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STURM-PICONE TYPE THEOREMS FOR NONLINEAR
DIFFERENTIAL SYSTEMS

AYDIN TIRYAKI

Abstract. In this article, we establish a Picone-type inequality for a pair

of first-order nonlinear differential systems. By using this inequality, we give
Sturm-Picone type comparison theorems for these systems and a special class

of second-order half-linear equations with damping term.

1. Introduction

Let α > 0 and define ϕα(s) = |s|α−1s if s 6= 0 and ϕα(0) = 0. By comparing
with the zeros of the first component of the solution of the system

x′ = a(t)x+ b(t)ϕ1/α(y)

y′ = −c(t)ϕα(x)− d(t)y
(1.1)

we would like to obtain some information about the existence and distribution of
zeros of the first component of the solution of the system

u′ = A(t)u+B(t)ϕ1/α(v)

v′ = −C(t)ϕα(u)−D(t)v
(1.2)

where a,A, b, B, c, C, d and D are continuous real-valued functions on a given inter-
val I and b(t) > 0 and B(t) > 0 in I. The existence and uniqueness of the solution
of the initial and boundary value problems for (1.1) (or (1.2)) were considered by
Elbert [7] and Mirzov [16, 17].

We have the following special cases, considering, for example the second system:
If A(t) ≡ D(t) in I, then (1.2) is the nonlinear Hamiltonian system

u′ =
∂H

∂v
, v′ = −∂H

∂u
where

H(t;u, v) =
1

α+ 1
C(t)|u|α+1 +A(t)uv +

α

α+ 1
B(t)|v|1+ 1

α . (1.3)

When A(t) ≡ 0 in I, the system (1.2) is equivalent to the scaler second-order
half-linear equation

(P (t)ϕα(u′))′ +R(t)ϕα(u′) +Q(t)ϕα(u) = 0 (1.4)

2010 Mathematics Subject Classification. 34C10, 34C15.
Key words and phrases. Comparison theorem; Sturm-Picone theorem;

half-linear equations; nonlinear differential systems.
c©2015 Texas State University - San Marcos.

Submitted March 10, 2015. Published June 11, 2015.

1



2 A. TIRYAKI EJDE-2015/154

where the coefficient functions are

P (t) ≡ B(t)−α, R(t) = D(t)B(t)−α, Q(t) = C(t).

If A(t) ≡ 0 and D(t) ≡ 0 in I, then (1.4) reduced to the half-linear Sturm-Liouville
equation

(P (t)ϕα(u′))′ +Q(t)ϕα(u) = 0. (1.5)

Moreover, if we take the transformation

u = h(t)W

v =
1
h(t)

z
(1.6)

where h′(t) = A(t)h(t), i.e h(t) = exp
( ∫ t

t0
A(s)ds

)
in system (1.2) with A(t) ≡

D(t), is equivalent for any r ∈ C1(I)(
P1(t)ϕα(W ′)

)′
+R1(t)ϕα(W ) +Q1(t)ϕα(W ) = 0 (1.7)

where the coefficient function are

P1(t) = r(t), R1(t) = (α+ 1)r(t)A(t)− r′(t)− αr(t)B
′(t)

B(t)
,

Q1(t) = r(t)C(t)Bα(t).

It is not difficult to see that if we choose r(t) = B−α(t) we get the scalar second-
order half-linear equation(

P (t)ϕα(W ′)
)′

+ (α+ 1)R(t)ϕα(W ′) +Q(t)ϕα(W ) = 0 (1.8)

where P , R and Q are defined as in (1.4).
Most of the classical results in oscillation theory are formulated for the solutions

of the self-adjoint Sturm-Liouville equations of the form

−(p1(x)u′)′ + p0(x)u = 0, (1.9)

−(P1(x)v′)′ + P0(x)v = 0, (1.10)

where p0, p1, P0, P1 are real valued continuous functions and p1 and P1 are positive
on an appropriate interval. The starting point for this theory is the well known
comparison theorem for Sturm [20] discovered in 1836.

Theorem 1.1 (Sturm Comparison Theorem). Suppose that p1(x) ≡ P1(x) and
P0(x) ≤ p0(x) and P0(x) 6= p0(x) for x ∈ [x1, x2]. If x1 and x2 are consecutive
zeros of a nontrivial real solutions u of (1.9), then every real solution of v of (1.10)
has a zero in (x1, x2).

