\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2015 (2015), No. 169, pp. 1--20.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2015 Texas State University - San Marcos.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2015/169\hfil
Solvable product-type system of difference equations]
{Solvable product-type system of difference equations of second order}
\author[S. Stevi\'c, M. A. Alghamdi, A. Alotaibi, E. M. Elsayed
\hfil EJDE-2015/169\hfilneg]
{Stevo Stevi\'c, Mohammed A. Alghamdi, \\ Abdullah Alotaibi, Elsayed M. Elsayed}
\address{Stevo Stevi\'c \newline
Mathematical Institute of the Serbian Academy of Sciences,
Knez Mihailova 36/III, 11000 Beograd, Serbia.\newline
Operator Theory and Applications Research Group,
Department of Mathematics, Faculty of Science,
King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia}
\email{sstevic@ptt.rs}
\address{Mohammed A. Alghamdi \newline
Operator Theory and Applications Research Group,
Department of Mathematics, Faculty of Science,
King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia}
\email{proff-malghamdi@hotmail.com}
\address{Abdullah Alotaibi \newline
Operator Theory and Applications Research Group,
Department of Mathematics, Faculty of Science,
King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia}
\email{aalotaibi@kau.edu.sa}
\address{Elsayed M. Elsayed \newline
Department of Mathematics, Faculty of Science,
King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia. \newline
Mathematics Department, Faculty of Science,
Mansoura University, Mansoura 35516, Egypt}
\email{emmelsayed@yahoo.com}
\thanks{Submitted February 7, 2015. Published June 18, 2015.}
\subjclass[2010]{39A10, 39A20}
\keywords{Solvable system of difference equations; second-order system;
\hfill\break\indent product-type system; long-term behavior}
\begin{abstract}
We show that the system of difference equations
$$
z_{n+1}=\frac{w_n^a}{z_{n-1}^b},\quad
w_{n+1}=\frac{z_n^c}{w_{n-1}^d},\quad n\in\mathbb{N}_0,
$$
where $a,b,c,d\in\mathbb{Z}$, and initial values
$z_{-1}, z_0, w_{-1}, w_0\in\mathbb{C}$,
is solvable in closed form, and present a method for finding its solutions.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{remark}[theorem]{Remark}
\newtheorem{corollary}[theorem]{Corollary}
\allowdisplaybreaks
\section{Introduction}
Difference equations and systems not closely related to
differential equations is a topic of considerable recent interest
(see, e.g., \cite{al0}-\cite{amc218-sde}, \cite{c},
\cite{gl}-\cite{pst2}, \cite{sps}-\cite{tyt2}). Since the
appearance of paper \cite{amen}, in which was explained the
formula for solutions to the difference equation in \cite{c}, the
area of solving difference equations and systems of difference
equations reattracted some attention (see, e.g.,
\cite{al0}-\cite{bl}, \cite{amc218-sde}, \cite{c}, \cite{pst2},
\cite{37264}, \cite{amc218-sys1}, \cite{amc218-dcept},
\cite{amc219-srsy}, \cite{amc-thos},
\cite{amc-218solsys}-\cite{ejqtde1}, \cite{157943}-\cite{tyt2} and
the related references therein).
On the other hand, symmetric systems of difference equations and
systems of a similar appearance, whose investigation began by
Papaschinopoulos, Schinas and their collaborators during
the mid of 1990's, is another area which has attracted some recent
attention (see, e.g., \cite{amc218-sde, ps1, ps2, ps3, ps4, sps,
ps-cana, ijpam1, amc218-sys1, amc219-srsy, amc-thos,
amc-218solsys, amc-mtsde, amc219-dussde, amc219-sdcescf,
amc219-sdeoos, amc219-ssktho, ejqtde-fib, ejqtde1, ejqtde-maxsde,
508523, jdea205, tyt2} and the related references therein).
The publication of \cite{tjm2} and \cite{jamc1} initiated a
considerable investigation of the boundedness character of some
classes of difference equations and systems containing non-integer
powers of their variables (see, e.g., \cite{bs2, jdea129, pss,
na4, jmaa376, ejqtde-maxsde} and the related references therein).
An interesting fact is that these equations and systems are
perturbations of some product-type equations and systems of
difference equations, usually obtained by using the translation
operator
\begin{equation}
\tau_a(s)=a+s,\quad a\in\mathbb{R},\label{to}
\end{equation}
or the following operator with maximum
\begin{equation}
m_a(s)=\max\{a,s\},\quad
a\in\mathbb{R}.\label{mxo}
\end{equation}
Note that operator \eqref{to} can act on
the space of complex sequences, unlike operator \eqref{mxo}, which
can act only on the space of real sequences. However, practically
there are no results which deal with the equations and systems
generated by operator \eqref{to} on the space of complex
sequences.
Properties of solutions to difference equations and systems
obtained by using operators \eqref{to} and \eqref{mxo} are
frequently closely related to the corresponding product-type ones.
For example, in \cite{ejqtde-maxsde}, it was studied the following
system of difference equations
\begin{equation}
x_{n+1}=\max\bigg\{a,\frac{y_n^p}{x_{n-1}^q}\bigg\},\quad
y_{n+1}=\max\bigg\{a,\frac{x_n^p}{y_{n-1}^q}\bigg\},\quad
n\in\mathbb{N}_0,\label{a1}
\end{equation}
with $\min\{a, p, q\}>0$, where the boundedness character of
their positive solutions was completely
characterized. Note that system \eqref{a1} can be regarded as a
perturbation of the following product-type system of difference
equations
\begin{equation}
x_{n+1}=\frac{y_n^p}{x_{n-1}^q},\quad
y_{n+1}=\frac{x_n^p}{y_{n-1}^q},\quad n\in\mathbb{N}_0.\label{a2}
\end{equation}
If only positive solutions to system \eqref{a2} are considered
then it can be solved in closed form. Generally speaking, a great
majority of papers on difference equations and systems consider
only their positive solutions. One of the reasons is that such
equations and systems can be frequently regarded as models of some
population or biological models (see, e.g., \cite{bc, 37264}). For
some other applications to difference equations, see, for example
\cite{gr, gl, rr1}. Beside this, their investigation is somewhat
simpler than in the general case. Hence, a natural problem, which
seems has been neglected so far, is to study behavior of solutions
to product-type equations and systems whose initial conditions
need not be positive numbers only. This paper is devoted to the
problem and can be regarded as a starting point in the
investigation.
The following second-order system of difference equations, which
is an extension of system \eqref{a2},
\begin{equation}
z_{n+1}=\frac{w_n^a}{z_{n-1}^b},\quad
w_{n+1}=\frac{z_n^c}{w_{n-1}^d},\quad n\in\mathbb{N}_0,\label{ms}
\end{equation}
where $a,b,c,d\in\mathbb{R}$ and initial values $z_{-1}, z_0, w_{-1},
w_0$ are positive numbers can be solved in closed form. Namely, by
using the method of induction, it can be shown
$$
z_n>0,\quad w_n>0,\quad\text{for } n\ge -1,
$$
which enables us, by taking the logarithm to the both sides of both
equations in \eqref{ms}, to transform it to a linear second-order system of
difference equations with constant coefficients, which is solvable
in closed form. If $z_{-1}, z_0, w_{-1}, w_0$ are complex numbers,
then the method cannot be used, since in the case the sequences
$(z_n)_{n\ge -1}$ and $(w_n)_{n\ge -1}$ need not be uniquely
defined.
Our aim here is to show that in some cases system \eqref{ms} can
be solved in closed form also when $z_{-1}, z_0, w_{-1}, w_0$ are
complex numbers. By the obtained formulas we will present some
results on the long-term behavior of solutions to system
\eqref{ms}.
A vector sequence $\vec z_n=(z_n^{(1)},\ldots,z_n^{(l)})$,
$n\ge -k$, is called \emph{periodic} (or \emph{eventually periodic}) with
period $p\in\mathbb{N}$ if there is $n_0\ge -k$, such that
$$
z^{(j)}_{n+p}=z^{(j)}_n,\quad\text{for } n\geq n_0,
$$
for every $j\in\{1,\ldots, l\}$.
Period $p$ is prime if there is
no $\hat p\in\mathbb{N}$, $\hat p
1$, then $z_{2n+1}\to \infty$,
as $n\to\infty$.
\item[(e)] If $w_0^a=1$, then $z_{2n+1}=1$, $n\in\mathbb{N}_0$.
\item[(f)] If $ac\ne d$, $a\ne0$, and $w_0=e^{i\theta}$,
$\theta=p\pi/q$, $q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $z_{2n+1}$ is
periodic with period $T\le 2q$.
\item[(g)] If $ac-d\le -2$ and $0<|w_0^a|<1$, then $z_{4n+1}\to 0$, as
$n\to\infty$, while if $|w_0^a|>1$, then $z_{4n+1}\to \infty$, as
$n\to\infty$.
