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ORBITAL STABILITY OF SOLITARY WAVES FOR A
2D-BOUSSINESQ SYSTEM

ALEX M. MONTES, JOSÉ R. QUINTERO

Abstract. In this article, using a variational approach, we establish the non-

linear orbital stability of ground state solitary waves for a 2D Boussinesq-
Benney-Luke system that models the evolution of three dimensional long water

waves with small amplitude in the presence of surface tension.

1. Introduction

The focus of the present work is the two-dimensional Boussinesq-Benney-Luke
type system

(I − µ

2
∆)ηt + ∆Φ− 2µ

3
∆2Φ + ε∇ · (η∇Φ) = 0,(

I − µ

2
∆
)

Φt + η − µσ∆η +
ε

2
|∇Φ|2 = 0,

(1.1)

that arises in the study of the evolution of small amplitude long water waves in
the presence of surface tension (see Quintero and Montes [11]). Here µ, ε are small
positive parameters, σ−1 is the Bond number (associated with the surface tension)
and the functions η(t, x, y) and Φ(t, x, y) denote the wave elevation and the potential
velocity on the bottom z = 0, respectively. The aspect that we study about the
system (1.1) is the orbital stability of solitary wave solutions. It is well know that
the study of this kind of states of motion is very important to understand the
behavior of many physical systems.

A special feature on the Boussinesq system (1.1) is that the Benney-Luke equa-
tion (see [13]) and the Kadomtsev-Petviashvili (KP) equation can be derived up
to some order with respect to µ and ε from system (1.1). Moreover, for small
wave speed and large surface tension, is showed in [11] (see also [6]) that a suitable
renormalized family of solitary waves of the Boussinesq system (1.1) converges to
a nontrivial solitary wave for the (KP-I) equation. We will use this fact in the
stability analysis.

One of the main characteristics behind water wave systems is the existence of a
Hamiltonian structure which characterizes travelling waves as critical points of the
action functional and also provides relevant information for the stability of travelling
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waves. In our particular Boussinesq system (1.1), the Hamiltonian structure is given
by (

ηt
Φt

)
= BH′

(
η
Φ

)
, B =

(
I − µ

2
∆
)−1

(
0 1
−1 0

)
,

where the Hamiltonian H is defined as

H
(
η
Φ

)
=

1
2

∫
R2

(
|∇Φ|2 + η2 +

2µ
3
|∆Φ|2 + µσ|∇η|2 + εη|∇Φ|2

)
dx dy.

On the other hand, by Noether’s Theorem, there is a functional Q (named the
Charge) which is conserved in time for classical solutions defined formally as

Q
(
η
Φ

)
=

1
2
〈
B−1∂x

(
η
Φ

)
,

(
η
Φ

)〉
= −1

2

∫
R2

(
2ηΦx + µηx∆Φ

)
dx dy.

We will see that travelling waves of wave speed c for the Boussinesq system (1.1)
corresponds to stationary solutions of the modulated system(

ηt
Φt

)
= BHc′

(
η
Φ

)
,

where Hc(Y ) = H(Y ) + cQ(Y ). In other words, solutions of the system

H′(Y ) + cQ′(Y ) = 0.

We note from the Hamiltonian structure that the well definition of the functionalsH
and Hc require having η,∇Φ ∈ H1(R2). These conditions already characterize the
natural space (energy space) to look for travelling waves solutions of the system
Bousinesq-Benney-Luke, as shown in the preliminary section. It is important to
mention that using the conservation in time of the Hamiltonian, A. Montes et.
al. (see [7]) established the existence of global solutions for the Cauchy problem
associated with the system (1.1) and the initial condition in the energy space. On
the other hand, J. Quintero and A. Montes in [11] showed the existence of solitary
waves (travelling wave solutions in the energy space) by using a variational approach
in which weak solutions correspond to critical points of an energy under a special
constrain.

Regarding the stability issue, we need to recall that M. Grillakis, J. Shatah and
W. Strauss in [4] gave a general result used to establish orbital stability of solitary
waves for a class of abstract Hamiltonian systems. In this case, solitary waves of
least energy Yc are minimums of the action functional Hc and the stability analysis
depends on the positiveness of the symmetric operator H′′c (Yc) in a neighborhood of
the solitary wave Yc, except possibly in two directions, and also the strict convexity
of the real function

d1(c) = inf{Hc(Y ) : Y ∈Mc},
where Mc is a suitable set. The verification of the positiveness of H′′c (Yc) is much
simpler for one-dimensional spatial problems since the spectral analysis for the
operator H′′c (Yc) is reduced to studying the eigenvalues of a ordinary differential
equation which at ± infinity becomes to a ordinary differential equation with con-
stant coefficients (see [1, 8, 12]). The key fact to obtain stability in those cases
is that in the one dimensional case solitary waves are unique up to translations,
and d1 can be rescaled allowing to establish the strict convexity d1(c) in a direct
way (see [1, 8, 12]). In the two-dimensional spatial case, we have a harder task to
overcome using Grillakis et al. approach since the spectral analysis is not straight-
forward for our problem. In order to avoid making the spectral analysis required
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in Grillakis et al. work, we used a direct approach to prove orbital stability of
ground state solitary wave solutions of the system (1.1) in the case of wave speed
c near 1−, using strongly the variational characterization of d1, as done for other
2D models: see Shatah for nonlinear Klein Gordon equations [14], Quintero for the
2D Benney-Luke equation [9] and also in the case of a 2D Boussinesq-KdV type
system [10], Saut for the KP equation [2], Fukuizumi for the nonlinear Schrödinger
equation with harmonic potential [3] and Liu for the generalized KP equation [5],
among others.

