\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 153, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/153\hfil Inverse problem for the fractional telegraph equation] {Inverse coefficient problem for the semi-linear fractional telegraph equation} \author[H. Lopushanska, V. Rapita \hfil EJDE-2015/153\hfilneg] {Halyna Lopushanska, Vitalia Rapita} \address{Halyna Lopushanska \newline Department of Differential Equations\\ Ivan Franko National University of Lviv\\ Lviv, Ukraine} \email{lhp@ukr.net} \address{Vitalia Rapita \newline Department of Differential Equations\\ Ivan Franko National University of Lviv\\ Lviv, Ukraine} \email{vrapita@gmail.com} \thanks{Submitted April 22, 2015. Published June 11, 2015.} \subjclass[2010]{35S15} \keywords{Fractional derivative; inverse boundary value problem; \hfill\break\indent over-determination integral condition; Green's function; integral equation} \begin{abstract} We establish the unique solvability for an inverse problem for semi-linear fractional telegraph equation $$ D^\alpha_t u+r(t)D^\beta_t u-\Delta u=F_0(x,t,u,D^\beta_t u), \quad (x,t) \in \Omega_0\times (0,T] $$ with regularized fractional derivatives $D^\alpha_t u, D^\beta_t u$ of orders $\alpha\in (1,2)$, $\beta\in (0,1)$ with respect to time on bounded cylindrical domain. This problem consists in the determination of a pair of functions: a classical solution $u$ of the first boundary-value problem for such equation, and an unknown continuous coefficient $r(t)$ under the over-determination condition $$ \int_{\Omega_0}u(x,t)\varphi(x)dx=F(t), \quad t\in [0,T] $$ with given functions $\varphi$ and $F$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction}\label{Sect1} The existence and uniqueness theorems for fractional Cauchy problems were proved in \cite{Anh,djr1,Duan,mon,Koch,Kocubei1,LLP,LL,L,Lopushansky,voroshylov} and other works. The conditions of classical solvability of the first boundary-value problem for equation \[ D^{\beta}_t u(x,t)-A(x,D)u(x,t)=F_0(x,t) \] with regularized fractional derivative (see, for example, \cite{djr1}) and some elliptic differential second order operator $A(x,D)$ were obtained in \cite{Luchko} and \cite{E}. Equations with fractional derivatives are applied in studying of anomalous diffusion and various processes in physics, mechanics, chemistry and engineering. The telegraph fractional equations in theory of thermal stresses is considered, for example, in \cite{Povstenko}. Inverse problems to such equations arise in many branches of science and engineering. Some inverse boundary-value problems to diffusion-wave equation with different unknown functions or parameters were investigated, for example, in \cite{Aleroev,Cheng,El-Borai,Hatano,L-1,Nakagawa,Rundell,Zhang}. In particular, the article \cite{Aleroev} was devoted to determination of a source term for a time fractional diffusion equation with an integral type over-determination condition. In this note we prove the existence and uniqueness of a classical solution $(u,r)$ of the inverse boundary-value problem \begin{gather} \label{eq} D^\alpha_t u+r(t)D^\beta_t u-\Delta u=F_0(x,t,u,D^\beta_t u), \quad (x,t) \in \Omega_0\times (0,T], \\ \label{b2} u(x,t)=0,\quad (x,t) \in \partial \Omega_0 \times [0,T], \\ \label{b3} u(x,0)=F_1(x),\quad x\in \bar{\Omega}_0, \\ \label{b4} u_t(x,0)= F_2(x), \quad x\in \bar{\Omega}_0, \\ \label{b5} \int_{\Omega_0} u(x,t)\varphi_0(x)dx=F(t), \quad t\in [0,T] \end{gather} for regularized telegraph equation, where $\alpha\in (1,2)$, $\beta\in (0,1)$, $\Omega_0$ is a bounded domain in $\mathbb{R}^N$, $N\ge 3$, with a boundary $\partial \Omega_0$ of class $C^{1+s}$, $s\in (0,1)$, $F_0$, $F_1$, $F_2$, $F$, $\varphi_0$ -- given functions. We shall use Green's functions to prove the solvability of this problem. \section{Definitions and auxiliary results}\label{Sect2} We shall use the notation: $\Omega_1=\partial \Omega_0$, $Q_i=\Omega_i\times (0,T]$, $i=0,1$, $Q_2=\Omega_0$, $\mathfrak{D}({R}^m)$ is a space of indefinitely differentiable functions with compact supports in ${R}^m$, $m=1,2,\dots$, $\mathfrak{D}(\overline{Q}_0)=\{v\in C^\infty(\overline{Q}_0): (\frac{\partial}{\partial t})^k v|_{t=T}=0,\; k=0,1,\dots\}$, $\mathfrak{D}'({R}^m)$ and $\mathfrak{D}'(\overline{Q}_0)$ are spaces of linear continuous functionals (generalized functions \cite[p. 13-15]{Sh}) over $\mathfrak{D}({R}^m)$ and $\mathfrak{D}(\overline{Q}_0)$, respectively, $(f,\varphi)$ stands for the value of $f\in \mathfrak{D}'({R}^m)$ on the test function $\varphi\in \mathfrak{D}({R}^m)$ and also the value of $f\in \mathfrak{D}'(\overline{Q}_0)$ on $\varphi\in \mathfrak{D}(\overline{Q}_0)$. We denote by $f\ast g$ the convolution of generalized functions $f$ and $g$, use the function \[ f_{\lambda}(t)=\begin{cases} \frac{\theta(t)t^{\lambda-1}}{\Gamma(\lambda)} &\text{for } \lambda>0\\ f'_{1+\lambda}(t) & \text{for }\lambda\leq 0, \end{cases} \] where $\Gamma(z)$ is the Gamma-function, and $\theta(t)$ is the Heaviside function. Note that $$ f_\lambda \ast f_\mu=f_{\lambda+\mu}\,. $$ Also note that the Riemann-Liouville derivative $v^{(\alpha)}_t(x,t)$ of order $\alpha>0$ is defined by \[ v^{(\alpha)}_t(x,t)=f_{-\alpha}(t)\ast v(x,t) \] and \begin{align*} D^\alpha_t v(x,t) &=\frac{1}{\Gamma(1-\alpha)}\Big[\frac{\partial}{\partial t}\int_0^t \frac{v(x,\tau)}{(t-\tau)^{\alpha}}d\tau-\frac{v(x,0)}{t^\alpha}\Big] \\ &=v^{(\alpha)}_t(x,t)-f_{1-\alpha}(t)v(x,0),\quad\text{for }\alpha\in (0,1), \end{align*} while \begin{align*} D^\alpha_t v(x,t) &=\frac{1}{\Gamma(2-\alpha)} \Big[\frac{\partial}{\partial t}\int_0^t\frac{ v_{\tau}(x,\tau)}{(t-\tau)^{\alpha-1}}d\tau -\frac{v_t(x,0)}{(t-\tau)^{\alpha-1}}\Big] \\ &=v^{(\alpha)}_t(x,t)-f_{1-\alpha}(t)v(x,0)-f_{2-\alpha}(t)v_t(x,0)\quad \text{for } \alpha\in (1,2). \end{align*} We denote $D^1_t v=\frac{\partial v}{\partial t}$. Let $C(Q_0)$, $C(\overline{Q}_0)$, $C[0,T]$ be spaces of continuous functions on $Q_0$, $\overline{Q}_0$ and $[0,T]$, respectively, $C^\gamma(\Omega_0)$ ($C^\gamma(\bar{\Omega}_0)$) be a space of bounded continuous functions on $\Omega_0$ ($\bar{\Omega}_0$) satisfying H\"{o}lder continuity condition, $C^\gamma(Q_i)$ ($C^\gamma(\bar{Q}_i)$), $i=0,1$, be a space of bounded continuous functions on $Q_i$ ($\bar{Q}_i$) which for all $t\in (0,T]$ satisfies H\"{o}lder continuity condition with respect to space variables, $C^\gamma(Q_0\times \mathbb{R}^2)$ be a space of bounded continuous functions $f(x,t,v,z)$ on $Q_0\times \mathbb{R}^2$ which for all $t\in (0,T]$, $v,z\in \mathbb{R}$ satisfies H\"{o}lder continuity condition with respect to space variables $x\in \Omega_0$, \begin{gather*} C_\beta(Q_0)=\{v\in C(Q_0): D^\beta_t v\in C(Q_0)\},\\ C^\gamma_\beta(Q_0)=\{v\in C^\gamma(Q_0): D^\beta_t v\in C^\gamma(Q_0)\},\\ C_{2,\alpha}(Q_0)=\{v\in C(Q_0):\Delta v, D^\alpha_t v\in C(Q_0)\}, \\ C_{2,\alpha}({\bar Q}_0)=\{v\in C_{2,\alpha}({Q}_0): v,v_t\in C({\bar Q}_0)\}. \end{gather*} We use the following assumptions: \begin{itemize} \item[(A1)] $F_0\in C^\gamma(Q_0\times \mathbb{R}^2)$, $\gamma\in (0,1)$, $|F_0(x,t,v,w)|\le A_0+B_0[|v|^q+|w|^p]$, \[ |F_0(x,t,v_1,w_1)-F_0(x,t,v_2,w_2)|\le D_0[|v_1-v_2|^q+|w_1-w_2|^p] \] for all $v,w,v_1,v_2,w_1,w_2\in \mathbb{R}$ where $p,q\in [0,2]$, $A_0,B_0,D_0$ are some positive constants, \item[(A2)] $F_1\in C^\gamma(\bar{\Omega}_0)$, $F_1|_{\Omega_1}=0$, \item[(A3)] $F_2\in C^\gamma(\bar{\Omega}_0)$, \item[(A4)] $F, D^\beta F, D^\alpha F\in C[0,T]$, there exists $f:=\inf_{t\in [0,T]}|D^\beta F(t)|>0$, \item[(A5)] $\varphi_0\in C^2(\bar{\Omega}_0)$, $\varphi_0|_{\Omega_1}=0$. \end{itemize} \begin{definition}\label{def1} \rm A pair of functions $(u,r)\in C_{2,\alpha}({\bar Q}_0)\times C[0,T]$ satisfying \eqref{eq} on $Q_0$ and the conditions \eqref{b2}-\eqref{b5} is called