\item[(h)] If $ac-d\le -2$ and $0<|w_0^a|<1$, then $z_{4n+3}\to
\infty$, as $n\to\infty$, while if $|w_0^a|>1$, then $z_{4n+3}\to
0$, as $n\to\infty$.
\item[(i)] If $ac-d\ge 2$ and $0<|z_0^{ac}/w_{-1}^{ad}|<1$, then
$z_{2n+2}\to 0$, as $n\to\infty$.
\item[(j)] If $ac-d\ge 2$ and $|z_0^{ac}/w_{-1}^{ad}|>1$, then
$z_{2n+2}\to \infty$, as $n\to\infty$.
\item[(k)] If $z_0^{ac}=w_{-1}^{ad}$, then $z_{2n+2}=1$, $n\in\mathbb{N}_0$.
\item[(l)] If $ac\ne d$, $a\ne0$, $c\ne0$ or $d\ne 0$, and
$z_0^{ac}=w_{-1}^{ad}e^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$ and
$p\in\mathbb{Z}$, then $z_{2n+2}$ is periodic with period $T\le 2q$.
\item[(m)] If $ac-d\le -2$ and $0<|z_0^{ac}/w_{-1}^{ad}|<1$, then
$z_{4n+2}\to 0$, as $n\to\infty$, while if
$|z_0^{ac}/w_{-1}^{ad}|>1$, then $z_{4n+2}\to \infty$, as
$n\to\infty$.
\item[(n)] If $ac-d\le -2$ and $0<|z_0^{ac}/w_{-1}^{ad}|<1$, then
$z_{4n}\to \infty$, as $n\to\infty$, while if
$|z_0^{ac}/w_{-1}^{ad}|>1$, then $z_{4n}\to 0$, as $n\to\infty$.
\item[(o)] If $ac-d\ge 2$ and $0<|z_0^c/w_{-1}^d|<1$, then $w_{2n+1}\to
0$, as $n\to\infty$.
\item[(p)] If $ac-d\ge 2$, and $|z_0^c/w_{-1}^d|>1$, then $w_{2n+1}\to
\infty$, as $n\to\infty$.
\item[(q)] If $z_0^c=w_{-1}^d$, then $w_{2n+1}=1$, $n\in\mathbb{N}_0$.
\item[(r)] If $ac\ne d$, and $z_0^c=w_{-1}^de^{i\theta}$,
$\theta=p\pi/q$, $q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $w_{2n+1}$ is
periodic with period $T\le 2q$.
\item[(s)] If $ac-d\le -2$, $0<|z_0^c/w_{-1}^d|<1$, then $w_{4n+1}\to
0$, as $n\to\infty$, while if $|z_0^c/w_{-1}^d|>1$, then
$w_{4n+1}\to \infty$, as $n\to\infty$.
\item[(t)] If $ac-d\le -2$, and $0<|z_0^c/w_{-1}^d|<1$, then
$w_{4n+3}\to \infty$, as $n\to\infty$, while if
$|z_0^c/w_{-1}^d|>1$, then $w_{4n+3}\to 0$, as $n\to\infty$.
\item[(u)] If $ac-d\ge 2$ and $0<|w_0|<1$, then $w_{2n+2}\to 0$, as
$n\to\infty$.
\item[(v)] If $ac-d\ge 2$, and $|w_0|>1$, then $w_{2n+2}\to \infty$, as
$n\to\infty$.
\item[(w)] If $w_0=1$, then $w_{2n+2}=1$, $n\in\mathbb{N}_0$.
\item[(x)] If $ac\ne d$, and $w_0=e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $w_{2n+2}$ is periodic with period
$T\le 2q$.
\item[(y)] If $ac-d\le -2$, $|w_0|>1$, then $w_{4n+2}\to 0$, as
$n\to\infty$, while if $0<|w_0|<1$, then $w_{4n+2}\to \infty$, as
$n\to\infty$.
\item[(z)] If $ac-d\le -2$, and $0<|w_0|<1$, then $w_{4n+4}\to 0$, as
$n\to\infty$, while if $|w_0|>1$, then $w_{4n+4}\to \infty$, as
$n\to\infty$.
\end{itemize}
\end{theorem}
\begin{proof} (a) Using the condition $ac=d$ in \eqref{z1b} and
\eqref{z2b} we obtain
$$
z_{2n+1}=z_{2n+2}=w_{2n+1}=w_{2n+2}=1,\quad n\in\mathbb{N},
$$
from which the statement follows.
(b) Using the condition $ac-d=1$ in \eqref{z1b} and
\eqref{z2b} we obtain
$$
z_{2n+1}=w_0^a,\quad z_{2n+2}=\frac{z_0^{ac}}{w_{-1}^{ad}},\quad
w_{2n+1}=\frac{z_0^c}{w_{-1}^d},\quad w_{2n+2}=w_0,\quad
n\in\mathbb{N}_0,
$$
which means that $(z_n,w_n)_{n\ge -1}$ is two-periodic.
Using the condition $ac-d=-1$ in \eqref{z1b} and \eqref{z2b} we obtain
$$
z_{2n+1}=w_0^{a(-1)^n},\quad
z_{2n+2}=\frac{z_0^{ac(-1)^n}}{w_{-1}^{ad(-1)^n}}, \quad
w_{2n+1}=\frac{z_0^{c(-1)^n}}{w_{-1}^{d(-1)^n}},\quad
w_{2n+2}=w_0^{(-1)^{n+1}},
$$
for $n\in\mathbb{N}_0$. From this we have
\begin{gather}
z_{4n+1}=w_0^{a},\quad z_{4n+2}=\frac{z_0^{ac}}{w_{-1}^{ad}},\quad
w_{4n+1}=\frac{z_0^{c}}{w_{-1}^{d}},\quad
w_{4n+2}=\frac1{w_0}, \\
z_{4n+3}=\frac1{w_0^a},\quad
z_{4n+4}=\frac{w_{-1}^{ad}}{z_0^{ac}},\quad
w_{4n+3}=\frac{w_{-1}^d}{z_0^c},\quad
w_{4n+4}=w_0,
\end{gather}
for $n\in\mathbb{N}_0$, which means
that $(z_n,w_n)_{n\ge -1}$ is four-periodic.
(c), (d) If $ac-d\ge 2$, then $(ac-d)^n\to+\infty$ as
$n\to+\infty$. Hence, if $0<|w_0^a|<1$, by using the formula
\begin{equation}
z_{2n+1}=w_0^{a(ac-d)^n},\quad n\in\mathbb{N}_0,\label{q1}
\end{equation}
we obtain that $z_{2n+1}\to 0$, as $n\to\infty$, while if $|w_0^a|>1$, then
we obtain that $z_{2n+1}\to \infty$, as $n\to\infty$.
(e) The statement directly follows by using the condition
$w_0^a=1$ in \eqref{q1}.
(f) Using the conditions $w_0=e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, in \eqref{q1} we have \begin{equation}
z_{2n+1}=e^{i\pi \frac{pa(ac-d)^n}q},\quad
n\in\mathbb{N}_0.\label{q3}
\end{equation}
Now note that among the numbers
$$
pa,\quad pa(ac-d),\quad pa(ac-d)^2,\ldots, pa(ac-d)^{2q},
$$
there are two which have the same reminder by dividing by $2q$,
say, $pa(ac-d)^i$ and $pa(ac-d)^j$, $0\le i1$, then $z_{2n+1}\to
\infty$, as $n\to\infty$.
\item[(e)] If $w_0^a=z_{-1}^b$, then $z_{2n+1}=1$, $n\in\mathbb{N}_0$.
\item[(f)] If $ac\ne b$ and $w_0^a=z_{-1}^be^{i\theta}$,
$\theta=p\pi/q$, $q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $z_{2n+1}$ is
periodic with period $T\le 2q$.
\item[(g)] If $ac-b\le -2$ and $0<|w_0^a/z_{-1}^b|<1$, then
$z_{4n+1}\to 0$, as $n\to\infty$, while if $|w_0^a/z_{-1}^b|>1$,
then $z_{4n+1}\to \infty$, as $n\to\infty$.
\item[(h)] If $ac-b\le -2$ and $0<|w_0^a/z_{-1}^b|<1$, then
$z_{4n+3}\to \infty$, as $n\to\infty$, while if
$|w_0^a/z_{-1}^b|>1$, then $z_{4n+3}\to 0$, as $n\to\infty$.
\item[(i)] If $ac-b\ge 2$ and $0<|z_0|<1$, then $z_{2n+2}\to 0$, as
$n\to\infty$.
\item[(j)] If $ac-b\ge 2$ and $|z_0|>1$, then $z_{2n+2}\to \infty$, as
$n\to\infty$.
\item[(k)] If $ac=b$ or $z_0=1$, then $z_{2n+2}=1$, $n\in\mathbb{N}_0$.
\item[(l)] If $ac\ne b$ and $z_0=e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $z_{2n+2}$ is periodic with period
$T\le 2q$.