This article is organized as follows. In section 2, we present preliminaries related
with the existence of solitons (solitary wave solutions) for the system Boussinesq-
Benney-Luke and the link between solitons for the system (1.1) and the (KP)
equation. In section 3, we prove the strict convexity of d1 for c ∈ (0, 1), but near
1. In section 4, we establish the orbital stability result.

2. Preliminaries

To simplify the computation, we rescale the parameters µ and ε from the system
(1.1) by defining

η̃(t, x, y) =
1
ε
η
( t
√
µ
,
x
√
µ
,
y
√
µ

)
, Φ̃(t, x, y) =

√
µ

ε
Φ
( t
√
µ
,
x
√
µ
,
y
√
µ

)
.

So, by a solitary wave solution for the system (1.1) we mean a solution for the
rescaled system of the form

η(t, x, y) = u (x− ct, y) , Φ(t, x, y) = v (x− ct, y) ,

where c denotes the speed of the wave. Then, one sees that the solitary wave profile
(u, v) should satisfy the system

2
3

∆2v −∆v + c
(
I − 1

2
∆
)
ux −∇ · (u∇v) = 0,

u− σ∆u− c
(
I − 1

2
∆
)
vx +

1
2
|∇v|2 = 0.

(2.1)

Our stability analysis of the solitary wave solutions will be perform in the following
appropriate spaces. Recall that the standard Sobolev space Hk(R2), k ∈ Z+, is the
Hilbert space defined as the closure of C∞0 (R2) with inner product

〈u, v〉Hk =
∑
|α|≤k

∫
R2
Dαu ·Dαv dx.

We denote V the closure of C∞0 (R2) with respect to the norm given by

‖v‖2V :=
∫

R2

(
|∇v|2 + |∆v|2

)
dx dy =

∫
R2

(
v2
x + v2

y + v2
xx + 2v2

xy + v2
yy

)
dx dy.

Note that V is a Hilbert space with respect to the inner product

〈v, w〉V = 〈vx, wx〉H1(R2) + 〈vy, wy〉H1(R2).

Also, we define the energy space X = H1(R2) × V, which is a Hilbert space with
respect to the norm

‖(u, v)‖2X = ‖u‖2H1(R2) + ‖v‖2V =
∫

R2

(
u2 + |∇u|2 + |∇v|2 + |∆v|2

)
dx dy.
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We can see that solutions (u, v) of system (2.1) are critical points of the functional
Jc = 2Hc given by

Jc(u, v) = Ic(u, v) +G(u, v),

where the functionals Ic and G are defined on the space X by

Ic(u, v) = I1(u, v) + I2,c(u, v),

I1(u, v) =
∫

R2

(
u2 + σ|∇u|2 + |∇v|2 + 2

3 (∆v)2
)
dx dy,

I2,c(u, v) = −c
∫

R2
(2uvx + ux∆v) dx dy,

G(u, v) =
∫

R2
u|∇v|2 dx dy.

In fact, note that Ic, G ∈ C1(X ,R) and its derivatives in (u, v) in the direction of
(U, V ) are given by

〈I ′c(u, v), (U, V )〉 = 2
∫

R2

(
uU + σ∇u · ∇U +∇v · ∇V + 2

3∆v∆V
)
dx dy

− c
∫

R2
(2uVx + 2vxU + ux∆V + ∆vUx) dx dy,

〈G′(u, v), (U, V )〉 =
∫

R2

(
|∇v|2U + 2u∇v · ∇V

)
dx dy.

Then we see that

J ′c(u, v) = 2
(

u− σ∆u− c(I − 1
2∆)vx + 1

2 |∇v|
2

2
3∆2v −∆v + c(I − 1

2∆)ux −∇ · (u∇v)

)
,

meaning that critical points of the functional Jc satisfy the solitary wave system
(2.1).

2.1. Existence of solitary waves. Quintero and Montes [11] established the
existence of solitary wave solutions for the Boussinesq-Benney-Luke system (1.1) for
σ > 0 and 0 < c < min{1, 8σ

3 }, by using the Concentration-Compactness principle
and the existence of a local compact embedding result. The strategy was to consider
the following minimization problem

Ic := inf{Ic(u, v) : (u, v) ∈ X with G(u, v) = 1}. (2.2)

The existence of solitary waves is consequence of the following results [11], which we
will use throughout this work. Next, we assume that σ > 0 and 0 < c < min{1, 8σ

3 }.

Lemma 2.1. The functional Ic is nonnegative and there are positive constants
C1(σ, c) < C2(σ, c) defined as

C1(σ, c) = min
{

1− c, σ(1− c), 2
3
− c

4σ
}
, C2(σ, c) = max

{
1 + c,

2
3

+
c

2
, σ +

c

2
}

such that
C1(σ, c)Ic(u, v) ≤ ‖(u, v)‖2X ≤ C2(σ, c)Ic(u, v). (2.3)

Furthermore, Ic is finite and positive.