In 1909, Picone [19] modified Sturm’s theorem as follows.

Theorem 1.2 (Sturm-Picone Theorem). Suppose that 0 < P1(x) ≤ p1(x) and
P0(x) ≤ p0(x) for [x1, x2]. If x1 and x2 are consecutive zeros of a nontrivial real
solutions u of (1.9), then every real solution of v of (1.10) has one of the following
properties:

(i) v(x) has a zero in (x1, x2)
(ii) v(x) is a constant multiple of u(x).
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Note that Theorem 1.2 is a special case of Leighton’s theorem [15]. For a detailed
study and earlier developments of this subject, we refer the reader to the books
[14, 21].

The original proof by Picone was based on the identity
d

dx

[u
v

(vp1u
′ − uP1v

′)
]

= (p0 − P0)u2 + (p1 − P1)u′2 + P1

(
u′ − u

v
v′
)2 (1.11)

which holds for all real valued functions u and v defined on [x1, x2] such that u, v,
p1u
′ and P1v

′ are differentiable on [x1, x2] and v(x) 6= 0 for x ∈ [x1, x2].
The identity (1.11) has been a useful tool not only in comparing equations (1.9)

and (1.10) but also in establishing Wirtinger type inequalities for the second-order
linear ordinary differential equation and lower bounds for the eigenvalues of the
associated eigenvalue problems and was generalized to high-order ordinary differ-
ential operators as well as the partial differential operators of the elliptic type
[4, 6, 9, 11, 13, 28, 29].

Sturm-Picone theorem is extended in several directions, see, Ahmad and Lazer
[1] and Ahmad [2] for linear systems, Müller-Pfeiffer [18] for non-selfadjoint differ-
ential equations, Tyagi and V. Raghavenda [26] for implicit differential equations,
W. Allegretto [5] for degenerate elliptic equations, Zhang and Sun [30] for linear
equations on time scales, Jaroš and Kusano [9] for half linear equations, [23, 27]
for nonlinear equations. There is also a good amount of interest in the qualitative
theory of partial differential equations to determine whether the given equation is
oscillatory or not. In this direction, Sturm-Picone theorem plays an important role.
[3, 5, 6, 8, 10, 11, 21, 22, 24, 28, 29].

In 1999, Jaros and Kusano [9] generalized Picone’s identity (1.11) to the class of
nonlinear second-order differential equations(

p1(x)ϕ(u′)
)′

+ p0(x)ϕ(u) = 0, (1.12)(
P1(x)ϕ(v′)

)′
+ P0(x)ϕ(v) = 0, (1.13)

where ϕ(s) := |s|α−1s, α > 0, p1, p0, P1, P0 are defined as before. The above
equations are also called half-linear or sometimes homogeneous of degree α. They
established a suitable Picone-type identity as follows

d

dt
{ u

ϕ(v)
(ϕ(v)p1ϕ(u′)− ϕ(u)P1ϕ(v′))}

= (p1 − P1) |u′|α+1 + (P0 − p0) |u|α+1

+ P1

[
|u′|α+1 + α|uv

′

v
|α+1 − (α+ 1)u′ϕ

(uv′
v

)]
.

(1.14)

Using the above identity, they obtained the following comparison results which
is extension of Theorem 1.2 to the class of half linear equations (1.12) and (1.13).

Theorem 1.3 ([9]). Suppose that 0 < P1(x) ≤ p1(x) and p0(x) ≤ P0(x) for
x ∈ [x1, x2]. If x1, x2 are consecutive zeros of a nontrivial real solution u of (1.12),
then every solution v of (1.8) has a zero in (x1, x2) except possibly it is a constant
multiple of u.

While qualitative theory of scalar cases are well-developed, only little is known
about the general systems, particularly in the case where a(t) 6= 0, A(t) 6= 0 or
a(t) 6= d(t), A(t) 6= D(t) in I (for some results concerning the case α = 1 see
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[13, 14]). Elbert [7], proved that if b(t) > 0 and B(t) > 0 on I and (x, y) is a
solution of (1.2) such that the function x(t) has consecutive zeros at t1, t2 ∈ I and
(1.1) is a Sturmian majorant for (1.2) in the sense that

[B(t)− b(t)]|ξ|α+1 +
[
A(t)− a(t)− d(t)−D(t)

α

]
ξϕα(η) +

C(t)− c(t)
α

|η|α+1 ≥ 0,

(1.15)
for all ξ, η ∈ R and t ∈ I, then for any solution (u, v) of (1.1) the first component
u(t) has at least one zero in (t1, t2).