a solution of the problem \eqref{eq}-\eqref{b5}. \end{definition} From \eqref{b3}, \eqref{b4} and \eqref{b5}, it follows the necessary agreement conditions \begin{equation} \label{n} \int_{\Omega_0}F_1(x)\varphi_0(x)dx=F(0),\quad \int_{\Omega_0}F_2(x)\varphi_0(x)dx=F'(0). \end{equation} We introduce the operators \begin{gather*} (Lv)(x,t)\equiv v^{(\alpha)}_t (x,t)-\Delta v(x,t),\quad (x,t)\in \overline{Q}_0, \quad v\in \mathfrak{D}'(\overline{Q}_0), \\ (L^{\rm reg}v)(x,t)\equiv D^{\alpha}_t v(x,t)-\Delta v(x,t),\quad (x,t)\in \overline{Q}_0,\quad v\in C_{2,\alpha}(\bar{Q}_0). \end{gather*} \begin{definition}\label{def2} \rm A vector-function $(G_0(x,t,y,\tau),G_1(x,t,y),G_2(x,t,y))$ is called a Green's vector-function of the problem \begin{gather} \label{eq2} (L^{\rm reg}u)(x,t)=g_0(x,t), \quad (x,t) \in Q_0, \\ \label{b12} u(x,t)=0,\quad (x,t) \in \bar{Q}_1, \\ \label{in2} u(x,0)=g_1(x),\quad u_t(x,0)=g_2(x),\quad x\in \bar{\Omega}_0, \end{gather} if for rather regular $g_0$, $g_1$, $g_2$ the function \begin{equation}\label{ro} u(x,t)=\int_0^{t} d\tau\int_{{\Omega}_0} G_0(x,t,y,\tau)g_0(y,\tau)dy +\sum_{j=1}^2\int_{\Omega_0}G_j(x,t,y)g_j(y)dy, \end{equation} for $(x,t) \in \overline{Q}_0$, is the classical solution (in $C_{2,\alpha}(\bar{Q}_0)$) of the first boundary-value problem \eqref{eq2}--\eqref{in2}. \end{definition} It follows from Definition \ref{def2} that \begin{gather*} (L G_0)(x,t,y,\tau)=\delta(x-y,t-\tau),\quad (x,t), (y,\tau) \in {Q}_0, \\ (L^{\rm reg} G_j)(x,t,y)=0, \quad (x,t)\in { Q}_0,\; y\in \Omega_0,\; j=1,2, \\ G_1(x,0,y)=\delta(x-y), \quad \frac{\partial}{\partial t}G_1(x,0,y)=0, \\ G_2(x,0,y)=0,\quad \frac{\partial}{\partial t}G_2(x,0,y)=\delta(x-y),\quad x,y\in {\Omega}_0 \end{gather*} where $\delta$ is Dirac delta-function. \begin{lemma}[\cite{L}] \label{lem1} The following relations hold: \[ G_j(x,t,y)=\int_0^t f_{j-\alpha}(\tau)G_0(x,t,y,\tau)d\tau,\quad (x,t)\in \bar{Q}_0, \; y\in \Omega_0,\; j=1,2. \] \end{lemma} \begin{lemma}\label{lem2} A Green's vector-function of the first boundary-value problem \eqref{eq2}--\eqref{in2} exists. \end{lemma} The above lemma is proved following the strategy in \cite[Lemma 2]{L-1}. \begin{theorem}\label{th1} If $g_0\in C^\gamma(Q_0)$, $\gamma\in (0,1)$, $g_j\in C^\gamma(\bar{\Omega}_0)$, $j=1,2$, $g_1|_{\Omega_1}=0$ then there exists a unique solution $u\in C_{2,\alpha}(\bar{Q}_0)$ of \eqref{eq2}--\eqref{in2}. It is defined by \begin{equation}\label{sys1} u(x,t)=\big({\mathfrak{G}_0}g_0\big)(x,t)+\big({\mathfrak{G}_1}g_1)(x,t) +\big({\mathfrak{G}_2}g_2)(x,t),\quad (x,t)\in \bar{Q}_0 \end{equation} where \begin{gather*} (\mathfrak{G}_0 g_0)(x,t) =\int_0^{t} d\tau\int_{\Omega_0}G_0(x,t,y,\tau)g_0(y,\tau)dy, \\ (\mathfrak{G}_j g_j)(x,t)=\int_{\Omega_0}G_j(x,t,y)g_j(y)dy, \quad j=1,2. \end{gather*} \end{theorem} \begin{proof} Taking Lemmas \ref{lem1} and \ref{lem2} into account, as in \cite{mon,Fr,ivas,voroshylov} for the Cauchy problems, we show that the function \eqref{sys1} belongs to $C_{2,\alpha}(\bar{Q}_0)$ and satisfies the problem \eqref{eq2}--\eqref{in2}. We use the estimates founded in \cite{mon,Koch,L,voroshylov}: \begin{gather*}%\label{oc1} |G_0(x,t,y,\tau)|\le \frac{C^*_0}{(t-\tau)|x-y|^{N-2}},\quad |x-y|^2<4(t-\tau)^\alpha,\\ |G_j(x,t,y)|\le\frac{C^*_j t^{j-1-\alpha}}{|x-y|^{N-2}},\quad j=1,2,\; |x-y|^2<4t^\alpha, \\ \begin{aligned} |G_0(x,t,y,\tau)| &\le \frac{{\hat C_0} (t-\tau)^{\alpha-1}}{|x-y|^{N}} \Big(\frac{|x-y|^2}{4(t-\tau)^\alpha}\Big)^{1+\frac{N}{2(2-\alpha)}} e^{-c(\frac{|x-y|^2}{4a_0 (t-\tau)^\alpha})^{\frac{1}{2-\alpha}}}\\ &\le \frac{C_0 (t-\tau)^{\alpha-1}}{|x-y|^N},\quad|x-y|^2>4(t-\tau)^\alpha \end{aligned} \\ \begin{aligned} G_j(x,t,y) &\le \frac{{\hat C}_j t^{j-1}}{|x-y|^{N}} \Big(\frac{|x-y|^2}{4t^\alpha}\Big)^{\frac{N}{2(2-\alpha)}} e^{-c(\frac{|x-y|^2}{4t^\alpha})^{\frac{1}{2-\alpha}}}\\ &\le \frac{C_j t^{j-1}}{|x-y|^N}, \quad