Theorem 2.2. If (u0, v0) is a minimizer for problem (2.2), then (u, v) = −k(u0, v0)
is a nontrivial solution of (2.1) for k = 2

3Ic.
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Theorem 2.3. If {(um, vm)} is a minimizing sequence for (2.2), then there is a
subsequence (which we denote the same), a sequence of points (xm, ym) ∈ R2, and
a minimizer (u0, v0) ∈ X of (2.2), such that the translated functions

(ũm, ṽm) = (um(·+ xm, ·+ ym), vm(·+ xm, ·+ ym))

converge to (u0, v0) strongly in X .

2.2. Link between solitary waves for (1.1) and the KP equation. Assuming
σ > 3/8, c is close to 1−, and balancing the effects of nonlinearity and dispersion,
Quintero and Montes [11] established that a renormalized family of solitons of the
Boussinesq-Benney-Luke system converges to a nontrivial soliton for a KP-I type
equation. More precisely, set σ > 0, ε > 0, µ = ε, c2 = 1− ε and for a given couple
(u, v) ∈ X define the functions z and w by

u(x, y) = ε1/2z(X,Y ), v(x, y) = w(X,Y ), X = ε1/2x, Y = εy. (2.4)

Then a simple calculation shows that

I1(u, v) = ε1/2I1,ε(z, w), I2,c(u, v) = ε1/2I2,ε(z, w),

Ic(ε)(u, v) = ε1/2Iε(z, w), G(u, v) = Gε(z, w),

where I1, I2,ε, Iε and Gε are given by

Iε(z, w) = I1,ε(z, w) + I2,ε(z, w),

I1,ε(z, w) =
∫

R2

(
ε−1z2 + σ(z2

x + εz2
y) + ε−1w2

x + w2
y

)
dx dy

+
2
3

∫
R2

(
w2
xx + 2εw2

xy + ε2w2
yy

)
dx dy,

I2,ε(z, w) = −c
∫

R2

(
2ε−1zwx + zx(wxx + εwyy)

)
dx dy,

Gε(z, w) =
∫

R2
z
(
w2
x + εw2

y

)
dx dy.

Note that if σ > 3/8 then there is a family {(uc, vc)}c such that

Ic(uc, vc) = Ic, G(uc, vc) = 1, 0 < c < 1.

Then, if we denote

Iε := inf{Iε(z, w) : (z, w) ∈ X with Gε(z, w) = 1},

there is a correspondent family {(zε, wε)}ε such that

Iε = Iε(zε, wε), Gε(zε, wε) = 1, Ic = ε1/2Iε . (2.5)

We have the following results (see [11]).

Lemma 2.4. Let σ > 3/8. Then we have

lim
ε→0+

Iε = lim
ε→0+

Iε(zε, wε) = J 0 > 0, (2.6)

where

J 0 = inf{J0(w) : w ∈ V, G0(w) = 1},

J0(w) =
∫

R2

(
w2
x + w2

y +
(
σ − 1

3

)
w2
xx

)
dx dy,
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G0(w) =
∫

R2
w3
x dx dy.

Lemma 2.5. Let σ > 3/8. Then we have

lim
ε→0+

(zε − ∂xwε) = 0 in L2(R2).

Moreover, there is a nontrivial distribution w0 ∈ V such that

lim
ε→0+

∂xw
ε = ∂xw0 in L2(R2).

Furthermore,

‖zε‖L2(R2) + ‖∂xzε‖L2(R2) = O(1), ‖∂yywε‖L2(R2) = O(ε−1),

‖∂xwε‖L2(R2) + ‖∂xxwε‖L2(R2) = O(1).

Using the previous lemmas, Quintero et al. showed that there are nontrivial
distributions w0 ∈ V, z0 ∈ H1(R2) such that as ε→ 0+,

wε → w0 in V, zε → z0 in H1(R2),

and ∂xw0 being a solution of the solitary wave equation for the (KP-I) type equation(
ux − (σ − 1

3 )uxxx + 3uux
)
x

+ uyy = 0.

We shall use Lemmas 2.4 and 2.5 in our proof of stability.

3. Variational approach for stability

Recall that the solitary waves for the Boussinesq-Benney-Luke system (1.1) are
characterized as critical points of the functional defined on X by

Jc(u, v) = Ic(u, v) +G(u, v).

In particular, if
Kc(u, v) = 〈J ′c(u, v), (u, v)〉

we have

Kc(u, v) = 2Ic(u, v) + 3G(u, v) = 2Jc(u, v) +G(u, v).

Thus, on any critical point (u, v) of the functional Jc we have that

Jc(u, v) =
1
3
Ic(u, v), (3.1)

Jc(u, v) = −1
2
G(u, v), (3.2)

Ic(u, v) = −3
2
G(u, v). (3.3)

Now, define the set

Mc = {(u, v) ∈ X : Kc(u, v) = 0, (u, v) 6= 0}.

Note that Mc is just the “artificial constrain” for minimizing the functional Jc on
X . We will see that the analysis of the orbital stability of ground states solutions
depends upon some properties of the function d defined by

d(c) = inf{Jc(u, v) : (u, v) ∈Mc}.
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A ground state solution is a solitary wave which minimizes the action functional
Jc among all the nonzero solutions of (2.1). Moreover, the set of ground state
solutions

Gc = {(u, v) ∈Mc : d(c) = Jc(u, v)}
can be characterized as

Gc = {(u, v) ∈ X \ {0} : d(c) =
1
3
Ic(u, v) = −1

2
G(u, v)} ⊂ Mc.

We note that there is a simple relationship between d1 and d, and so regarding the
convexity of them. In fact,

d(c) = inf{Jc(u, v) : (u, v) ∈Mc}
= 2 inf{Hc(u, v) : (u, v) ∈Mc} = 2d1(c).