Note that the inequality (1.15) holds for ξ, η ∈ R\{0} if B(t) > b(t), C(t) > c(t),
and(
B(t)− b(t)

)(
C(t)− c(t)

)α+1 ≥
( α

α+ 1
)α+1|α

(
A(t)− a(t)

)
− (d(t)−D(t)) |α+1.

Elbert proved his result by means of the generalized Prüfer transformation. In
the particular case a(t) ≡ A(t) ≡ D(t) ≡ 0, Elbert’s criterion reduces to the
half-linear generalization of the classical Sturm-Picone comparison theorem due to
Mirzov [16].

Recently, Jaroš studied the system (1.2) under suitable sufficient conditions. He
established Picone-type identity for the nonlinear system of the form (1.2) and
applied it to derive Wirtinger type inequalities. He also gave some results to obtain
information about the existence and distribution of zeros of the first component of
the solution of (1.2). Indeed the following result is interesting.

Theorem 1.4 ([12]). If for some nontrivial C1-function x defined on [t1, t2] and
satisfying x(t1) = x(t2) = 0, the condition

J(x) =
∫ t2

t1

[
B(t)−α|x′ − αA(t) +D(t)

α+ 1
x|α+1 − c(t)|x|α+1

]
dt ≤ 0

holds, then for any solution (u, v) of (1.2) the first component u(t) either has a zero
in (t1, t2) or is a constant multiple of x(t) exp

( ∫ t
t0

A(s)−D(s)
α+1 ds

)
for some t0 ∈ I

We would like to obtain some information about the existence and distribution
of the zeros of the first component of the solution of (1.2) by comparing with the
zeros of the first component of the solution of (1.1) and obtain sufficient conditions
for the case including B(t) ≥ b(t) and C(t) ≥ c(t).

Note that our results, that are formulated in terms of the continuous function
a(t) = αA(t)+D(t)

(α+1) yield a variety of comparison results. Even if we reduce our
consideration to the special cases of a(t) mentioned above, our results seem to be
new.

2. Picone-type inequality and Leightonian comparison theorems

Let

Φα(ξ, η) := ξϕα(ξ) + αηϕα(η)− (α+ 1)ξϕα(η). (2.1)

for ε, η ∈ R and α > 0. From the Young inequality, it follows that Φα(ξ, η) ≥ 0 for
all ξ, η ∈ R, and the equality holds if and only if ξ = η. The Picone-type inequality
in the following lemma is of basic importance for our main results, it may be verified
directly by differentiation.



EJDE-2015/154 STURM-PICONE TYPE THEOREMS 5

Lemma 2.1 (Picone-type inequality). Suppose that (u, v) is a solution of (1.2)
such that u(t) 6= 0 in I. If there exists a solution (x, y) of (1.1), then

d

dt

[ x

ϕα(u)(
ϕα(u)y − ϕα(x)v

)]
≥
[
C(t)− c(t)− 1

α+ 1
|a(t)− d(t)|

]
xϕα(x)

+
[
b(t)− bα+1(t)

Bα(t)
− α

α+ 1
|a(t)− d(t)|

]
yϕ1/α(y)

+B−α(t)Φα(b(t)ϕ1/α(y), B(t)
x

u
ϕ1/α(v))

−
[
(α+ 1)a(t)− αA(t)−D(t)

]
xϕα

(x
u

)
v.

(2.2)

We begin with the following functionals Vστ and Mστ defined for t1 < σ < τ < t2
and solutions (x, y) of (1.1) and (u, v) of (1.2) with u(t) 6= 0 in I by

Vστ (x)

=
∫ τ

σ

{
[
C(t)− c(t)− 1

α+ 1
|a(t)− d(t)|

]
|x|α+1

+
[
b(t)− bα+1(t)

Bα(t)
− α

α+ 1
|a(t)− d(t)|

]
b−(α+1)(t)|x′ − a(t)x|(α+1)}dt

(2.3)

and

Mστ [x;u, v] =
∫ τ

σ

B−α(t)
(

Φα(x′ − ax,B(t)
x

u
ϕ1/α(v)

)
dt.