j=1,2,\; |x-y|^2>4t^\alpha \end{aligned} \end{gather*} where $c, {C}^*_j, C_j, {\hat C}_j\quad (j=0,1,2)$ are positive constants; \begin{gather*} |G_j(x+\Delta x,t+\Delta t,y,\tau)-G_j(x,t,y,\tau)|\le A_{j}(x,t,y,\tau) [|\Delta x|+|\Delta t|^{\alpha/2}]^{\gamma}, \\ \begin{aligned} &|D^\beta_t G_j(x+\Delta x,t+\Delta t,y,\tau)-D^\beta_t G_j(x,t,y,\tau)|\\ &\le A_{\beta,j}(x,t,y,\tau)[|\Delta x|+|\Delta t|^{\alpha/2}]^{\gamma}\\ & \forall (x,t),(x+\Delta x,t+\Delta t)\in \bar{Q}_0,(y,\tau)\in \bar{Q}_j, \; j=0,1,2 \end{aligned} \end{gather*} with some $0<\gamma<1$ where non-negative functions $A_{j}(x,t,y,\tau)$, $A_{\beta,j}(x,t,y,\tau)$ have the same kind of estimates as $G_j(x,t,y,\tau)$, $D^\beta_t G_j(x,t,y,\tau)$, $j=0,1,2$, have, respectively, and $G_j(x,t,y,\tau)=G_j(x,t,y)$, $A_{j}(x,t,y,\tau)=A_j(x,t,y)$, $A_{\beta,j}(x,t,y,\tau)=A_{\beta,j}(x,t,y)$ for $j=1,2$. Note that for the general boundary-value problem to a parabolic equation with partial derivatives the last properties of a Green's vector-function were obtained in \cite{ivas}. \end{proof} \section{Existence and uniqueness theorems for the inverse problem}\label{Sect3} Now we prove the existence of a solution for the inverse problem \eqref{eq}--\eqref{b5}. It follows from the theorem \ref{th1} that under assumptions (A1), (A2), (A3) for a given $r\in C[0,T]$ the solution $u\in C_{2,\alpha}(\bar{Q}_0)$ of the first boundary-value problem \eqref{eq}--\eqref{b4} satisfies \begin{equation}\label{u1} \begin{aligned} u(x,t)&=-\int_{0}^{t}r(\tau)d\tau\int_{\Omega_0}G_0(x,t,y,\tau) D^\beta_\tau u(y,\tau)dy\\ &\quad +h_0(x,t,u,D^\beta_t u)+h(x,t),\quad (x,t)\in \Omega_0 \end{aligned} \end{equation} where \begin{equation}\label{h1} \begin{gathered} h_0(x,t,u,D^\beta_t u)=\int_{0}^{t}d\tau\int_{\Omega_0}{G}_0(x,t,y,\tau) F_0(y,\tau,u(y,\tau),D^\beta_\tau u(y,\tau))dy,\\ h(x,t)=\sum_{j=1}^2\int_{\Omega_0}{G}_j(x,t,y)F_j(y)dy,\quad (x,t)\in \Omega_0. \end{gathered} \end{equation} Conversely, any solution $u\in C^\gamma_\beta(Q_0)$ of \eqref{u1} belongs to $C_{2,\alpha}(\bar{Q}_0)$ and is the solution of \eqref{eq}--\eqref{b5}. It follows from the equation \eqref{eq} and assumption (A5) that \begin{align*} &\int_{\Omega_0}D^\alpha_t u(x,t)\varphi_0(x)dx+r(t) \int_{\Omega_0}D^\beta_t u(x,t)\varphi_0(x)dx\\ &= \int_{\Omega_0}u(x,t)\Delta \varphi_0(x)dx +\int_{\Omega_0}F_0(x,t,u(x,t),D^\beta_t u(x,t))\varphi_0(x)dx, \quad t\in (0,T]. \end{align*} Using \eqref{b5} we obtain \begin{align*} & D^\alpha F(t)+r(t)D^\beta F(t)\\ & =\int_{\Omega_0}u(x,t)\Delta \varphi_0(x)dx +\int_{\Omega_0}F_0(x,t,u(x,t),D^\beta_t u(x,t))\varphi_0(x)dx \end{align*} (here $D^\alpha F(t)=D^\alpha_t F(t)$ and so on); that is, by using (A4), \begin{equation}\label{p} \begin{aligned} r(t)&=\Big[\int_{\Omega_0}u(x,t)\Delta \varphi_0(x)dx+ \int_{\Omega_0}F_0(x,t,u(x,t),D^\beta_t u(x,t))\varphi_0(x)dx\\ &\quad -D^\alpha F(t)\Big] [D^\beta F(t)]^{-1},\quad t\in (0,T]. \end{aligned} \end{equation} Note that, for $u\in C^\gamma_\beta(Q_0)$, the function $r(t)$, defined by \eqref{p}, belongs to $C[0,T]$. By substituting the right-hand side of \eqref{p} into \eqref{u1} in place of $r(t)$ we obtain \begin{equation}\label{u2} \begin{aligned} u(x,t) &=\int_{0}^{t} [D^\beta F(\tau)]^{-1}d\tau\int_{\Omega_0}G_0(x,t,y,\tau)\\ &\quad\times \Big[\int_{\Omega_0}F_0(z,\tau,u(z,\tau),D^\beta_\tau u(z,\tau))\varphi_0(z)dz\\ &\quad +\int_{\Omega_0}u(z,\tau)\Delta \varphi_0(z)dz -D^\alpha F(\tau)\Big]D^\beta_\tau u(y,\tau)dy\\ &\quad +h_0(x,t,u(x,t),D^\beta_t u(x,t))+h(x,t),\quad (x,t)\in \bar{Q}_0, \end{aligned} \end{equation} where the functions $h_0,h$ are defined by \eqref{h1}. We have reduced the problem \eqref{eq}--\eqref{b5} to system \eqref{p}, \eqref{u2}. Conversely, a pair $(u,r)\in C^\gamma_\beta(Q_0)\times C[0,T]$ satisfying \eqref{p} and \eqref{u2} is a solution of the problem \eqref{eq}-\eqref{b5}. Thus, under