In the next lemmas we present important variational properties of d(c).

Lemma 3.1. Let 0 < c < 1 and σ > 3/8. Then

(1) d(c) exist and is positive.
(2) d(c) = inf{ 1

3Ic(u, v) : Kc(u, v) ≤ 0, (u, v) 6= 0}.

Proof. (1) Let (u, v) ∈Mc, then we have that

Jc(u, v) =
1
3
Ic(u, v) ≥ 0.

This implies that d(c) exists. Now, Using the Young inequality and that the em-
bedding H1(R2) ↪→ Lq(R2) is continuous for q ≥ 2, we see that there is a constant
C > 0 such that

|G(u, v)| ≤ C
(
‖u‖3H1(R2) + ‖∇v‖3H1(R2)

)
. (3.4)

Thus, using (2.3) we see that

Jc(u, v) =
1
3
Ic(u, v) = −1

2
G(u, v) ≤ C‖(u, v)‖3X ≤ C (Ic(u, v))3/2 .

Then follows that 1
3Ic(u, v) ≥ C, and this implies that d(c) ≥ C > 0.

(2) For (u, v) ∈ X such that Kc(u, v) ≤ 0 we have that G(u, v) < 0. Define
α ∈ [0, 1) by

α = −2Ic(u, v)
3G(u, v)

.

Then a direct computation shows that Kc(α(u, v)) = 0. In other words, α(u, v) ∈
Mc. So that,

d(c) ≤ Jc(α(u, v)) =
α2

3
Ic(u, v) ≤ 1

3
Ic(u, v).

Hence, we obtain

d(c) ≤ inf
{1

3
Ic(u, v) : Kc(u, v) ≤ 0

}
.

If (u, v) ∈Mc, we see that Jc(u, v) = 1
3Ic(u, v) and

inf
{

1
3Ic(u, v) : Kc(u, v) ≤ 0, (u, v) 6= 0

}
≤ inf

{
Jc(u, v) : (u, v) ∈Mc

}
= d(c).

Then the statement 2 of the lemma follows. �
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Lemma 3.2. Let 0 < c < 1 and σ > 3/8. Then
(1) If {(um, vm)} is a minimizing sequence of d(c), then there is a subsequence,

which we denote the same, a sequence of points (xm, ym) ∈ R2, and (uc, vc) ∈ X\{0}
such that the translated functions

(um(·+ xm, ·+ ym), vm(·+ xm, ·+ ym))

converge to (uc, vc) strongly in X , (uc, vc) ∈ Mc, d(c) = Jc(uc, vc) and (uc, vc) is
a solution of (2.1). Moreover,

d(c) =
4
27
I3
c , (3.5)

where Ic = inf{Ic(u, v) : G(u, v) = 1, (u, v) ∈ X}.
(2) Let {(um, vm)} be a sequence in X such that

1
3
Ic(um, vm)→ d(c) and Jc(um, vm)→ d̃ ≤ d(c).

Then there exist a subsequence of {(um, vm)} which denote the same, a sequence
(xm, ym) ∈ R2 and (uc, vc) ∈Mc such that the translated functions

(um(·+ xm, ·+ ym), vm(·+ xk, ·+ yk))

converge to (uc, vc) strongly in X and d̃ = d(c) = 1
3Ic(u

c, vc).

Proof. The first part of this result is consequence of the Theorem 2.2, Theorem 2.3
and the following argument. Let (u, v) ∈ X \ {0} be such that Kc(u, v) = 0, then

Ic(u, v) = −3
2
G(u, v) =

3
2
|G(u, v)| = 3Jc(u, v).

Consider the couple

(z, w) =
1

G1/3(u, v)
(u, v).

Then G(z, w) = 1. Thus,

Ic ≤ Ic(z, w) =
1

G
2
3 (u, v)

Ic(u, v) =
(

3
2

)2/3

I1/3
c (u, v) =

(
3
2

)2/3 (
3Jc(u, v)

)1/3

.

So that, we concluded
4
27
I3
c ≤ d(c).

Now, suppose that (u, v) 6= 0 such that G(u, v) = 1. Take t such that Kc(tu, tv) = 0.
In this case, 2Ic(u, v) + 3t = 0. Therefore

t2 =
4
9
I2
c (u, v).

Then we obtain,

d(c) ≤ Jc(tu, tv) = t2 (Ic(u, v) + t) =
4
27
I3
c (u, v).

Thus, we have shown that

d(c) ≤ 4
27

(Ic)3 .