From Lemma 2.1, by using the definition of Vστ (x) we have the following lemma.

Lemma 2.2. Let (x, y) and (u, v) be solutions of (1.1) and (1.2) respectively such
that u(t) 6= 0 in I and let [σ, τ ] ⊂ I. Then for the first component x(t) of the
solution of (1.1), the following inequality holds:[ x

ϕα(u)
(ϕα(u)y − ϕα(x)v)

]∣∣τ
σ

≥ Vστ (x)−
∫ τ

σ

[
(α+ 1)a(t)− αA(t)−D(t)

]
xϕα

(x
u

)
vdt.

(2.4)

Moreover, the inequality holds in (2.4) if and only if

x′ =
(
a(t) +B(t)

ϕ1/α(v)
u

)
x. (2.5)

Proof. Integrating (2.2) from σ to τ and using positive semidefiniteness of the form
Φα, we obtain[ x

ϕα(u)
(ϕα(u)y − ϕα(x)v)

]∣∣τ
σ

≥ Vστ (x) +Mστ (x;u, v)−
∫ τ

σ

[
(α+ 1)a(t)− αA(t)−D(t)

]
xϕα

(x
u

)
vdt

≥ Vστ (x)−
∫ τ

σ

[
(α+ 1)a(t)− αA(t)−D(t)

]
xϕα

(x
u

)
vdt

(2.6)

which gives (2.4). The equality obviously holds in (2.4) if and only if Φα(x′ −
ax,B(t)xuϕ1/α(v)) = 0 in [σ, τ ] which is equivalent with the condition (2.5). �
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From Lemma 2.2, we easily obtain the variation V (x) and M(x;u, v) if we assume
the existence of the limits

V (x) = lim
σ→t+1 ,τ→t

−
2

Vστ (x), M(x;u, v) = lim
σ→t+1 ,τ→t

−
2

Mστ (x;u, v). (2.7)

Now define the domains DV and DM of V and M respectively, to be sets of all
real-valued solutions of (1.1) such that V (x) and M(x;u, v) exist. Also for the
solution x ∈ DV ∩ DM of (1.1) and the solution (u, v) of (1.2) with u(t) 6= 0 in
I = (t1, t2), we denote

S1(x;u, v) = lim
t→t+1

[
xϕα

(x′ − a(t)x
b(t)

)
− xϕα

(x
u

)
v
]

S2(x;u, v) = lim
t→t−2

[
xϕα

(x′ − a(t)x
b(t)

)
− xϕα

(x
u

)
v
] (2.8)

whenever the limits in (2.8) exist.

Theorem 2.3. Let (x, y) and (u, v) be solutions of (1.1) and (1.2) respectively with
u(t) 6= 0 in I satisfying[

(α+ 1)a(t)− αA(t)−D(t)
] v

ϕα(u)
≤ 0 (2.9)

in I. Then the solution x ∈ DV ∩DM of (1.1) for which the limits in (2.8) exist,
the inequality

S2(x;u, v)− S1(x;u, v) ≥ V (x) (2.10)

holds. Furthermore if [(α+ 1)a(t)− αA(t)−D(t)] v
ϕα(u) = 0 in I, then the equality

in (2.10) occurs if and only if x(t) is a solution of (2.5).

As an immediate consequence of the above theorem we have the following result.

Corollary 2.4. Let (x, y) and (u, v) be solutions of (1.1) and (1.2) respectively
with u(t) 6= 0 in I and[

(α+ 1)a(t)− αA(t)−D(t)
] v

ϕα(u)
= 0 (2.11)

in I. Then for every solution x ∈ DV ∩DM of (1.1) for which both limits in (2.8)
exists, the inequality (2.10) is valid. Moreover, the inequality holds in (2.10) if and
only if

x(t) = Ku(t) exp
(∫ t

t0

(a(s)−A(s))ds
)

for some constants K 6= 0 and t0 ∈ I.