assumptions (A1)--(A5) and \eqref{n}, a pair of functions $(u,r)\in C_{2,\alpha}({\bar Q}_0)\times C[0,T]$ is the solution of \eqref{eq}-\eqref{b5} if and only if the function $u\in C^\gamma_\beta(Q_0)$ is the solution of \eqref{u2}, with $r\in C[0,T]$ defined by \eqref{p}. \begin{theorem}\label{th2} Under the assumptions {\rm (A1)--(A5)} and the condition \eqref{n}, there exists $T^*\in (0,T]$ ($Q^*_0=\Omega_0\times (0,T^*]$) and a solution $(u,r)\in C_{2,\alpha}({\bar Q}^*_0)\times C[0,T^*]$ of \eqref{eq}-\eqref{b5}. The function $u$ is the solution of \eqref{u2}, and $r(t)$ is defined by \eqref{p}. \end{theorem} \begin{proof} From the previous conclusion, it is sufficient to prove the solvability of the equation \eqref{u2} in $C^\gamma_\beta(Q_0)$. We shall use the Schauder principle. Let $\|r\|_{C[0,T]}=\max_{t\in [0,T]}|r(t)|$, and \begin{align*} \|v\|_{C^\gamma_\beta(Q_0)} =\max\Big\{&\sup_{(x,t)\in Q_0}|v(x,t)|, \sup_{(x,t)\in Q_0}|D^\beta_t v(x,t)|, \\ &\sup_{(x,t)\in Q_0,|\Delta x|<1}\frac{|v(x+\Delta x,t)-v(x,t)|}{|\Delta x|^\gamma},\\ &\sup_{(x,t)\in Q_0,|\Delta x|<1}\frac{|D^\beta_t v(x+\Delta x,t) -D^\beta_t v(x,t)|}{|\Delta x|^\gamma}\Big\}, \end{align*} Let $R$ be some positive number, and \[ M_R=M_R(Q_0)=\{v\in C^\gamma_\beta(Q_0): \|v\|_{C^\gamma_\beta(Q_0)}\le R\}. \] On ${M}_R$ we consider the operator \begin{align*} (Pv)(x,t) &:=-\int_{0}^{t} [D^\beta F(\tau)]^{-1}d\tau\int_{\Omega_0}G_0(x,t,y,\tau)\big[ \int_{\Omega_0}v(z,\tau)\Delta \varphi_0(z)dz\\ &\quad +F_0(z,\tau,v(z,\tau),D^\beta_t v(z,\tau))\varphi_0(z)dz -D^\alpha_t F(\tau)\big]D^\beta_\tau v(y,\tau)dy\\ &\quad +h_0(x,t,v,D^\beta_t v)+h(x,t),\quad (x,t)\in \Omega_0,\; v\in M_R \end{align*} with the functions $h_0,h$ defined by \eqref{h1}. At the beginning we show the existence of $R>0$, $T^*\in (0,T]$ and therefore $M^*_R=M_R(Q^*_0)$ such that $P:M^*_R\to M^*_R$. For $v\in M_R$, $(x,t)\in \bar{Q}_0$ we find the estimates \begin{align*} &|h_0(x,t,v,D^\beta_t v)|\\ &=\Big|\int_0^t d\tau\int_{\Omega_0}G_0(x,t,y,\tau)F_0(y,\tau,v(y,\tau), D^\beta_t v(y,\tau))dy\Big|\\ &\le \int_0^t d\tau\Big[\int_{\substack{(y,\tau)\in {\Omega}_0:\\ |y-x|<2(t-\tau)^{\alpha/2}}} |G_0(x,t,y,\tau)|\, |F_0(y,\tau,v(y,\tau),D^\beta_t v(y,\tau))|dy\\ &\quad +\int_{\substack{(y,\tau)\in {\Omega}_0:\\ |y-x|>2(t-\tau)^{\alpha/2}}} |G_0(x,t,y,\tau)|\, |F_0(y,\tau,v(y,\tau),D^\beta_t v(y,\tau))|dy\Big] \\ &\le \int_0^t d\tau \Big[\int_{\substack{(y,\tau)\in {\Omega}_0:\\ |y-x|<2(t-\tau)^{\alpha/2}}} \frac{C^*}{(t-\tau)|y-x|^{N-2}} \big[A_0+|v(y,\tau|^q+|D^\beta_t v(y,\tau))|^p\big]dy \\ &\quad +\int_{\substack{(y,\tau)\in {\Omega}_0:\\ |y-x|>2(t-\tau)^{\alpha/2}}} \frac{C^*}{(t-\tau)^{1-\alpha}|y-x|^{N}} \big[A_0+|v(y,\tau|^q+|D^\beta_t v(y,\tau))|^p\big]\Big]dy\\ &\le C\int_0^t \Big[\frac{1}{(t-\tau)}\int_0^{2(t-\tau)^{\alpha/2}} \!\! r dr +\frac{1}{(t-\tau)^{1-\alpha}} \int_{2(t-\tau)^{\alpha/2}}^{\operatorname{diam}\Omega_0}\frac{dr}{r}\Big]d\tau \Big[A_0+B_0(R^q+R^p)\Big]\\ &\le \hat C\int_0^t \Big[(t-\tau)^{\alpha-1}+(t-\tau)^{\alpha-1}\ln \frac{\operatorname{diam} \Omega_0}{(t-\tau)^{\alpha/2}}\Big]d\tau \Big[A_0+B_0(R^q+R^p)\Big]\\ &\le k_0 t^{\alpha_1} \big[A_0+B_0(R^q+R^p)\big] \end{align*} where $C^*, C, \hat C, \hat k, k_0$ are positive constants, and $\alpha_1=\alpha-\varrho$, with $\varrho$ an arbitrary number in $(0,1)$. Also we have \begin{align*} &\Big|\int_{\Omega_0}G_j(x,t,y)F_j(y)dy\Big|\\ &\le \Big[\int_{\substack{(y,\tau)\in {\Omega}_0:\\ |y-x|<2t^{\alpha/2}}} G_j(x,t,y)dy +\int_{\substack{(y,\tau)\in {\Omega}_0:\\ |y-x|>2t^{\alpha/2}}} G_j(x,t,y)dy\Big] \|F_j\|_{C(\bar{\Omega}_0)}\\ &\le c_0\Big[\int_{\substack{(y,\tau)\in {\Omega}_0:\\ |y-x|<2t^{\alpha/2}}} \frac{t^{j-1-\alpha}}{|x-y|^{N-2}}dy\\ &\quad +\int_{\substack{(y,\tau)\in {\Omega}_0:\\ |y-x|>2t^{\alpha/2}}} \frac{t^{j-1}}{|y-x|^{N}} \big(\frac{|y-x|^2}{4t^\alpha}\big)^{\frac{N}{2(2-\alpha)}} e^{-c(\frac{|y-x|^2}{4t^\alpha})^{\frac{1}{2-\alpha}}}dy\Big] \|F_j\|_{C(\bar{\Omega}_0)}\\ & \le {\hat k}_j t^{j-1}\Big[1+\int_{2t^{\alpha/2}} ^{\operatorname{diam} \Omega_0}r^{\frac{N}{2-\alpha}-1}t^{-\frac{\alpha N}{2(2-\alpha)}}e^{-{\hat c}\Big(\frac{r^2}{t^\alpha}\Big)^{\frac{1}{2-\alpha}}}dr \Big]\cdot \|F_j\|_{C(\bar{\Omega}_0)}\\ &\le k_j t^{j-1}\|F_j\|_{C(\bar{\Omega}_0)}, \quad j=1,2 \end{align*} where $c_0,{\hat c}, {\hat k}_j, k_j$ ($j=1,2$) are positive constants. Therefore, \[ |h(x,t)|\le \sum_{j=1,2}k_jt^{j-1}\|F_j\|_{C(\bar{\Omega}_0)},\quad (x,t)\in \bar{Q}_0. \] Similarly, \begin{align*} &\Big|\int_{\Omega_0}F_0(y,\tau,v(y,\tau),D^\beta_t v(y,\tau))\varphi_0(z)dy\Big| \\ &\le \big[A_0+B_0(R^q+R^p)\big]\int_{\Omega_0} |\varphi_0(z)|dz\quad \forall (y,\tau)\in \bar{Q}_0 \end{align*} and therefore \begin{align*} &\Big|\int_{0}^{t} [D^\beta F(\tau)]^{-1}d\tau\int_{\Omega_0} G_0(x,t,y,\tau)F_0(z,\tau,v(z,\tau),D^\beta_t v(z,\tau))\varphi_0(z)dz\Big| \\ &\le \frac{k_0}{f} t^{\alpha_1}\big[A_0+B_0(R^q+R^p)\big]\int_{\Omega_0} |\varphi_0(z)|dz\quad \forall (y,\tau)\in \bar{Q}_0. \end{align*} Then, given $R\ge 1$, we obtain the estimate $$ |(Pv)(x,t)|\le \frac{k_0}{f} t^{\alpha_1}(c_1 R+c_2 R^2)+H_0(t) \le q_0 t^{\alpha_1} R^2+H_0,\quad (x,t)\in {\bar Q}_0 $$ where \begin{gather*} c_1=\int_{\Omega_0}dx\cdot \|D^\alpha F\|_{C[0,T]},\\ c_2=2B_0\Big(f+\int_{\Omega_0} |\varphi_0(z)|dz\Big)+\int_{\Omega_0}|\Delta \varphi_0(z)|dz,\\ H_0(t)=A_0 k_0 t^{\alpha_1}\Big(1+\frac{1}{f}\int_{\Omega_0} |\varphi_0(z)|dz\Big)+k_1\|F_1\|_{C({\bar \Omega}_0)} +k_2 t\|F_2\|_{C({\bar \Omega}_0)}\le H_0,\\ q_0=\frac{k_0 (c_1+c_2)}{f}. \end{gather*} In the same way for $v\in M_R$, $(x,t)\in Q_0$, $|\Delta x|<1$ we obtain \[ \frac{|(Pv)(x+\Delta x,t)-(Pv)(x,t)|}{|\Delta x|^\gamma} \le q_1 t^{\alpha_1} R^2+H_1,\quad (x,t)\in Q_0. \] Here and later $q_j,c_j,H_j$ (j=1,2,\dots) are positive numbers. For every $g\in C^\gamma(Q_0)$ we have \[ D^\beta_t\big({\mathfrak{G}_0}g\big)(x,t)=\int_{0}^{t} \frac{(t-\tau)^{-\beta}d\tau}{\Gamma(1-\beta)} \int_{\Omega_0}{G}_0(x,t,y,\tau)g(y,\tau)dy, \quad (x,t)\in Q_0 \] and, as previously, we find that \[ |D^\beta_t\big({\mathfrak{G}_0}g\big)(x,t)| \le {\tilde q}_0 t^{\alpha_1-\beta}\|g\|_{C(Q_0)},\quad (x,t)\in Q_0,\;\;{\tilde q}_0=const>0. \] Furthermore, \begin{align*} D^\beta_t\big({\mathfrak{G}_1}F_1\big)(x,t) &=\frac{\partial}{\partial t}\int_{0}^{t} \frac{(t-\tau)^{-\beta}d\tau}{\Gamma(1-\beta)}\int_{\Omega_0}{G}_1(x,\tau,y) F_1(y)dy-f_{1-\beta}(t)F_1(x) \\ &=\int_{0}^{t}f_{1-\beta}(t-\tau)\big({\mathfrak{G}_1}F_1\big)_\tau(x,\tau)d\tau, \end{align*} \begin{align*} D^\beta_t\big({\mathfrak{G}_2}F_2\big)(x,t) &=\frac{\partial}{\partial t}\int_{0}^{t} \frac{(t-\tau)^{-\beta}d\tau}{\Gamma(1-\beta)} \int_{\Omega_0}{G}_2(x,\tau,y)F_2(y)dy-f_{2-\beta}(t)F_2(x)\\ &=\int_{0}^{t}f_{1-\beta}(t-\tau)\big({\mathfrak{G}_2}F_2\big)_\tau(x,\tau)d\tau. \end{align*} Since $\big({\mathfrak{G}_j}F_j\big)_\tau$ ($j=1,2$) are continuous functions on $\bar{Q}_0$, we have \[ \big|D^\beta_t\big({\mathfrak{G}_j}F_j\big)(x,t)\big|\le c_{2+j}t^{1-\beta},\quad (x,t)\in {\bar Q}_0,\; j=1,2. \] So, \[ |D^\beta_t(Pv)(x,t)|\le q_2 t^{\alpha_2}R^2+H_2, \quad (x,t)\in {\bar Q}_0 \] and similarly \[ \frac{|D^\beta_t(Pv)(x+\Delta x,t)-D^\beta_t(Pv)(x,t)|}{|\Delta x|^\gamma} \le q_3 t^{\alpha_2}R^2+H_3, \quad (x,t)\in Q_0,\;|\Delta x|<1 \] for all $v\in M_R$ with $\alpha_2=\alpha_1-\beta$ and \begin{gather*} H_2=c_5+c_6\|F_1\|_{C({\bar \Omega}_0)}+c_7 t\|F_2\|_{C({\bar \Omega}_0)},\\ H_3=c_8+c_9\|F_1\|_{C({\bar \Omega}_0)}+c_{10}\|F_2\|_{C({\bar \Omega}_0)}. \end{gather*} As a result we obtain \begin{align*} &\|Pv\|_{C^\gamma_\beta(Q_0)}\\ &\le \max_{t\in[0,T]}\max\{q_0 t^{\alpha_1}R^2+H_0,q_1 t^{\alpha_1}R^2 +H_1,q_2t^{\alpha_2}R^2+H_2,q_3t^{\alpha_2}R^2+H_3\}\\ &\le \max_{t\in[0,T]}[qR^2 t^{\alpha_2}+H]\quad \forall v\in M_R, \; R\ge 1 \end{align*} with $q=\max\{q_0T^\beta,q_1T^\beta,q_2,q_3\}$, $H=\max\{H_0,H_1,H_2,H_3\}$. To show the inequality \begin{equation}\label{o2} \max\{qR^2 t^{\alpha_2}+H,1\}\le R\quad \forall t\in [0,T^*],\; v\in M^*_R \end{equation} consider the function $w(s)=qs^2 t^{\alpha_2}-s$, $s\ge 0$. We find $w'(s)=2q t^{\alpha_2}s-1$ and prove that $s_0=s_0(t)=[2q t^{\alpha_2}]^{-1}$ is the point of the minimum of $f(s)$. Then the inequality \[ \|Pv\|_{C^\gamma_\beta(Q^*_0)}\le R\quad \forall v\in M^*_R \] is satisfied for some $R\ge \max\{1,H\}$, $T^*=\min\{t^*,T\}$ if $q t^{\alpha_2}s_0^2-s_0\le -H$ and $2q t^{\alpha_2}\max\{1,H\}\le 1$ for all $t\in [0,t^*]$. We have $q t^{\alpha_2}s_0-s_0=-\frac{1}{4q t^{\alpha_2}}$. There exists $t^*>0$ such that $4q t^{\alpha_2}H\le 1$ and $2q t^{\alpha_2}\max\{1,H\}\le 1$ for all $t\in [0,t^*]$. Then \[ t^*=\min\{[\frac{1}{4q H}]^{1/\alpha_2}, [\frac{1}{2q\max\{1,H\}}]^{1/\alpha_2}\}. \] Note that \eqref{n} and (A4) imply $\|F_1\|_{C(\bar{\Omega}_0)}>0$. We have proven the existence of $R\ge 1$, $T^*>0$ such that $P:M^*_R\to M^*_R$. The operator $P$ is continuous on \[ {\tilde M}^*_R=\{v\in C_\beta(Q^*_0): \|v\|_{C_\beta(Q^*_0)}=\max\{\|v\|_{C(Q^*_0)},\|D^\beta_t v\|_{C(Q^*_0)}\}\le R\}; \] thus, on $M^*_R$. Namely, for $v_1,v_2\in {\tilde M}^*_R$, $(x,t)\in Q^*_0$, \begin{align*} &|(Pv_1)(x,t)-(Pv_2)(x,t)|\\ &=\Big|\int_{0}^{t}[D^\beta F(\tau)]^{-1}d\tau\int_{\Omega_0}G_0(x,t,y,\tau) \Big[\int_{\Omega_0}v_2(z,\tau)\Delta \varphi_0(z)dz [D^\beta_\tau v_2(y,\tau)\\ &\quad -D^\beta_\tau v_1(z,\tau)] -\int_{\Omega_0}[v_1(z,\tau)-v_2(z,\tau)] \Delta \varphi_0(z)dz\cdot D^\beta_\tau v_1(y,\tau)\\ &\quad +\int_{\Omega_0}[F_0(z,\tau,v_1(z,\tau),D^\beta_\tau v_1(z,\tau) -F_0(z,\tau,v_2(z,\tau),D^\beta_\tau v_2(z,\tau)]\varphi_0(z)dz\Big]dy\\ &\quad +h_0(z,\tau,v_1(z,\tau),D^\beta_\tau v_1(z,\tau) -h_0(z,\tau,v_2(z,\tau),D^\beta_\tau v_2(z,\tau)\Big| \\ &\le c_{11}\sup_{(x,t)\in Q^*_0}\int_{0}^{t}[D^\beta F(\tau)]^{-1}d\tau \int_{\Omega_0}\big|G_0(x,t,y,\tau)\big|dy\\ &\quad \times \Big[\|v_2\|_{C(Q^*_0)}\|D^\beta v_1-D^\beta v_2\|_{C(Q^*_0)} +\|D^\beta v_1\|_{C(Q^*_0)}\|v_1-v_2\|_{C(Q^*_0)}\\ &\quad +2D_0\|v_1-v_2\|^q_{C(Q^*_0)}+2D_0\|D^\beta v_1-D^\beta v_2\|^p_{C(Q^*_0)}\Big]\\ &\quad +2D_0\sup_{(x,t)\in Q^*_0}\int_{0}^{t}d\tau\int_{\Omega_0}\big|G_0(x,t,y,\tau) \big|dy \Big[\|v_1-v_2\|^q_{C(Q^*_0)}\\ &\quad +2D_0\|D^\beta v_1 -D^\beta v_2\|^p_{C(Q^*_0)}\Big] \\ &\le c_{12}(T^*)^{\alpha_1}R\|v_1-v_2\|_{C^\gamma_\beta(Q^*_0)}. \end{align*} Similarly, by using previous estimates, \[ |D^\beta_t(Pv_1)(x,t)-D^\beta_t(Pv_2)(x,t)| \le c_{13} (T^*)^{\alpha_2} R\|v_1-v_2\|_{C^\gamma_\beta(Q^*_0)} \] for all $v_1,v_2\in {\tilde M}^*_R, \;(x,t)\in \bar{Q^*}_0$. The operator $P$ is compact on ${\tilde M}^*_R$ (and thus on $M^*_R$): it was established earlier the uniform boundedness of the set \[ P{\tilde M}^*_R:=\{(Pv)(x,t),\,(x,t)\in Q^*_0: v\in {\tilde M}^*_R\} \] in addition, it follows from the properties of Green's operators that for all $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)$ such that for all $(x,t)\in Q^*_0$, $|\Delta x|<\delta$, $|\Delta t|<\delta$ and for all $v\in {\tilde M}^*_R$ \begin{gather*} \sup_{(x,t)\in Q^*_0}|(Pv)(x+\Delta x,t+\Delta t)-(Pv)(x,t)|<\varepsilon, \\ \sup_{(x,t)\in Q^*_0}|D^\beta_t(Pv)(x+\Delta x,t+\Delta t)-D^\beta_t(Pv)(x,t)| <\varepsilon. \end{gather*} As a result, the operator $P$ is equicontinuous on $M^*_R$. According to Schauder principle there exists a solution $u\in M^*_R$ of the equation \eqref{u2}. \end{proof} \begin{theorem}\label{th3} Assume that $F_0\in C^1(Q_0\times \mathbb{R}^2)$ and is bounded, $D^\beta F\in C[0,T]$ and $D^\beta F(t)\neq 0$, $t\in [0,T]$, $\varphi$ satisfies the assumption (A5) and $\varphi(x)\ne 0$, $x\in \Omega_0$. Then a solution $(u,r)\in C_{2,\alpha}({\bar Q}_0)\times C[0,T]$ of the problem \eqref{eq}-\eqref{b5} is