\item[(m)] If $ac-b\le -2$ and $0<|z_0|<1$, then $z_{4n+2}\to \infty$,
as $n\to\infty$, while if $|z_0|>1$, then $z_{4n+2}\to 0$, as
$n\to\infty$.
\item[(n)] If $ac-b\le -2$ and $0<|z_0|<1$, then $z_{4n}\to 0$, as
$n\to\infty$, while if $|z_0|>1$, then $z_{4n}\to \infty$, as
$n\to\infty$.
\item[(o)] If $ac-b\ge 2$ and $0<|z_0^c|<1$, then $w_{2n+1}\to 0$, as
$n\to\infty$.
\item[(p)] If $ac-b\ge 2$ and $|z_0^c|>1$, then $w_{2n+1}\to \infty$,
as $n\to\infty$.
\item[(q)] If $z_0^c=1$, then $w_{2n+1}=1$, $n\in\mathbb{N}_0$.
\item[(r)] If $ac\ne b$, and $z_0^c=e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $w_{2n+1}$ is periodic with period
$T\le 2q$.
\item[(s)] If $ac-b\le -2$ and $0<|z_0^c|<1$, then $w_{4n+1}\to 0$, as
$n\to\infty$, while if $|z_0^c|>1$, then $w_{4n+1}\to \infty$, as
$n\to\infty$.
\item[(t)] If $ac-b\le -2$ and $0<|z_0^c|<1$, then $w_{4n+3}\to
\infty$, as $n\to\infty$, while if $|z_0^c|>1$, then $w_{4n+3}\to
0$, as $n\to\infty$.
\item[(u)] If $ac-b\ge 2$ and $0<|w_0^{ac}/z_{-1}^{bc}|<1$, then
$w_{2n+2}\to 0$, as $n\to\infty$.
\item[(v)] If $ac-b\ge 2$ and $|w_0^{ac}/z_{-1}^{bc}|>1$, then
$w_{2n+2}\to \infty$, as $n\to\infty$.
\item[(w)] If $w_0^{ac}=z_{-1}^{bc}$, then $w_{2n+2}=1$, $n\in\mathbb{N}_0$.
\item[(x)] If $ac\ne b$ and $w_0^{ac}=z_{-1}^{bc}e^{i\theta}$,
$\theta=p\pi/q$, $q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $w_{2n+2}$ is
periodic with period $T\le 2q$.
\item[(y)] If $ac-b\le -2$ and $0<|w_0^{ac}/z_{-1}^{bc}|<1$, then
$w_{4n+2}\to 0$, as $n\to\infty$, while if
$|w_0^{ac}/z_{-1}^{bc}|>1$, then $w_{4n+2}\to \infty$, as
$n\to\infty$.
\item[(z)] If $ac-b\le -2$ and $0<|w_0^{ac}/z_{-1}^{bc}|<1$, then
$w_{4n+4}\to \infty$, as $n\to\infty$, while if
$|w_0^{ac}/z_{-1}^{bc}|>1$, then $w_{4n+4}\to 0$, as $n\to\infty$.
\end{itemize}
\end{theorem}
\begin{proof}
(a) Using the condition $ac=b$ in \eqref{z1d} and
\eqref{z2d} we obtain
$$z_{2n+1}=z_{2n+2}=w_{2n+1}=w_{2n+2}=1,\quad
n\in\mathbb{N},$$ from which the statement follows.
(b) Using the condition $ac-b=1$ in \eqref{z1d} and
\eqref{z2d} we obtain
$$
z_{2n+1}=\frac{w_0^a}{z_{-1}^b},\quad z_{2n+2}=z_0,\quad
w_{2n+1}=z_0^c,\quad w_{2n+2}=\frac{w_0^{ac}}{z_{-1}^{bc}},\quad
n\in\mathbb{N}_0,
$$
which means that $(z_n,w_n)_{n\ge -1}$ is
two-periodic.
Using the condition $ac-b=-1$ in \eqref{z1d} and \eqref{z2d} we obtain
$$
z_{2n+1}=\frac{w_0^{a(-1)^n}}{z_{-1}^{b(-1)^n}},\quad
z_{2n+2}=z_0^{(-1)^{n+1}},\quad
w_{2n+1}=z_0^{c(-1)^n},\quad
w_{2n+2}=\frac{w_0^{ac(-1)^n}}{z_{-1}^{bc(-1)^n}},
$$
for $n\in\mathbb{N}_0$. From this we have
\begin{gather}
z_{4n+1}=\frac{w_0^a}{z_{-1}^b},\quad z_{4n+2}=\frac1{z_0},\quad
w_{4n+1}=z_0^c,\quad
w_{4n+2}=\frac{w_0^{ac}}{z_{-1}^{bc}} \\
z_{4n+3}=\frac{z_{-1}^b}{w_0^a},\quad z_{4n+4}=z_0,\quad
w_{4n+3}=\frac1{z_0^c},\quad
w_{4n+4}=\frac{z_{-1}^{bc}}{w_0^{ac}},
\end{gather}
for $n\in\mathbb{N}_0$, which means that $(z_n,w_n)_{n\ge -1}$ is
four-periodic.
(c), (d) If $ac-b\ge 2$, then $(ac-b)^n\to+\infty$ as
$n\to+\infty$. Hence, if $0<|w_0^a/z_{-1}^b|<1$, by using the
formula
\begin{equation}
z_{2n+1}=\Big(\frac{w_0^a}{z_{-1}^b}\Big)^{(ac-b)^n},\quad
n\in\mathbb{N}_0,\label{q19}
\end{equation}
we obtain that $z_{2n+1}\to 0$, as
$n\to\infty$, while if $|w_0^a/z_{-1}^b|>1$, then we obtain that
$z_{2n+1}\to 0$, as $n\to\infty$.
(e) The statement directly follows by using the condition
$w_0^a=z_{-1}^b$ in \eqref{q19}.
(f) Using the conditions $w_0=e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, in \eqref{q19} we have \begin{equation}
z_{2n+1}=e^{i\pi \frac{p(ac-d)^n}q},\quad
n\in\mathbb{N}_0.\label{q20}\end{equation} The rest of the proof is similar to the
one of statement (f) in Theorem \ref{thm2}, so is omitted.
(g), (h) Since $ac-b\le -2$ from \eqref{q19} we have
\begin{equation}
z_{4n+1}=\Big(\frac{w_0^a}{z_{-1}^b}\Big)^{(ac-b)^{2n}},\quad
z_{4n+3}=\Big(\frac{w_0^a}{z_{-1}^b}\Big)^{-|ac-b|^{2n+1}},\quad
n\in\mathbb{N}_0.\label{q21}
\end{equation}
From \eqref{q21} and the posed
conditions these two statements easily follow.
(i)-(l) The proofs are similar to those ones of
(c)-(f), when $w_0^a/z_{-1}^b$ is replaced by $z_0$, and
$z_{2n+1}$ is replaced by $z_{2n+2}$. Hence, we omit the detail.
(m), (n) From \eqref{z1d} and since $ac-b\le -2$, we have
\begin{equation}
z_{4n+2}=z_0^{-|ac-b|^{2n+1}},\quad
z_{4n+4}=z_0^{(ac-b)^{2n+2}},\label{q22}
\end{equation}
for $n\in\mathbb{N}_0$. From \eqref{q22} and the posed conditions these
two statements easily follow.
(o)-(r) Using the formula
\begin{equation}
w_{2n+1}=(z_0^c)^{(ac-b)^n},\quad n\in\mathbb{N}_0,\label{q23}
\end{equation}
statements (o)-(q) easily follow, while (r) is proved
similar to (f).
(s), (t) From \eqref{q23} and since $ac-d\le -2$, it follows
that
\begin{equation}
w_{4n+1}=(z_0^c)^{(ac-b)^{2n}},\quad
w_{4n+3}=(z_0^c)^{-|ac-b|^{2n+1}},\quad n\in\mathbb{N}_0.\label{q25}
\end{equation}
Using the formulas in \eqref{q25} these two statements easily
follow.
(u)-(x) Using the formula
\begin{equation}
w_{2n+2}=\Big(\frac{w_0^{ac}}{z_{-1}^{bc}}\Big)^{(ac-b)^n},\quad
n\in\mathbb{N}_0,\label{q26}
\end{equation}
statements (u)-(w) easily follow,
while (x) is proved similar to (f).
(y), (z) From \eqref{q26} and since $ac-b\le -2$, it follows
that
\begin{equation}
w_{4n+2}=\Big(\frac{w_0^{ac}}{z_{-1}^{bc}}\Big)^{(ac-b)^{2n}},\quad
w_{4n+4}=\Big(\frac{w_0^{ac}}{z_{-1}^{bc}}\Big)^{-|ac-b|^{2n+1}},\quad
n\in\mathbb{N}_0.\label{q27}
\end{equation}
Using the formulas in \eqref{q27} these
two statements easily follow.