This proves (3.5). Now, we show the second part. Since Kc = 2Ic + 3G then we
see that

Jc(um, vm) =
1
3

(Ic(um, vm) +Kc(um, vm))→ d̃ ≤ d(c).
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Then for m large enough we have that Kc(um, vm) ≤ 0. This fact implies that
the sequence {(um, vm)} is a minimizing sequence for d(c). Then using the part 1
we have that there exist a subsequence of {(um, vm)}, which denote the same, a
sequence (xm, ym) ∈ R2 and (uc, vc) ∈Mc such that

(um(·+ xm, ·+ ym), vm(·+ xk, ·+ yk))→ (uc, vc)

in X . In particular Kc(uc, vc) = 0 and d̃ = d(c) = 1
3Ic(u

c, vc). �

Lemma 3.3. Let 0 < c < 1 and σ > 3/8. Then
(1) If 0 < c1 < c2 < 1 and (u, v) ∈ Gc, then we have that d(c) and I2,c(u, v) are

uniformly bounded functions on [c1, c2].
(2) If c1 < c2 and (uci , vci) ∈ Gci

, we have the following inequalities

d(c1) ≤ d(c2)−
(c2 − c1

c2

)
I2,c2(uc2 , vc2) + o(c2 − c1),

d(c2) ≤ d(c1) +
(c2 − c1

c1

)
I2,c1(uc1 , vc1) + o(c2 − c1).

(3) If 0 < c1 < c2 < 1, (uc1 , vc1) ∈ Gc1 and I2,c1(uc1 , vc1) ≤ 0, then

d(c2) ≤ d(c1) +
(2(c2 − c1)

3c1

)
I2,c1(uc1 , vc1).

In particular, d is a strictly decreasing function on (c1, 1).

Proof. (1) Let c1, c2 be such that 0 < c1 < c2 < 1 and let (u, v) ∈ X be such that
G(u, v) 6= 0. Define tc by

tc = −2
3
Ic(u, v)
G(u, v)

.

Then we have that Kc(tc(u, v)) = 0 and Jc(tc(u, v)) = t2c
3 Ic(u, v). Using (2.3) we

see that there exist C > 0 that depends only on σ such that for all c ∈ [c1, c2],

d(c) ≤ Jc(tc(u, v)) =
4
27

I3
c (u, v)
G2(u, v)

≤ C ‖(u, v)‖6X
G2(u, v)

.

Now, let (z, w) ∈ Gc, then we have that 2Ic(z, w) + 3G(z, w) = 0. Moreover,

C1(σ, c1, c2)‖(z, w)‖2X ≤ 2Ic(z, w) = 3|G(z, w)| ≤ C‖(z, w)‖3X .

Then we conclude that

C1(σ, c1, c2) ≤ ‖(z, w)‖X ≤ C2(σ, c1, c2)
(1

3
Ic(z, w)

)1/2

.

Thus, we have shown that

d(c) ≥
(C1(σ, c1, c2)
C2(σ, c1, c2)

)2

.

Hence, if (u, v) ∈ Gc we see that Ic(u, v) and G(u, v) are uniformly bounded on
[c1, c2] since

d(c) =
1
3
Ic(u, v) = −1

2
G(u, v),

which implies that I2,c(u, v) is also uniformly bounded because Kc(u, v) = 0 and

I1(u, v) ∼= ‖(u, v)‖2X .
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(2) Let (z, w) be defined by (z, w) = t(uc2 , vc2). We want t such that Kc1(z, w) =
0. Note that

Kc1(z, w) = 2t2Ic1(uc2 , vc2) + 3t3G(uc2 , vc2)

= t2
(

2Ic2(uc2 , vc2)− 2(c2 − c1)
c2

I2,c2(uc2 , vc2)
)

+ 3t3G(uc2 , vc2)

= t2
(

3tG(uc2 , vc2)− 3G(uc2 , vc2)− 2(c2 − c1)
c2

I2,c2(uc2 , vc2
)
.

Thus, t has to be such that

tG(uc2 , vc2) = G(uc2 , vc2) +
2(c2 − c1)

3c2
I2,c2(uc2 , vc2)

or equivalently

t = 1 +
2(c2 − c1)

3c2

(I2,c2(uc2 , vc2)
G(uc2 , vc2)

)
= 1− (c2 − c1)

3c2

(I2,c2(uc2 , vc2)
d(c2)

)
.

Then for this t, we conclude that Kc1(z, w) = 0. Now,

d(c1) ≤ Jc1(w, z) = t2
(
Ic1(uc2 , vc2) + tG(uc2 , vc2)

)
= t2

(
Ic2(uc2 , vc2) +

c1 − c2
c2

I2,c2(uc2 , vc2) + tG(uc2 , vc2)
)

= t2
(
d(c2)− c2 − c1

3c2
I2,c2(uc2 , vc2)

)
.

But we have that

t2 =
(

1− (c2 − c1)
3c2

(I2,c2(uc2 , vc2)
d(c2)

))2

= 1− 2(c2 − c1)
3c2

(I2,c2(uc2 , vc2)
d(c2)

)
+O

(
(c2 − c1)2

)
.

Then we see that

t2
(
d(c2)− (c2 − c1)

3c2
I2,c2(uc2 , vc2)

)
= d(c2)− (c2 − c1)

c2
I2,c2(uc2 , vc2) +O

(
(c2 − c1)2

)
,

which implies the desired result,

d(c1) ≤ d(c2)−
(c2 − c1

c2

)
I2,c2(uc2 , vc2) + o(c2 − c1).

Now, let (z, w) be defined by (z, w) = t(uc1 , vc1). As before, we want t such that
Kc2(z, w) = 0. In this case,

t = 1− 2(c2 − c1)
3c1

(I2,c1(uc1 , vc1)
G(uc1 , vc1)

)
= 1 +

(c2 − c1)
3c1

(I2,c1(uc1 , vc1)
d(c1)

)
.

