{Ann. Inst. H. Poincare, Anal. Non Lineaire}, \textbf{24} (2007), 491-505. \bibitem{[17]} C. Tran, X. Yu, Z. Zhai; Note on solution regularity of the generalized nagnetohydrodynamic equations with partial dissipation, \emph{Nonlinear Anal.}, \textbf{85} (2013), 43-51. \end{thebibliography} \end{document}