\end{proof}
\begin{theorem} \label{thm4}
Consider system \eqref{ms}. Assume
that $a,b,c,d\in\mathbb{Z}$, $(ac-b-d)^2=4bd$ and $ac-b-d=2$, and initial
values $z_{-1}, z_0, w_{-1}, w_0\in\mathbb{C}\setminus\{0\}$. Then the
following statements hold:
\begin{itemize}
\item[(a)] If $0<|w_0^a/z_{-1}^{b(ac-b-1)}|<1$, then $z_{2n+1}\to 0$,
as $n\to\infty$.
\item[(b)] If $|w_0^a/z_{-1}^{b(ac-b-1)}|>1$, then $z_{2n+1}\to
\infty$, as $n\to\infty$.
\item[(c)] If $w_0^a=z_{-1}^{b(ac-b-1)}$, then
$z_{2n+1}=w_0^a/z_{-1}^b$, as $n\to\infty$.
\item[(d)] If $w_0^a=z_{-1}^{b(ac-b-1)}e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $z_{2n+1}$ is periodic with period
$T\le 2q$.
\item[(e)] If $0<|z_0^{ac-b-1}/w_{-1}^{ad}|<1$, then $z_{2n+2}\to 0$,
as $n\to\infty$.
\item[(f)] If $|z_0^{ac-b-1}/w_{-1}^{ad}|>1$, then $z_{2n+2}\to
\infty$, as $n\to\infty$.
\item[(g)] If $z_0^{ac-b-1}=w_{-1}^{ad}$, then
$z_{2n+2}=z_0^{ac-b}/w_{-1}^{ad}$, as $n\to\infty$.
\item[(h)] If $z_0^{ac-b-1}=w_{-1}^{ad}e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $z_{2n+2}$ is periodic with period
$T\le 2q$.
\item[(i)] If $0<|z_0^c/w_{-1}^{d(ac-d-1)}|<1$, then $w_{2n+1}\to 0$,
as $n\to\infty$.
\item[(j)] If $|z_0^c/w_{-1}^{d(ac-d-1)}|>1$, then $w_{2n+1}\to
\infty$, as $n\to\infty$.
\item[(k)] If $z_0^c=w_{-1}^{d(ac-d-1)}$, then
$w_{2n+1}=z_0^c/w_{-1}^d$, as $n\to\infty$.
\item[(l)] If $z_0^c=w_{-1}^{d(ac-d-1)}e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $w_{2n+1}$ is periodic with period
$T\le 2q$.
\item[(m)] If $0<|w_0^{ac-d-1}/z_{-1}^{bc}|<1$, then $w_{2n+2}\to 0$,
as $n\to\infty$.
\item[(n)] If $|w_0^{ac-d-1}/z_{-1}^{bc}|>1$, then $w_{2n+2}\to
\infty$, as $n\to\infty$.
\item[(o)] If $w_0^{ac-d-1}=z_{-1}^{bc}$, then
$w_{2n+2}=w_0^{ac-d}/z_{-1}^{bc}$, as $n\to\infty$.
\item[(p)] If $w_0^{ac-d-1}=z_{-1}^{bc}e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $z_{2n+2}$ is periodic with period
$T\le 2q$.
\end{itemize}
\end{theorem}
\begin{proof}
First note that in this case the characteristic roots
of polynomial \eqref{q28} are $\lambda_1=\lambda_2=1$. Using it into
\eqref{b5}-\eqref{b8} we obtain the following formulas
\begin{gather*}
z_{2n+1}=\frac{w_0^a}{z_{-1}^b}\Big(\frac{w_0^a}{z_{-1}^{b(ac-b-1)}}\Big)^n,\quad
z_{2n+2}=\frac{z_0^{ac-b}}{w_{-1}^{ad}}\Big(\frac{z_0^{ac-b-1}}{w_{-1}^{ad}}\Big)^n,\\
w_{2n+1}=\frac{z_0^c}{w_{-1}^d}\Big(\frac{z_0^c}{w_{-1}^{d(ac-d-1)}}\Big)^n,\quad
w_{2n+2}=\frac{w_0^{ac-d}}{z_{-1}^{bc}}\Big(\frac{w_0^{ac-d-1}}{z_{-1}^{bc}}\Big)^n,
\end{gather*}
for $n\in\mathbb{N}_0$, from which all the statements of the theorem
easily follow.
\end{proof}
\begin{theorem} \label{thm5}
Consider system \eqref{ms}. Assume
that $a,b,c,d\in\mathbb{Z}$, $(ac-b-d)^2=4bd$ and $ac-b-d=-2$, and
initial values $z_{-1}, z_0, w_{-1}, w_0\in\mathbb{C}\setminus\{0\}$.
Then the following statements hold:
\begin{itemize}
\item[(a)] If $0<|w_0^az_{-1}^{b(ac-b+1)}|<1$, then $z_{4n+1}\to 0$ and
$z_{4n+3}\to \infty$, as $n\to\infty$.
\item[(b)] If $|w_0^az_{-1}^{b(ac-b+1)}|>1$, then $z_{4n+1}\to \infty$
and $z_{4n+3}\to 0$, as $n\to\infty$.
\item[(c)] If $w_0^az_{-1}^{b(ac-b+1)}=1$, then
$z_{4n+1}=w_0^a/z_{-1}^b=1/z_{4n+3}$, as $n\in\mathbb{N}_0$.
\item[(d)] If $w_0^az_{-1}^{b(ac-b+1)}=e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $z_{4n+1}$ and $z_{4n+3}$ are
periodic with period $T\le 2q$.
\item[(e)] If $0<|z_0^{ac-b+1}/w_{-1}^{ad}|<1$, then $z_{4n+2}\to 0$
and $z_{4n+4}\to \infty$, as $n\to\infty$.
\item[(f)] If $|z_0^{ac-b+1}/w_{-1}^{ad}|>1$, then $z_{4n+2}\to \infty$
and $z_{4n+4}\to 0$, as $n\to\infty$.
\item[(g)] If $z_0^{ac-b+1}=w_{-1}^{ad}$, then
$z_{4n+2}=z_0^{ac-b}/w_{-1}^{ad}=1/z_{4n+4}$, as $n\in\mathbb{N}_0$.
\item[(h)] If $z_0^{ac-b+1}=w_{-1}^{ad}e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $z_{4n+2}$ and $z_{4n+4}$ are
periodic with period $T\le 2q$.
\item[(i)] If $0<|z_0^cw_{-1}^{d(ac-d+1)}|<1$, then $w_{4n+1}\to 0$ and
$w_{4n+3}\to \infty$, as $n\to\infty$.
\item[(j)] If $|z_0^cw_{-1}^{d(ac-d+1)}|>1$, then $w_{4n+1}\to \infty$
and $w_{4n+3}\to 0$, as $n\to\infty$.
\item[(k)] If $z_0^cw_{-1}^{d(ac-d+1)}=1$, then
$w_{4n+1}=z_0^{c}/w_{-1}^{d}=1/w_{4n+3}$, as $n\in\mathbb{N}_0$.
\item[(l)] If $z_0^cw_{-1}^{d(ac-d+1)}=e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $w_{4n+1}$ and $w_{4n+3}$ are
periodic with period $T\le 2q$.
\item[(m)] If $0<|w_0^{ac-d+1}/z_{-1}^{bc}|<1$, then $w_{4n+2}\to 0$
and $w_{4n+4}\to\infty$, as $n\to\infty$.
\item[(n)] If $|w_0^{ac-d+1}/z_{-1}^{bc}|>1$, then $w_{4n+2}\to \infty$
and $w_{4n+4}\to 0$, as $n\to\infty$.
\item[(o)] If $w_0^{ac-d+1}=z_{-1}^{bc}$, then
$w_{4n+2}=w_0^{ac-d}/z_{-1}^{bc}=1/w_{4n+4}$, as $n\in\mathbb{N}_0$.
\item[(p)] If $w_0^{ac-d+1}=z_{-1}^{bc}e^{i\theta}$, $\theta=p\pi/q$,
$q\in\mathbb{N}$ and $p\in\mathbb{Z}$, then $w_{4n+2}$ and $w_{4n+4}$ are
periodic with period $T\le 2q$.