Since Kc1(z, w) = 0, we see that

d(c2) ≤ Jc2(z, w) = t2
(
d(c1) +

c2 − c1
3c1

I2,c1(uc1 , vc1)
)
.

Then, as above, we have that

t2 = 1 +
2(c2 − c1)

3c1

(I2,c1(uc1 , vc1)
d(c1)

)
+O

(
(c2 − c1)2

)
.
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Using this we conclude that

t2
(
d(c1) +

(c2 − c1)
3c1

I2,c1(uc1 , vc1)
)

= d(c1) +
(c2 − c1)

c1
I2,c1(uc1 , vc1) +O

(
(c2 − c1)2

)
,

which implies the other inequality.
(3) Assume that Kc1(uc1 , vc1) = 0. Hence we see that G(uc1 , vc1) ≤ 0. Now, if

I2,c1(uc1 , vc1) ≤ 0 then for c1 < c2 we have that

Kc2(uc1 , vc1) = Kc1(uc1 , vc1) +
2(c2 − c1)

c1
I2,c1(uc1 , vc1) ≤ 0.

Thus, we obtain

d(c2) ≤ 1
3
Ic2(uc1 , vc1)

=
1
3

(
Ic1(uc1 , vc1) +

c2 − c1
c1

I2,c1(uc1 , vc1)
)

≤ d(c1) +
c2 − c1

3c1
I2,c1(uc1 , vc1).

This also implies that d(c2) < d(c2), provided that 0 < c1 < c2 < 1. �

Convexity of d. Now, we prove that the function d is strictly convex on (c0, 1)
with c0 > 0 near 1. To do this, we compute d′ and analyze the behavior of d and
d′ near 1−. We have the following results.

Lemma 3.4. If (uc, vc) ∈ Gc, then we have that

d′(c) =
I2,c(uc, vc)

c
. (3.6)

Proof. Note that d′ can be computed by taking approptiate limits in part 2 of
Lemma 3.3 �

Theorem 3.5. Let σ > 3/8 and (uc, vc) ∈ Gc. Then we have that

lim
c→1−

d(c) = 0 and I2,c(uc, vc) < 0 for cnear 1−.

Proof. From Equations (2.4)-(2.6) and (3.5) we obtain the first part. Now, using
the same notation as Section 2.2 we have

εI2,ε(zε, wε) = −c
∫

R2

(
2zε∂xwε + ε∂xz

ε (∂xxwε + ε∂yyw
ε)
)
dx dy

= −2c
∫

R2
(zε − ∂xwε) ∂xwε dx dy

− cε
∫

R2
∂xz

ε (∂xxwε + εzε∂yyw
ε) dx dy − 2c

∫
R2

(∂xwε)
2
dx dy.

Then using Lemma 2.5 we see that

lim
ε→0+

εI2,ε(zε, wε) < 0,

meaning that for ε near 0+ we have I2,ε(zε, wε) < 0, which implies that for c near
1−, we ahve I2,c(uc, vc) < 0. �
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Theorem 3.6. Let σ > 3/8. Then there exist 0 < c0 < 1 enough near 1 such that
d is a decreasing function on (c0, 1). Furthermore, limc→1− d

′(c) = 0.

Proof. Using (3.6) and Theorem 3.5 we have that d is a decreasing function for c
near 1− and we also have that limc→1− ‖(uc, vc)‖X = 0 for any (uc, vc) ∈ X such
that d(c) = 1

3Ic(u
c, vc), since from (2.3) we see that

‖(uc, vc)‖2X ≤ C(σ)Ic(uc, vc) = C(σ)d(c).

Thus, from (3.6) and definition of I2,c we conclude that

|d′(c)| ≤ 2‖uc‖L2(R2)‖vcx‖L2(R2) + ‖ucx‖L2(R2)‖∆vc‖L2(R2) ≤ 3‖(uc, vc)‖2X .

Therefore, limc→1− d
′(c) = 0. �

From the previous results we have the following lemma.

Lemma 3.7. Let σ > 3/8, then d and d1 are strictly convex for c near 1−.

We will use the following result by Shatah [14].

Lemma 3.8. Suppose that h is a strictly convex function in a neighborhood of c0.
Then given ε > 0, there exist N(ε) > 0 such that for |cε − c0| = ε,

(1) If cε < c0 < c and |c− c0| < ε/2,

h(cε)− h(c)
cε − c

≤ h(c0)− h(c)
c0 − c

− 1
N(ε)

.

(2) If c < c0 < cε and |c− c0| < ε/2,

h(cε)− h(c)
cε − c

≥ h(c0)− h(c)
c0 − c

+
1

N(ε)
.

Theorem 3.9. Let σ > 3/8. If 0 < c0 < 1 with c0 near 1 and (uc0 , vc0) ∈ Gc0 ,
then for c close to c0, there exist ρ(c) > 0 such that ρ(c0) = 0 and

d(c)− d(c0) ≥
(c− c0

c0

)
I2,c0(uc0 , vc0) + ρ(c).

Proof. Let c < c0, c close to c0. Then by Lemma 3.8, for c < c0 < c1 we see that

d(c)− d(c1)
c− c1

≤ d(c0)− d(c1)
c0 − c1

− 1
N(c)

.

