\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 163, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/163\hfil Caputo fractional difference] {Some relations between the Caputo fractional difference operators and integer-order differences} \author[B. Jia, L. Erbe, A. Peterson \hfil EJDE-2015/163\hfilneg] {Baoguo Jia, Lynn Erbe, Allan Peterson} \address{Baoguo Jia \newline School of Mathematics and Computer Science\\ Sun Yat-Sen University\\ Guangzhou 510275, China.\newline Department of Mathematics\\ University of Nebraska-Lincoln\\ Lincoln, NE 68588-0130, USA} \email{mcsjbg@mail.sysu.edu.cn} \address{Lynn Erbe \newline Department of Mathematics\\ University of Nebraska-Lincoln\\ Lincoln, NE 68588-0130, USA} \email{lerbe2@math.unl.edu} \address{Allan Peterson \newline Department of Mathematics\\ University of Nebraska-Lincoln\\ Lincoln, NE 68588-0130, USA} \email{apeterson1@math.unl.edu} \thanks{Submitted May 30, 2015. Published June 17, 2015.} \subjclass[2010]{39A12, 39A70} \keywords{Caputo fractional difference; monotonicity; Taylor monomial} \begin{abstract} In this article, we are concerned with the relationships between the sign of Caputo fractional differences and integer nabla differences. In particular, we show that if $N-1<\nu0$, then the \emph{nabla fractional sum} of $f$ based at $a$ is defined by \begin{equation}\label{al} \nabla^{-\nu}_{a}f(t)=\int^t_aH_{\nu-1}(t,\rho(s)) f(s)\nabla s, \end{equation} for $t\in\mathbb{N}_a$, where by convention $\nabla_a^{-\nu}f(a)=0$. \end{definition} Next we define the Caputo fractional difference in terms of the nabla fractional sum. \begin{definition}\label{dnfd} Assume $f:\mathbb{N}_{a-N+1}\to\mathbb{R}$ and $\mu>0$. Then the $\mu$-th Caputo nabla fractional difference of $f$ based at $a$ is defined by $$ \nabla^\mu_{a^*}f(t)=\nabla_a^{-(N-\mu)}\nabla^Nf(t) $$ for $t\in\mathbb{N}_{a+1}$, where $N=\lceil\mu\rceil$, $\lceil\cdot\rceil$ the ceiling of number, $m\in\mathbb{N}$. \end{definition} Let $\Gamma$ denote the gamma function, then the \emph{rising function} $t^{\overline{r}}$ is defined by $$ t^{\overline{r}}=\frac{\Gamma(t+r)}{\Gamma (t)}, $$ for those values of $t$ and $r$ such that the right hand side of this last equation makes sense. We also use the convention that if the numerator is well defined and the denominator is not well defined, then $t^{\overline{r}}:=0$. We define the $\mu$-th degree Taylor monomial based at $a$ by $$ H_{\mu}(t,a):=\frac{(t-a)^{\overline{\mu}}}{\Gamma(\mu+1)}. $$ We will use the following power rule (see \cite[Chapter 3]{gp}): \begin{align}\label{prn} \nabla H_{\mu}(t_0,t)=-H_{\mu-1}(t_0,\rho(t)), \end{align} where $t_0\in\mathbb{N}_a$. Then (see \cite[Chapter 3]{gp}) if $f:\mathbb{N}_{a+1}\to\mathbb{R}$ and $N-1<\mu< N$, $N\in\mathbb{N}_1$, then the $\mu$-th nabla fractional difference is given by \begin{equation}\label{al2} \nabla^{\mu}_{a}f(t)=\int^t_aH_{-\mu-1}(t,\rho(s)) f(s)\nabla s, \end{equation} for $t\in\mathbb{N}_a$, where by convention $\nabla_a^{\mu}f(a)=0$. \begin{theorem}\label{al10} Assume that $f:\mathbb{N}_{a-N+1}\to\mathbb{R}$, and $\nabla^\mu_{a^*}f(t)\geq 0$, for each $t\in\mathbb{N}_{a+1}$, with $N-1<\mu 0.\\ \end{align*} \end{proof} From Theorem \ref{al10}, we have the following result. \begin{theorem}\label{jia6} Assume that $N-1<\nu0, \end{aligned} \end{equation} where we used $\muf(a)=-\sqrt{2}$. Therefore $f(x)$ does not satisfy the assumptions of Corollary \ref{2.3}. In fact, $f(t)$ is decreasing, for $t\geq 1$. We conclude this note by mentioning a representative consequence of Corollary \ref{2.3}. \begin{corollary} Let $h:\mathbb{N}_{a+1}\times \mathbb{R}\to\mathbb{R}$ be a nonnegative, continuous function. Then any solution of the Caputo nabla fractional difference equation \begin{equation} \nabla^\nu_{a^*}y(t)=h(t,y(t)),\quad t\in\mathbb{N}_{a+1},\quad 1<\nu<2 \end{equation} satisfying $\nabla y(a)= A\ge 0$ is increasing on $\mathbb{N}_{a-1}$. \end{corollary} \subsection*{Acknowledgments} This work is supported by the National Natural Science Foundation of China (No.11271380). \begin{thebibliography}{99} \bibitem{a1} G. Anastassiou; \emph{Foundations of nabla fractional calculus on time scales and inequalities}, Comput. Math. Appl. 59 (2010) 3750-3762. \bibitem{a2} G. Anastassiou; \emph{Foundations of nabla fractional calculus on time scales and inequalities}, Comput. Math. Appl. 59 (2010) 3750-3762. \bibitem{ae} F. Atici, P. W. Eloe; \emph{Initial value problems in discrete fractional calculus}, Proc. Amer. Math. Soc. 137 (2009) 981-989. \bibitem{ae1} F. Atici, P. Eloe; \emph{Discrete fractional calculus with the nabla operator}, Elect. J. Qual. Theory Differential Equations, Spec. Ed. I No. 3 (2009) 1--12. \bibitem{bep1} J. Baoguo, L. Erbe, A. Peterson; \emph{Two monotonicity results for nabla and delta fractional differences}, Arch. Math. 104 (2015) 589--597. \bibitem{bep2} J. Baoguo, L. Erbe, A. Peterson; \emph{Convexity for nabla and delta fractional differences}, J. Difference Equations and Applications, 12 (2006) 1257--1275. \bibitem{bp1} M. Bohner, A. Peterson; \emph{Dynamic Equations on time Scales: An Introduction with Applications}, Birkh\"{a}user, Boston (2001). \bibitem{bp2} M. Bohner, A. Peterson; \emph{Advances in Dynamic Equations on Time Scales}, Birkh\"{a}user, Boston (2003). \bibitem{dg} R. Dahal, C. Goodrich; \emph{A monotonicity result for discrete fractional difference operators}, Arch. Math. 102 (2014) 293--299. \bibitem{dv} Z. Denton, A.~S. Vatsala; \emph{Fractional integral inequalities and applications}, Comput. Math. Appl. 59 (2010) 1087--1094. \bibitem{ft1} R.~A.~C. Ferreira; \emph{A discrete fractional Gronwall inequality}, Proc. Amer. Math. Soc. 140 (2012) 1605--1612. \bibitem{ft} R.~A.~C. Ferreira, D.~F.~M. Torres; \emph{Fractional h-difference equations arising from the calculus of variations}, Appl. Anal. Discrete Math. 5 (2011) 110--121. \bibitem{gp} C. Goodrich, A. Peterson; \emph{Discrete Fractional Calculus}, Springer, Preliminary Version, 2015. \end{thebibliography} \end{document}