\end{itemize}
\end{theorem}
\begin{proof}
First note that in this case the characteristic roots
of polynomial \eqref{q28} are $\lambda_1=\lambda_2=-1$. Using it into
\eqref{b5}-\eqref{b8} we obtain the following formulas
\begin{gather*}
z_{2n+1}=\frac{w_0^{a(-1)^n}}{z_{-1}^{b(-1)^n}}
\Big(\frac{w_0^a}{z_{-1}^{-b(ac-b+1)}}\Big)^{n(-1)^n},\quad
z_{2n+2}=\frac{z_0^{(ac-b)(-1)^n}}{w_{-1}^{ad(-1)^n}}
\Big(\frac{z_0^{ac-b+1}}{w_{-1}^{ad}}\Big)^{n(-1)^n},\\
w_{2n+1}=\frac{z_0^{c(-1)^n}}{w_{-1}^{d(-1)^n}}
\Big(\frac{z_0^c}{w_{-1}^{-d(ac-d+1)}}\Big)^{n(-1)^n},\quad
w_{2n+2}=\frac{w_0^{(ac-d)(-1)^n}}{z_{-1}^{bc(-1)^n}}
\Big(\frac{w_0^{ac-d+1}}{z_{-1}^{bc}}\Big)^{n(-1)^n}\!,
\end{gather*}
for $n\in\mathbb{N}_0$, from which it follows that
\begin{gather}
z_{4n+1}=\frac{w_0^a}{z_{-1}^b}\Big(\frac{w_0^a}{z_{-1}^{-b(ac-b+1)}}\Big)^{2n},\quad
z_{4n+3}=\frac{z_{-1}^b}{w_0^a}\Big(\frac{z_{-1}^{-b(ac-b+1)}}{w_0^a}\Big)^{2n+1},
\label{q29a}\\
z_{4n+2}=\frac{z_0^{ac-b}}{w_{-1}^{ad}}\Big(\frac{z_0^{ac-b+1}}{w_{-1}^{ad}}
\Big)^{2n},\quad
z_{4n+4}=\frac{w_{-1}^{ad}}{z_0^{ac-b}}\Big(\frac{w_{-1}^{ad}}{z_0^{ac-b+1}}
\Big)^{2n+1},\label{q30a}\\
w_{4n+1}=\frac{z_0^{c}}{w_{-1}^{d}}\Big(\frac{z_0^c}{w_{-1}^{-d(ac-d+1)}}
\Big)^{2n},\quad
w_{4n+3}=\frac{w_{-1}^{d}}{z_0^{c}}\Big(\frac{w_{-1}^{-d(ac-d+1)}}{z_0^c}
\Big)^{2n+1},\label{q31a}\\
w_{4n+2}=\frac{w_0^{ac-d}}{z_{-1}^{bc}}\Big(\frac{w_0^{ac-d+1}}{z_{-1}^{bc}}
\Big)^{2n},\quad
w_{4n+4}=\frac{z_{-1}^{bc}}{w_0^{ac-d}}\Big(\frac{z_{-1}^{bc}}{w_0^{ac-d+1}}
\Big)^{2n+1},\label{q32a}
\end{gather}
for $n\in\mathbb{N}_0$. Using formulas \eqref{q29a}-\eqref{q32a} all the
statements of the theorem easily follow.
\end{proof}
\begin{theorem} \label{thm6}
Consider system \eqref{ms}. Assume
that $a,b,c,d\in\mathbb{Z}$, $bd\ne 0$, $(ac-b-d)^2=4bd$ and $ac-b-d>2$,
and initial values $z_{-1}, z_0, w_{-1}, w_0\in\mathbb{C}\setminus\{0\}$.
Then the following statements hold:
\begin{itemize}
\item[(a)] If $0<|w_0^{a\lambda_1}/z_{-1}^{b(ac-b-\lambda_1)}|<1$, then
$z_{2n+1}\to 0$, as $n\to\infty$.
\item[(b)] If $|w_0^{a\lambda_1}/z_{-1}^{b(ac-b-\lambda_1)}|>1$, then
$z_{2n+1}\to \infty$, as $n\to\infty$.
\item[(c)] If $w_0^{a\lambda_1}=z_{-1}^{b(ac-b-\lambda_1)}$ and
$0<|w_0^a/z_{-1}^b|<1$, then $z_{2n+1}\to 0$, as $n\to\infty$.
\item[(d)] If $w_0^{a\lambda_1}=z_{-1}^{b(ac-b-\lambda_1)}$ and
$|w_0^a/z_{-1}^b|>1$, then $z_{2n+1}\to \infty$, as $n\to\infty$.
\item[(e)] If $w_0^{a\lambda_1}=z_{-1}^{b(ac-b-\lambda_1)}$ and $w_0^a=z_{-1}^b$,
then $z_{2n+1}=1$, as $n\in\mathbb{N}_0$.
\item[(f)] If $w_0^{a\lambda_1}=z_{-1}^{b(ac-b-\lambda_1)}$ and
$w_0^a=z_{-1}^be^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$ and
$p\in\mathbb{Z}$, then $z_{2n+1}$ is periodic with period $T\le 2q$.
\item[(g)] If $0<|z_0^{ac-b-\lambda_1}/w_{-1}^{ad}|<1$, then $z_{2n+2}\to
0$, as $n\to\infty$.
\item[(h)] If $|z_0^{ac-b-\lambda_1}/w_{-1}^{ad}|>1$, then $z_{2n+2}\to
\infty$, as $n\to\infty$.
\item[(i)] If $z_0^{ac-b-\lambda_1}=w_{-1}^{ad}$ and
$0<|z_0^{ac-b}/w_{-1}^{ad}|<1$, then $z_{2n+2}\to 0$, as
$n\to\infty$.
\item[(j)] If $z_0^{ac-b-\lambda_1}=w_{-1}^{ad}$ and
$|z_0^{ac-b}/w_{-1}^{ad}|>1$, then $z_{2n+2}\to \infty$, as
$n\to\infty$.
\item[(k)] If $z_0^{ac-b-\lambda_1}=w_{-1}^{ad}$ and
$z_0^{ac-b}=w_{-1}^{ad}$, then $z_{2n+2}=1$, as $n\in\mathbb{N}_0$.
\item[(l)] If $z_0^{ac-b-\lambda_1}=w_{-1}^{ad}$ and
$z_0^{ac-b}=w_{-1}^{ad}e^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$
and $p\in\mathbb{Z}$, then $z_{2n+2}$ is periodic with period $T\le 2q$.
\item[(m)] If $0<|z_0^{c\lambda_1}/w_{-1}^{d(ac-d-\lambda_1)}|<1$, then
$w_{2n+1}\to 0$, as $n\to\infty$.
\item[(n)] If $|z_0^{c\lambda_1}/w_{-1}^{d(ac-d-\lambda_1)}|>1$, then
$w_{2n+1}\to \infty$, as $n\to\infty$.
\item[(o)] If $z_0^{c\lambda_1}=w_{-1}^{d(ac-d-\lambda_1)}$ and
$0<|z_0^c/w_{-1}^d|<1$, then $w_{2n+1}\to 0$, as $n\to\infty$.
\item[(p)] If $z_0^{c\lambda_1}=w_{-1}^{d(ac-d-\lambda_1)}$ and
$|z_0^c/w_{-1}^d|>1$, then $w_{2n+1}\to \infty$, as $n\to\infty$.
\item[(q)] If $z_0^{c\lambda_1}=w_{-1}^{d(ac-d-\lambda_1)}$ and $z_0^c=w_{-1}^d$,
then $w_{2n+1}=1$, as $n\in\mathbb{N}_0$.
\item[(r)] If $z_0^{c\lambda_1}=w_{-1}^{d(ac-d-\lambda_1)}$ and
$z_0^c=w_{-1}^de^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$ and
$p\in\mathbb{Z}$, then $w_{2n+1}$ is periodic with period $T\le 2q$.
\item[(s)] If $0<|w_0^{ac-d-\lambda_1}/z_{-1}^{bc}|<1$, then $w_{2n+2}\to
0$, as $n\to\infty$.
\item[(t)] If $|w_0^{ac-d-\lambda_1}/z_{-1}^{bc}|>1$, then $w_{2n+2}\to
\infty$, as $n\to\infty$.
\item[(u)] If $w_0^{ac-d-\lambda_1}=z_{-1}^{bc}$ and
$0<|w_0^{ac-d}/z_{-1}^{bc}|<1$, then $w_{2n+2}\to 0$, as
$n\to\infty$.
\item[(v)] If $w_0^{ac-d-\lambda_1}=z_{-1}^{bc}$ and
$|w_0^{ac-d}/z_{-1}^{bc}|>1$, then $w_{2n+2}\to \infty$, as
$n\to\infty$.
\item[(w)] If $w_0^{ac-d-\lambda_1}=z_{-1}^{bc}$ and
$w_0^{ac-d}=z_{-1}^{bc}$, then $w_{2n+2}=1$, as $n\in\mathbb{N}_0$.
\item[(x)] If $w_0^{ac-d-\lambda_1}=z_{-1}^{bc}$ and
$w_0^{ac-d}=z_{-1}^{bc}e^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$
and $p\in\mathbb{Z}$, then $w_{2n+2}$ is periodic with period $T\le 2q$.