From Lemma 3.3 we have

d(c1) ≤ d(c0) +
(c1 − c0

c0

)
I2,c0(uc0 , vc0) + o(c1 − c0).

Then we obtain
d(c)− d(c1)
c− c1

≤ d(c1)− d(c0)
c1 − c0

− 1
N(c)

≤ I2,c0(uc0 , vc0)
c0

+
o(c1 − c0)
c1 − c0

− 1
N(c)

.

Using the continuity of d, we have as c1 → c0 that

d(c)− d(c0)
c− c0

≤ I2,c0(uc0 , vc0)
c0

− 1
N(c)

.

As a consequence of this inequality follows that

d(c)− d(c0) ≥
(c− c0

c0

)
I2,c0(uc0 , vc0) +

c0 − c
N(c)

.
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Now, let c0 < c be c close to c0. If c1 < c0 < c, then by using Lemma 3.8,
d(c)− d(c1)
c− c1

≥ d(c0)− d(c1)
c0 − c1

+
1

N(c)
.

Then from Lemma 3.3,

d(c1) ≤ d(c0)−
(c0 − c1

c0

)
I2,c0(uc0 , vc0) + o(c1 − c0).

Thus, we obtain
d(c)− d(c1)
c− c1

≥ d(c1)− d(c0)
c1 − c0

+
1

N(c)
≥ I2,c0(uc0 , vc0)

c0
+
o(c1 − c0)
c1 − c0

+
1

N(c)
.

Again, using the continuity of d, we have as c1 → c0 that
d(c)− d(c0)
c− c0

≥ I2,c0(uc0 , vc0)
c0

+
1

N(c)
.

As a consequence of this inequality holds

d(c)− d(c0) ≥
(c− c0

c0

)
I2,c0(uc0 , vc0) +

c− c0
N(c)

,

and the result follows. �

4. Orbital stability of the solitary waves

We first consider the modulated system associated with the system (2.1) on X .
In other words, we assume that the solution (η(t),Φ(t)) of the system (1.1) has the
form

η(t, x, y) = z(t, x− ct, y), Φ(t, x, y) = w(t, x− ct, y)
Then we see that (z(t), w(t)) satisfies the modulated system(

I − 1
2

∆
)
zt − c

(
I − 1

2
∆
)
zx −

2
3

∆2w + ∆w +∇ · (z∇w) = 0,(
I − 1

2
∆
)
wt − c

(
I − 1

2
∆
)
wx + z − σ∆z +

1
2
|∇w|2 = 0.

(4.1)

Observe that the modulated Hamiltonian for this system has the form

Hc(z, w) =
1
2
Jc(z, w) = H(z, w) +

1
2
I2,c(z, w),

We also observe that Hc is conserved in time on solutions since(
I − 1

2
∆
)
zt = ∂wHc(z, w) = c

(
I − 1

2
∆
)
zx +

2
3

∆2w −∆w −∇ · (z∇w) ,

−
(
I − 1

2
∆
)
wt = ∂zHc(z, w) = −c

(
I − 1

2
∆
)
wx + z − σ∆z +

1
2
|∇w|2.

Now we introduce the regions Ric, i = 1, 2, in the energy space X by

R1
c = {(z, w) ∈ X : Hc(z, w) <

1
2
d(c),

1
3
Ic(z, w) < d(c)}

R2
c = {(z, w) ∈ X : Hc(z, w) <

1
2
d(c),

1
3
Ic(z, w) > d(c)},

and have the following result.

Lemma 4.1. R1
c ,R2

c are invariant regions under the flow for the modulated system
(4.1).



14 A. M. MONTES, J. R. QUINTERO EJDE-2015/176

Proof. Let (u0, v0) ∈ R1
c . Suppose that (z(t), w(t)) satisfies the modulated system

(4.1) with initial condition

z(0) = u0, w(0) = v0.

By characterization of d(c) and definition of R1
c , we must have that

Kc(u0, v0) > 0.

In fact, suppose that Kc(u0, v0) ≤ 0. Then we see that d(c) ≤ 1
3Ic(u0, v0). More-

over, if (z(t), w(t)) ∈ R1
c for some t > 0, we have that Kc(z(t), w(t)) > 0. Now,

suppose that there exists a minimum t0 such that Kc(z(t), w(t)) > 0 for t ∈ [0, t0)
and Kc(z(t0), w(t0)) = 0. Observe that

d(c) ≤ 1
3
Ic(z(t0), w(t0))

≤ lim inf
t→t−0

(1
3
Ic(z(t), w(t)) +

1
3
Kc(z(t), w(t))

)
≤ lim inf

t→t−0
Jc(z(t), w(t))

≤ 2 lim inf
t→t−0

Hc(z(t), w(t))

≤ 2Hc(z0, w0) < d(c).

This is a contradiction, which shows that R1
c is invariant under the flow for the

modulated system (4.1). In a similar fashion we have that R2
c is also invariant

under the flow for the modulated system (4.1). �

The following lemma will be used to obtain stability with respect to the ground
state solutions.

Lemma 4.2. Let σ > 3/8 and 0 < c0 < 1 be near 1. If U(t) = (η(t),Φ(t)) is a
global solution of the Boussinesq-Benney-Luke system (1.1) with initial condition
U(0) = U0 ∈ X , then for every M, there is δ(M) such that if

‖U0 − U c0‖X < δ(M).