In the case where a(t) ≡ A(t) ≡ D(t) in I the condition (2.9) is trivially satisfied.
Clearly, in this special case, the equality in (2.10) is satisfied if and only if x(t) is
a constant multiple of u(t).

Another way, to guarantee the equality in (2.9) is to choose

a(t) =
αA(t) +D(t)

α+ 1
. (2.12)

By choosing a(t) this way, we have the following important results.
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Corollary 2.5. If (x, y) and (u, v) are solutions of (1.1) and (1.2) respectively with
u(t) 6= 0 in I and x ∈ DV ∩ DM is such that the limits in (2.8) exist and satisfy
S2(x;u, v) ≥ 0, S1(x;u, v) ≤ 0, then

V (x) =
∫ t2

t1

{[
C(t)− c(t)− 1

α+ 1
|αA(t) +D(t)

α+ 1
− d(t)|

]
|x|α+1

+
[
b(t)− bα+1(t)

Bα(t)
− α

α+ 1
|αA(t) +D(t)

α+ 1
− d(t)|

]
×B−(α+1)|x′ − αA(t) +D(t)

α+ 1
x|α+1

}
dt ≤ 0

(2.13)

Furthermore, the equality in (2.13) is satisfied if and only if

x(t) = Ku(t) exp
(
−
∫ t

t0

(A(s)−D(s))
α+ 1

ds
)

for some t0 ∈ I.

Corollary 2.6. Let V (x) be defined as in (2.13). If (x, y) is a solution of (1.1)
satisfying x(t1) = x(t2) = 0, the condition V (x) ≥ 0 holds, then for any solution
(u, v) of (1.2) the first component u(t) has one of the following properties:

(i) u has a zero in (t1, t2) or,
(ii) u is a nonzero constant multiple of x(t) exp

( ∫ t
t0

(A(s)−D(s))
α+1 ds

)
, for some

t0 ∈ I.

Remark 2.7. If the condition V (x) ≥ 0 is strengthened to V (x) > 0, conclusion
(ii) of Corollary 2.6 does not hold.

From Corollary 2.6 we immediately have the following result which is an exten-
sion of Sturm-Picone Comparison Theorem of the systems (1.1) and (1.2).

Theorem 2.8. Suppose there exists a nontrivial solution (x, y) of (1.1) in (t1, t2)
such that x(t1) = x(t2) = 0. If

C(t) ≥ c(t) +
1

α+ 1

∣∣∣αA(t) +D(t)
α+ 1

− d(t)
∣∣∣ (2.14)

and

b(t) ≥ bα+1(t)
Bα(t)

+
α

α+ 1

∣∣∣αA(t) +D(t)
α+ 1

− d(t)
∣∣∣

for every t ∈ (t1, t2), then the first component u(t) of every nontrivial solution (u, v)
of (1.2) has at least one zero in (t1, t2) unless u is a nonzero constant multiple of

x(t) exp
(∫ t

t0

A(s)−D(s)
α+ 1

ds
)
.

Remark 2.9. Note that when a(t) ≡ d(t) ≡ A(t) ≡ D(t), the case (2.12) is already
satisfied, hence we can obtain special cases of the above results given in Corollary
2.5-2.6 and Theorem 2.8.

Now we consider a class of second-order half-linear equations with damping term:(
b−α(t)ϕα(w′)

)′
+ (α+ 1)b−α(t)D(t)ϕα(w′) + c(t)ϕα(w) = 0, (2.15)(

B−α(t)ϕα(W ′)
)′

+ (α+ 1)B−α(t)D(t)ϕα(W ′) + C(t)ϕα(W ) = 0 (2.16)
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Note that Equation (2.16) is the same as Equation (1.8), which is obtained from
(1.2), Equation (2.15) can be obtained from (1.1) using similar transformations.
From Remark 2.9, we immediately have the following theorem which is straightfor-
ward Sturm-Picone comparison result for the above damped half-linear equations.

Theorem 2.10. Suppose that there exists a nontrivial real solution w of (2.15)
in (t1, t2) such that w(t1) = 0 = w(t2). If B(t) ≥ b(t) and C(t) ≥ c(t), then
every nontrivial solution W of (2.16) either has a zero in (t1, t2) or it is a nonzero
constant multiple of w.

Remark 2.11. Note that, Theorem 2.10 is a partial answer to the open problem
given in [25].
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