\end{itemize}
\end{theorem}
\begin{proof}
First note that in this case the characteristic roots
of polynomial \eqref{q28} are such that
$$
\lambda_1=\lambda_2=\sqrt{|bd|}>1.
$$
Note that they are natural numbers,
since $2\sqrt{|bd|}=|ac-b-d|\in\mathbb{N}$. Equations
\eqref{b5}-\eqref{b8} can be written in the form
\begin{gather}
z_{2n+1}=\Big(\frac{w_0^a}{z_{-1}^b}\Big)^{\lambda_1^n} \Big(\frac{w_0^{a\lambda_1}}{z_{-1}^{b(ac-b-\lambda_1)}}\Big)^{n\lambda_1^{n-1}},\label{b5a}\\
z_{2n+2}=\Big(\frac{z_0^{ac-b}}{w_{-1}^{ad}}\Big)^{\lambda_1^n}
\Big(\frac{z_0^{ac-b-\lambda_1}}{w_{-1}^{ad}}\Big)^{n\lambda_1^n},\label{b6a}\\
w_{2n+1}=\Big(\frac{z_0^c}{w_{-1}^d}\Big)^{\lambda_1^n}
\Big(\frac{z_0^{c\lambda_1}}{w_{-1}^{d(ac-d-\lambda_1)}}\Big)^{n\lambda_1^{n-1}},\label{b7a}\\
w_{2n+2}=\Big(\frac{w_0^{ac-d}}{z_{-1}^{bc}}\Big)^{\lambda_1^n}
\Big(\frac{w_0^{ac-d-\lambda_1}}{z_{-1}^{bc}}\Big)^{n\lambda_1^n},\label{b8a}
\end{gather}
for $n\in\mathbb{N}_0$. Using formulas \eqref{b5a}-\eqref{b8a} all the
statement easily follow.
\end{proof}
\begin{theorem} \label{thm7}
Consider system \eqref{ms}. Assume
that $a,b,c,d\in\mathbb{Z}$, $bd\ne 0$, $(ac-b-d)^2=4bd$ and $ac-b-d<-2$,
and initial values $z_{-1}, z_0, w_{-1}, w_0\in\mathbb{C}\setminus\{0\}$.
Then the following statements hold:
\begin{itemize}
\item[(a)] If $0<|w_0^{a\lambda_1}/z_{-1}^{b(ac-b-\lambda_1)}|<1$, then
$z_{4n+1}\to \infty$ and $z_{4n+3}\to 0$, as $n\to\infty$.
\item[(b)] If $|w_0^{a\lambda_1}/z_{-1}^{b(ac-b-\lambda_1)}|>1$, then
$z_{4n+1}\to 0$ and $z_{4n+3}\to \infty$, as $n\to\infty$.
\item[(c)] If $w_0^{a\lambda_1}=z_{-1}^{b(ac-b-\lambda_1)}$ and
$0<|w_0^a/z_{-1}^b|<1$, $z_{4n+1}\to 0$ and $z_{4n+3}\to \infty$,
as $n\to\infty$.
\item[(d)] If $w_0^{a\lambda_1}=z_{-1}^{b(ac-b-\lambda_1)}$ and
$|w_0^a/z_{-1}^b|>1$, $z_{4n+1}\to \infty$ and $z_{4n+3}\to 0$, as
$n\to\infty$.
\item[(e)] If $w_0^{a\lambda_1}=z_{-1}^{b(ac-b-\lambda_1)}$ and $w_0^a=z_{-1}^b$,
then $z_{2n+1}=1$, as $n\in\mathbb{N}_0$.
\item[(f)] If $w_0^{a\lambda_1}=z_{-1}^{b(ac-b-\lambda_1)}$ and
$w_0^a=z_{-1}^be^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$ and
$p\in\mathbb{Z}$, then $z_{4n+1}$ and $z_{4n+3}$ are periodic with period
$T\le 2q$.
\item[(g)] If $0<|z_0^{ac-b-\lambda_1}/w_{-1}^{ad}|<1$, then $z_{4n+2}\to 0$
and $z_{4n+4}\to \infty$, as $n\to\infty$.
\item[(h)] If $|z_0^{ac-b-\lambda_1}/w_{-1}^{ad}|>1$, then $z_{4n+2}\to
\infty$ and $z_{4n+4}\to 0$, as $n\to\infty$.
\item[(i)] If $z_0^{ac-b-\lambda_1}=w_{-1}^{ad}$ and
$0<|z_0^{ac-b}/w_{-1}^{ad}|<1$, then $z_{4n+2}\to 0$ and
$z_{4n+4}\to \infty$, as $n\to\infty$.
\item[(j)] If $z_0^{ac-b-\lambda_1}=w_{-1}^{ad}$ and
$|z_0^{ac-b}/w_{-1}^{ad}|>1$, then $z_{4n+2}\to \infty$ and
$z_{4n+4}\to 0$, as $n\to\infty$.
\item[(k)] If $z_0^{ac-b-\lambda_1}=w_{-1}^{ad}$ and
$z_0^{ac-b}=w_{-1}^{ad}$, then $z_{2n+2}=1$, as $n\in\mathbb{N}_0$.
\item[(l)] If $z_0^{ac-b-\lambda_1}=w_{-1}^{ad}$ and
$z_0^{ac-b}=w_{-1}^{ad}e^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$
and $p\in\mathbb{Z}$, then $z_{4n+2}$ and $z_{4n+4}$ are periodic with
period $T\le 2q$.
\item[(m)] If $0<|z_0^{c\lambda_1}/w_{-1}^{d(ac-d-\lambda_1)}|<1$, $w_{4n+1}\to
\infty$ and $w_{4n+3}\to 0$, as $n\to\infty$.
\item[(n)] If $|z_0^{c\lambda_1}/w_{-1}^{d(ac-d-\lambda_1)}|>1$, $w_{4n+1}\to 0$
and $w_{4n+3}\to \infty$, as $n\to\infty$.
\item[(o)] If $z_0^{c\lambda_1}=w_{-1}^{d(ac-d-\lambda_1)}$ and
$0<|z_0^c/w_{-1}^d|<1$, then $w_{4n+1}\to 0$ and $w_{4n+3}\to
\infty$, as $n\to\infty$.
\item[(p)] If $z_0^{c\lambda_1}=w_{-1}^{d(ac-d-\lambda_1)}$ and
$|z_0^c/w_{-1}^d|>1$, $w_{4n+1}\to \infty$ and $w_{4n+3}\to 0$, as
$n\to\infty$.
\item[(q)] If $z_0^{c\lambda_1}=w_{-1}^{d(ac-d-\lambda_1)}$ and $z_0^c=w_{-1}^d$,
then $w_{2n+1}=1$, as $n\in\mathbb{N}_0$.
\item[(r)] If $z_0^{c\lambda_1}=w_{-1}^{d(ac-d-\lambda_1)}$ and
$z_0^c=w_{-1}^de^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$ and
$p\in\mathbb{Z}$, then $w_{4n+1}$ and $w_{4n+3}$ are periodic with
period $T\le 2q$.
\item[(s)] If $0<|w_0^{ac-d-\lambda_1}/z_{-1}^{bc}|<1$, then $w_{4n+2}\to 0$
and $w_{4n+4}\to\infty$, as $n\to\infty$.
\item[(t)] If $|w_0^{ac-d-\lambda_1}/z_{-1}^{bc}|>1$, then $w_{4n+2}\to
\infty$ and $w_{4n+4}\to 0$, as $n\to\infty$.
\item[(u)] If $w_0^{ac-d-\lambda_1}=z_{-1}^{bc}$ and
$0<|w_0^{ac-d}/z_{-1}^{bc}|<1$, then $w_{4n+2}\to 0$ and
$w_{4n+4}\to\infty$, as $n\to\infty$.
\item[(v)] If $w_0^{ac-d-\lambda_1}=z_{-1}^{bc}$ and
$|w_0^{ac-d}/z_{-1}^{bc}|>1$, then $w_{4n+2}\to \infty$ and
$w_{4n+4}\to 0$, as $n\to\infty$.
\item[(w)] If $w_0^{ac-d-\lambda_1}=z_{-1}^{bc}$ and
$w_0^{ac-d}=z_{-1}^{bc}$, then $w_{2n+2}=1$, as $n\in\mathbb{N}_0$.
\item[(x)] If $w_0^{ac-d-\lambda_1}=z_{-1}^{bc}$ and
$w_0^{ac-d}=z_{-1}^{bc}e^{i\theta}$, $\theta=p\pi/q$, $q\in\mathbb{N}$
and $p\in\mathbb{Z}$, then $w_{4n+2}$ and $w_{4n+4}$ are periodic with
period $T\le 2q$.