Then we have

d
(
c0 +

1
M

)
≤ 1

3
Ic0(U(t)) ≤ d

(
c0 −

1
M

)
, for all t ∈ R.

Proof. Let M be fixed and define c1 = c0 − 1
M and c2 = c0 + 1

M . Now, let
(zi(t), wi(t)) be defined by the formulas

η(t, x, y) = zi(t, x− cit, y), Φ(t, x, y) = wi(t, x− cit, y), i = 1, 2.

Then the couple (zi(t), wi(t)) satisfies the modulated system (4.1) with initial con-
dition

(zi(0), wi(0)) = U(0).

For this solution we have that the modulated Hamiltonian is conserved in time, in
other words

Hci
(U(t)) = Hci

(U(0)).

Now, using hypothesis and inequality (2.3) we conclude for small δ that

Ici
(U c0) = Ici

(U(0)) +O(δ).
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Since d is a strictly decreasing function such that d(c0) = 1
3Ic0(U c0), we can choose

δ small enough in such a way that

d(c2) <
1
3
Ic0(U(0)) < d(c1).

We also have that

Jci
(U(0)) = Jci

(U c0) +O(δ)

= Jc0(U c0) +
ci − c0
c0

I2,c0(U c0) +O(δ)

= d(c0) +
ci − c0
c0

I2,c0(U c0) +O(δ)

≤ d(ci)− ρ(ci) +O(δ),

where we have make used of Theorem 3.9. Next, let δ be small enough such that

2δ < min{ρ
(
c0 −

1
M

)
, ρ
(
c0 +

1
M

)
}.

This implies
2Hci

(U(0)) = Jci
(U(0)) < d(ci). (4.2)

Then, using Lemma 4.1, we have for all t ∈ R that

Hci
(U(t)) <

1
2
d(ci), d

(
c0 +

1
M

)
≤ 1

3
Ic0 (U(t)) ≤ d

(
c0 −

1
M

)
.

�

Finally we establish the main result in this work.

Theorem 4.3 (Orbital stability). Let σ > 3/8 and 0 < c0 < 1 be near 1. Then the
ground state solitary wave solutions of the Boussinesq-Benney-Luke system (1.1)
are stable in the following sense: Given ε > 0, there exist δ(ε) > 0 such that if
U0 ∈ X satisfies

‖U0 − U c0‖X < δ(ε),

then there exist a unique solution U(t) of the Boussinesq-Benney-Luke system (1.1)
with initial condition U0 such that

inf
V ∈Gc0

‖U(t)− V ‖X < ε, for all t ∈ R.

Proof. We will argue by contradiction. Suppose that there exist a positive number
ε0, and sequences {tk} ⊂ R and {Uk0 } ⊂ X , such that

lim
k→∞

‖Uk0 − U c0‖X = 0, inf
V ∈Gc0

‖Uk(tk)− V ‖X > ε0,

where Uk denotes the unique solution of system (1.1) with initial condition Uk(0) =
Uk0 . Now, from the Lemma 4.2 and the assumption, given m > 0 we have the
existence of δ(m) and a subsequence km such that

‖Ukm
0 − U c0‖X < δ(m)

and

d
(
c0 +

1
km

)
≤ 1

3
Ic0
(
Ukm(tkm)

)
≤ d
(
c0 −

1
km

)
,
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meaning that there exist a subsequence of {Uk(tk)}, which we denote the same,
such that

d
(
c0 +

1
k

)
≤ 1

3
Ic0
(
Uk(tk)

)
≤ d
(
c0 −

1
k

)
.

In particular, we have that

1
3
Ic0
(
Uk(tk)

)
→ d(c0) as k →∞.

Now, we consider c2 = c0 + 1
k and V k,2(t) defined by

Uk(t, x, y) = V k,2(t, x− c2t, y).

Then as in proof of previous lemma (see (4.2)), we obtain that

2Hc2
(
Uk(tk)

)
= Jc2

(
Uk(tk)

)
< d(c2) < d(c0) < d

(
c0 −

1
k

)
.

On the other hand,

Jc2
(
Uk(tk)

)
= Jc0

(
Uk(tk)

)
+
(c2 − c0

c0

)
I2,c0

(
Uk(tk)

)
= Jc0

(
Uk(tk)

)
+
( 1
kc0

)
I2,c0

(
Uk(tk)

)
.

But note that

lim
k→∞

( 1
kc0

) ∣∣I2,c0 (Uk(tk)
)∣∣ ≤ lim

k→∞

1
k
‖Uk(tk)‖2X ≤ lim

k→∞

(1
k
C
)

= 0,

since we have that

‖Uk(tk)‖2X ∼=
1
3
I2,c0

(
Uk(tk)

)
→ d(c0).

Using these facts, we conclude that

Jc0
(
Uk(tk)

)
→ d̃ ≤ d(c0).

Then by Corollary 3.2, there exist Uc0 ∈ Gc0 such that as k →∞,

Uk(tk)→ Uc0 in X , 1
3
Ic0
(
Uk(tk)

)
→ d(c0) = d̃,

also Jc0
(
Uk(tk)

)
→ d(c0). But this contradicts the assumption of instability

inf
V ∈Gc0

‖Uk(tk)− V ‖X > ε0.

�
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