\end{itemize}
\end{theorem}
\begin{proof} First note that in this case the characteristic roots
of polynomial \eqref{q28} are such that
$$
\lambda_1=\lambda_2=-\sqrt{|bd|}<1.
$$
Note that they are negative integers,
since $2\sqrt{|bd|}=|ac-b-d|\in\mathbb{N}$. Equations
\eqref{b5a}-\eqref{b8a} can be written in the form
\begin{gather}
z_{2n+1}=\Big(\frac{w_0^a}{z_{-1}^b}\Big)^{(-|\lambda_1|)^n}
\Big(\frac{w_0^{a\lambda_1}}{z_{-1}^{b(ac-b-\lambda_1)}}\Big)^{n(-|\lambda_1|)^{n-1}},\label{b5b}\\
z_{2n+2}=\Big(\frac{z_0^{ac-b}}{w_{-1}^{ad}}\Big)^{(-|\lambda_1|)^n}
\Big(\frac{z_0^{ac-b-\lambda_1}}{w_{-1}^{ad}}\Big)^{n(-|\lambda_1|)^n},\label{b6b}\\
w_{2n+1}=\Big(\frac{z_0^c}{w_{-1}^d}\Big)^{(-|\lambda_1|)^n}
\Big(\frac{z_0^{c\lambda_1}}{w_{-1}^{d(ac-d-\lambda_1)}}\Big)^{n(-|\lambda_1|)^{n-1}},\label{b7b}\\
w_{2n+2}=\Big(\frac{w_0^{ac-d}}{z_{-1}^{bc}}\Big)^{(-|\lambda_1|)^n}
\Big(\frac{w_0^{ac-d-\lambda_1}}{z_{-1}^{bc}}\Big)^{n(-|\lambda_1|)^n},\label{b8b}
\end{gather}
for $n\in\mathbb{N}_0$.
From \eqref{b5b}-\eqref{b8b} it follows that
\begin{gather}
z_{4n+1}=\Big(\frac{w_0^a}{z_{-1}^b}\Big)^{\lambda_1^{2n}} \Big(\frac{w_0^{a\lambda_1}}{z_{-1}^{b(ac-b-\lambda_1)}}\Big)^{-2n|\lambda_1|^{2n-1}},\label{b5c}\\
z_{4n+3}=\Big(\frac{w_0^a}{z_{-1}^b}\Big)^{-|\lambda_1|^{2n+1}} \Big(\frac{w_0^{a\lambda_1}}{z_{-1}^{b(ac-b-\lambda_1)}}\Big)^{(2n+1)\lambda_1^{2n}},\label{b5c1}\\
z_{4n+2}=\Big(\frac{z_0^{ac-b}}{w_{-1}^{ad}}\Big)^{\lambda_1^{2n}}
\Big(\frac{z_0^{ac-b-\lambda_1}}{w_{-1}^{ad}}\Big)^{2n\lambda_1^{2n}},\label{b6c}\\
z_{4n+4}=\Big(\frac{z_0^{ac-b}}{w_{-1}^{ad}}\Big)^{-|\lambda_1|^{2n+1}}
\Big(\frac{z_0^{ac-b-\lambda_1}}{w_{-1}^{ad}}\Big)^{-(2n+1)|\lambda_1|^{2n+1}},\label{b6c1}\\
w_{4n+1}=\Big(\frac{z_0^c}{w_{-1}^d}\Big)^{\lambda_1^{2n}}
\Big(\frac{z_0^{c\lambda_1}}{w_{-1}^{d(ac-d-\lambda_1)}}\Big)^{-2n|\lambda_1|^{2n-1}},\label{b7c}\\
w_{4n+3}=\Big(\frac{z_0^c}{w_{-1}^d}\Big)^{-|\lambda_1|^{2n+1}}
\Big(\frac{z_0^{c\lambda_1}}{w_{-1}^{d(ac-d-\lambda_1)}}\Big)^{(2n+1)|\lambda_1|^{2n}},\label{b7c1}\\
w_{4n+2}=\Big(\frac{w_0^{ac-d}}{z_{-1}^{bc}}\Big)^{\lambda_1^{2n}}
\Big(\frac{w_0^{ac-d-\lambda_1}}{z_{-1}^{bc}}\Big)^{2n\lambda_1^{2n}},\label{b8c}\\
w_{4n+4}=\Big(\frac{w_0^{ac-d}}{z_{-1}^{bc}}\Big)^{-|\lambda_1|^{2n+1}}
\Big(\frac{w_0^{ac-d-\lambda_1}}{z_{-1}^{bc}}\Big)^{-(2n+1)|\lambda_1|^{2n+1}},\label{b8c1}
\end{gather}
for $n\in\mathbb{N}_0$.
Using formulas \eqref{b5c}-\eqref{b8c1} all the statements easily
follow.
\end{proof}
Formulations and the proofs of the results on the long-term
behavior of solutions to system \eqref{ms} for the case
$a,b,c,d\in\mathbb{Z}$, $bd\ne 0$, $(ac-b-d)^2\ne 4bd$, $z_{-1}, z_0,
w_{-1}, w_0\in\mathbb{C}\setminus\{0\}$, we leave them for the reader as an
exercise.
\subsection*{Acknowledgements}
This project was funded by the Deanship of
Scientific Research (DSR), King Abdulaziz University, Jeddah,
under grant no. (36-130-33-HiCi). The authors, therefore,
acknowledge technical and financial support of KAU.
\begin{thebibliography}{00}
\bibitem{al0} M. Aloqeili;
Dynamics of a $k$th order rational difference
equation, \emph{Appl. Math. Comput.}, \textbf{181} (2006), 1328-1335.
\bibitem{al1} M. Aloqeili;
Dynamics of a rational difference equation, \emph{Appl. Math. Comput.},
\textbf{176} (2006), 768-774.
\bibitem{am1} A. Andruch-Sobilo, M. Migda;
Further properties of the rational recursive sequence
$x_{n+1}=ax_{n-1}/(b+cx_nx_{n-1})$, \emph{
Opuscula Math.}, \textbf{26} (3) (2006), 387-394.
\bibitem{am2} A. Andruch-Sobilo, M. Migda;
On the rational recursive sequence
$x_{n+1}=ax_{n-1}/(b+cx_nx_{n-1})$, \emph{Tatra Mt. Math. Publ.},
\textbf{43} (2009), 1-9.
\bibitem{bl} I. Bajo, E. Liz;
Global behaviour of a second-order nonlinear
difference equation, \emph{J. Differ. Equations Appl.}, \textbf{17}
(10) (2011), 1471-1486.
\bibitem{bfs} K. Berenhaut, J. Foley, S. Stevi\'c;
Boundedness character of positive solutions of a max difference
equation, \emph{J. Differ. Equations Appl.}, \textbf{12} (12) (2006),
1193-1199.
\bibitem{bs2} K. Berenhaut, J. Foley, S. Stevi\'c;
The global attractivity of the rational difference equation
$y_n=1+(y_{n-k}/y_{n-m})$, \emph{Proc. Amer. Math. Soc.}
\textbf{135} (2007), 1133-1140.
\bibitem{jdea129} K. Berenhaut, S. Stevi\'c;
The behaviour of the positive solutions of the difference
equation $x_n=A+(x_{n-2}/x_{n-1})^p$, \emph{J. Differ. Equations
Appl.}, \textbf{12} (9) (2006), 909-918.
\bibitem{lbs} L. Berg, S. Stevi\'c;
Periodicity of some classes of holomorphic difference equations,
\textit{J. Difference Equ. Appl.}, \textbf{12} (8) (2006), 827-835.
\bibitem{amc218-sde} L. Berg, S. Stevi\'c;
On some systems of difference equations, \emph{Appl. Math. Comput.},
\textbf{218} (2011), 1713-1718.
\bibitem{bc} F. Brauer and C. Castillo-Chavez;
\emph{Mathematical Models in Population Biology and Epidemiology},
Springer, 2012.
\bibitem{c} C. Cinar;
On the positive solutions of difference equation,
\emph{Appl. Math. Comput.} \textbf{150} (1) (2004), 21-24.
\bibitem{gr} M. Ghergu, V. R\u{a}dulescu;
\emph{Nonlinear PDEs. Mathematical Models
in Biology, Chemistry and Population Genetics,} Springer
Monographs in Mathematics, Springer, Heidelberg, 2012.
\bibitem{gl} E. A. Grove, G. Ladas;
Periodicities in Nonlinear Difference Equations, Chapman \& Hall,
CRC Press, Boca Raton, 2005.
\bibitem{amc215-854} B. Iri\v canin, S. Stevi\'c;
Eventually constant solutions of a rational difference
equation, \emph{Appl. Math. Comput.}, \textbf{215} (2009), 854-856.
\bibitem{kkn} C. M. Kent, M. Kustesky M, A. Q. Nguyen, B. V. Nguyen;
Eventually periodic solutions of
$x_{n+1}=\max\{A_n/x_n, B_n/x_{n-1}\}$ when the parameters are two cycles,
\emph{Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.}
\textbf{10} (1-3) (2003), 33-49.
\bibitem{ph} G. Papaschinopoulos, V. Hatzifilippidis;
On a max difference equation, \emph{J. Math. Anal. Appl.}, \textbf{258} (2001),
258-268.
\bibitem{ps1} G. Papaschinopoulos, C. J. Schinas;
On a system of two nonlinear difference equations,
\emph{J. Math. Anal. Appl.}, \textbf{219} (2) (1998), 415-426.
\bibitem{ps2} G. Papaschinopoulos, C. J. Schinas;
On the behavior of the solutions of a system of two nonlinear difference equations,
\emph{Comm. Appl. Nonlinear Anal.}, \textbf{5} (2) (1998), 47-59.
\bibitem{ps3} G. Papaschinopoulos, C. J. Schinas;
Invariants for systems of two nonlinear difference equations,
\emph{Differential Equations Dynam. Systems}, \textbf{7} (2) (1999), 181-196.
\bibitem{ps4} G. Papaschinopoulos, C. J. Schinas;
Invariants and oscillation for systems of two nonlinear difference
equations, \emph{Nonlinear Anal. TMA}, \textbf{46} (7) (2001), 967-978.
\bibitem{pss} G. Papaschinopoulos, C. J. Schinas, G. Stefanidou;
On the nonautonomous difference equation $x_{n+1}=A_n+(x_{n-1}^p/x_n^q)$,
\emph{Appl. Math. Comput.}, \textbf{217} (2011), 5573-5580.
\bibitem{pst2} G. Papaschinopoulos, G. Stefanidou;
Asymptotic behavior of the solutions of a class of rational difference equations,
\emph{Inter. J. Difference Equations}, \textbf{5} (2) (2010), 233-249.
\bibitem{rr1} V. R\u{a}dulescu, D. Repov\v s;
\emph{Partial Differential Equations with
Variable Exponents: Variational Methods and Qualitative Analysis,}
CRC Press, Taylor and Francis Group, Boca Raton FL, 2015.
\bibitem{sps} G. Stefanidou, G. Papaschinopoulos, C. Schinas;
On a system of max difference equations, \emph{Dynam. Contin.
Discrete Impuls. Systems Ser. A}, \textbf{14} (6) (2007), 885-903.
\bibitem{ps-cana} G. Stefanidou, G. Papaschinopoulos, C. J. Schinas;
On a system of two exponential type difference equations, \emph{Commun.
Appl. Nonlinear Anal.}, \textbf{17} (2) (2010), 1-13.
\bibitem{ijpam1} S. Stevi\'c;
A global convergence results with applications to periodic solutions,
\emph{Indian J. Pure Appl. Math.}, \textbf{33} (1) (2002), 45-53.
\bibitem{tjm2} S. Stevi\'c;
On the recursive sequence
$x_{n+1}=A/{\prod_{i=0}^k x_{n-i}}+1/{\prod_{j=k+2}^{2(k+1)}x_{n-j}}$,
\emph{Taiwanese J. Math.}, \textbf{7} (2) (2003), 249-259.
\bibitem{amen} S. Stevi\'c;
More on a rational recurrence relation, \emph{Appl. Math. E-Notes},
\textbf{4} (2004), 80-85.
\bibitem{jamc1} S. Stevi\'c;
On the recursive sequence $x_{n+1}=\alpha+(x_{n-1}^p/x_n^p)$,
\emph{J. Appl. Math. \& Computing}, \textbf{18} (1-2) (2005) 229-234.
\bibitem{37264} S. Stevi\'c;
A short proof of the Cushing-Henson conjecture,
\emph{Discrete Dyn. Nat. Soc.}, Vol. 2006, Article ID 37264, (2006), 5 pages.
\bibitem{56813} S. Stevi\'c;
Asymptotics of some classes of higher order difference equations,
\emph{Discrete Dyn. Nat. Soc.}, Vol. 2007, Article ID
56813, (2007), 20 pages.
\bibitem{na4} S. Stevi\'c;
On a generalized max-type difference equation from automatic control theory,
\emph{Nonlinear Anal. TMA}, \textbf{72} (2010), 1841-1849.
\bibitem{um83-2} S. Stevi\'c;
Periodicity of max difference equations, \emph{Util. Math.}
\textbf{83} (2010), 69-71.
\bibitem{jmaa376} S. Stevi\'c;
On a nonlinear generalized max-type difference equation,
\emph{J. Math. Anal. Appl.}, \textbf{376} (2011), 317-328.
\bibitem{amc218-sys1} S. Stevi\'c;
On a system of difference equations, \emph{Appl. Math. Comput.}
\textbf{218} (2011), 3372-3378.
\bibitem{amc218-dcept} S. Stevi\'c;
On the difference equation $x_n=x_{n-2}/(b_n+c_nx_{n-1}x_{n-2})$,
\emph{Appl. Math. Comput.}, \textbf{218} (2011), 4507-4513.
\bibitem{amc217-max} S. Stevi\'c;
Periodicity of a class of nonautonomous max-type difference equations,
\emph{Appl. Math. Comput.}, \textbf{217} (2011), 9562-9566.
\bibitem{amc219-srsy} S. Stevi\'c;
On a solvable rational system of difference equations,
\emph{Appl. Math. Comput.}, \textbf{219} (2012), 2896-2908.
\bibitem{amc-thos} S. Stevi\'c;
On a third-order system of difference equations,
\emph{Appl. Math. Comput.}, \textbf{218} (2012), 7649-7654.
\bibitem{amc-maxpsde} S. Stevi\'c;
On some periodic systems of max-type difference equations,
\emph{Appl. Math. Comput.}, \textbf{218} (2012), 11483-11487.
\bibitem{amc-218solsys} S. Stevi\'c;
On some solvable systems of difference equations, \emph{Appl. Math. Comput.}
\textbf{218} (2012), 5010-5018.
\bibitem{amc218-hde} S. Stevi\'c;
On the difference equation $x_n=x_{n-k}/(b+cx_{n-1}\cdots x_{n-k})$,
\emph{Appl. Math. Comput.}, \textbf{218} (2012), 6291-6296.
\bibitem{amc-mtsde} S. Stevi\'c;
Solutions of a max-type system of difference equations,
\emph{Appl. Math. Comput.}, \textbf{218} (2012), 9825-9830.
\bibitem{amc219-dussde} S. Stevi\'c;
Domains of undefinable solutions of some equations and systems of
difference equations, \emph{Appl. Math. Comput.},
\textbf{219} (2013), 11206-11213.
\bibitem{amc219-sdcescf} S. Stevi\'c;
On a system of difference equations which can be solved in closed form,
\emph{Appl. Math. Comput.}, \textbf{219} (2013), 9223-9228.
\bibitem{amc219-sdeoos} S. Stevi\'c;
On a system of difference equations of odd order solvable in closed form,
\emph{Appl. Math. Comput.}, \textbf{219} (2013) 8222-8230.
\bibitem{amc219-ssktho} S. Stevi\'c;
On the system $x_{n+1}=y_nx_{n-k}/(y_{n-k+1}(a_n+b_ny_nx_{n-k}))$,
$y_{n+1}=x_ny_{n-k}/(x_{n-k+1}(c_n+d_nx_ny_{n-k}))$, \emph{Appl.
Math. Comput.}, \textbf{219} (2013), 4526-4534.
\bibitem{ejqtde-fib} S. Stevi\'c;
Representation of solutions of bilinear difference equations in terms of
generalized Fibonacci sequences, \emph{Electron. J. Qual. Theory
Differ. Equ.}, Vol. 2014, Article No. 67, (2014), 15 pages.
\bibitem{ejqtde1} S. Stevi\'c, M. A. Alghamdi, A. Alotaibi, N. Shahzad;
On a higher-order system of difference equations, \emph{Electron. J. Qual. Theory Differ. Equ.},
Atr. No. 47, (2013), 18 pages.
\bibitem{ejqtde-maxsde} S. Stevi\'c, M. A. Alghamdi, A. Alotaibi, N. Shahzad;
Boundedness character of a max-type system of difference equations of second order,
\emph{Electron. J. Qual. Theory Differ. Equ.}, Vol. 2015, Article No. 45,
(2014), 12 pages.
\bibitem{157943} S. Stevi\'c, M. A. Alghamdi, D. A. Maturi, N. Shahzad;
On a class of solvable difference equations, \emph{Abstr. Appl. Anal.},
Vol. 2013, Article ID 157943, (2013), 7 pages.
\bibitem{508523} S. Stevi\'c, J. Diblik, B. Iri\v canin, Z. \v Smarda;
On a third-order system of difference equations with variable coefficients,
\emph{Abstr. Appl. Anal.}, Vol. 2012, Article ID 508523, (2012), 22 pages.
\bibitem{jdea205} S. Stevi\'c, J. Diblik, B. Iri\v canin, Z. \v Smarda;
On a solvable system of rational difference equations,
\emph{J. Difference Equ. Appl.}, \textbf{20} (5-6) (2014), 811-825.
\bibitem{ejde1} S. Stevi\'c, J. Diblik, B. Iri\v{c}anin, Z. \v{S}marda;
Solvability of nonlinear difference equations of fourth order,
\emph{Electron. J. Differential Equations}, Vol. 2014,
Article No. 264, (2014), 14 pages.
\bibitem{tyt2} D. T. Tollu, Y. Yazlik, N. Taskara;
On fourteen solvable systems of difference equations,
\emph{Appl. Math. Comput.}, \textbf{233} (2014), 310-319.
\end{thebibliography}
\end{document}