unique. \end{theorem} \begin{proof} Take two solutions $(u_1,r_1),(u_2,r_2)\in C_{2,\alpha}({\bar Q}_0)\times C[0,T]$ of \eqref{eq}-\eqref{b5} and substitute them into equation \eqref{eq}. For $u=u_1-u_2$, $r=r_1-r_2$ we obtain the equation \[ D_t^\alpha u=\Delta u-r_1(t)D_t^\beta u-r(t)D_t^\beta u_2 +F_0(x,t,u_1,D_t^\beta u_1)-F_0(x,t,u_2,D_t^\beta u_2). \] By Hadamard lemma \[ F_0(x,t,u_1,D_t^\beta u_1)-F_0(x,t,u_2,D_t^\beta u_2) =F_{01}(x,t)u+F_{02}(x,t)D_t^\beta u \] with some known functions $F_{0j}$, $j=1,2$, which are continuous and bounded on $Q_0$, depend on $u_1,u_2$, $D_t^\beta u_1,D_t^\beta u_2$. Then the previous equation becomes \[ D_t^\alpha u+\big(r_1(t)-F_{02}(x,t)\big)D_t^\beta u =\Delta u+F_{01}(x,t)u-r(t)D_t^\beta u_2,\quad (x,t)\in Q_0. \] It follows from the boundary condition that \[u(x,t)=0,\quad x\in \bar{\Omega}_1,\quad t\in[0,T],\] and from the initial conditions \[ u(x,0)=0,\quad u_t(x,0)=0,\quad x\in \bar{\Omega}_0. \] Let $G^*_0(x,t,y,\tau)$ be the main Green's function of the first boundary-value problem for the equation \[ D_t^\alpha u+\big(r_1(t)-F_{02}(x,t)\big)D_t^\beta u=\Delta u+F_{01}(x,t)u. \] Then the function $u(x,t)$ satisfies the equation \[ u(x,t)=-\int_{0}^{t}d\tau\int_{\Omega_0}G^*_0(x,t,y,\tau) D_\tau^\beta u_2(y,\tau)r(\tau)dy,\quad (x,t)\in \bar{Q}_0. \] It follows from the over-determination condition \eqref{b5} that \begin{equation}\label{p2} \begin{aligned} r(t)D^\beta F(t) &=\int_{\Omega_0}\Big[u(x,t)\Delta \varphi_0(x)\\ &\quad +\Big(F_{01}(x,t)u(x,t)+F_{02}(x,t)D_t^\beta u(x,t)\Big)\varphi_0(x)\Big]dx, \end{aligned} \end{equation} and then $u(x,t)$ satisfies the equation \begin{equation}\label{eqq} \begin{aligned} u(x,t)&=\int_{0}^{t}\frac{d\tau}{D^\beta F(\tau)} \int_{\Omega_0}K^*(x,t,\tau)\Big[\big(F_{01}(z,\tau) \varphi_0(z)+\Delta \varphi_0(z)\big)u(z,\tau)dz\\ &\quad +F_{02}(z,\tau)\varphi_0(z)D_\tau^\beta u(z,\tau)\Big]dz,\quad (x,t)\in \bar{Q}_0 \end{aligned} \end{equation} where \[ K^*(x,t,\tau)=\int_{\Omega_0}G^*_0(x,t,y,\tau)D_\tau^\beta u_2(y,\tau)dy \] is continuous with respect to $x$ and integrable in time function. If $F_{01}(z,\tau)=F_{02}(z,\tau)=0$, $(z,\tau)\in Q_0$ then by the uniqueness of the solution of this linear second type Volterra integral equation we obtain $u(x,t)=0$, $(x,t)\in Q_0$. Then it follows from \eqref{p2} that $r(t)D^\beta F(t)=0$, $t\in [0,T]$. Since $D^\beta F(t)\neq 0$ on $[0,T]$ (under the assumptions of this theorem), it follows that $r(t)\equiv 0$ for $t\in [0,T]$. Assume that \begin{equation}\label{vq} |F_{01}(z,\tau)|+|F_{02}(z,\tau)|\ne 0,\quad (z,\tau)\in Q_0. \end{equation} If $F_{02}(z,\tau)=0$, $(z,\tau)\in Q_0$ then by the uniqueness of the solution of the linear second type Volterra integral equation \eqref{eqq} with integrable kernel \[ K^*(x,t,\tau)\big(F_{01}(z,\tau)\varphi_0(z)+\Delta \varphi_0(z)\big) \] we obtain, as in previous case, that $u(x,t)=0$, $(x,t)\in Q_0$ and then, from \eqref{p2}, that $r(t)\equiv 0$, $t\in [0,T]$. In the general case denote \[ V(x,t)=\big(F_{01}(x,t)\varphi_0(x)+\Delta \varphi_0(x)\big)u(x,t) +F_{02}(x,t)\varphi_0(x)D^\beta_t u(x,t). \] Then \eqref{eqq} implies \begin{align*} V(x,t)&=\int_{0}^{t}\frac{d\tau}{D^\beta F(\tau)}\int_{\Omega_0} \big(F_{01}(x,t)\varphi_0(x)+\Delta \varphi_0(x)\big)K^*(x,t,\tau)V(z,\tau)dz\\ &\quad +F_{02}(x,t)\varphi_0(x)D^\beta_t \int_{0}^{t}\frac{d\tau} {D^\beta F(\tau)}\int_{\Omega_0}K^*(x,t,\tau)V(z,\tau)dz; \end{align*} that is, \[ V(x,t)=\int_{0}^{t}d\tau\int_{\Omega_0}K(x,t,z,\tau)V(z,\tau)dz, \quad (x,t)\in \bar{Q}_0, \] where \begin{align*} &K(x,t,z,\tau)\\ &=\frac{1}{D^\beta F(\tau)}\Big[F_{01}(x,t)\varphi_0(x)+\Delta \varphi_0(x) +\frac{F_{02}(x,t)\varphi_0(x)(t-\tau)^{-\beta}}{\Gamma(1-\beta)} \Big]K^*(x,t,\tau). \end{align*} By the uniqueness of the solution of this linear second type Volterra integral equation with integrable kernel $K(x,t,z,\tau)$ we obtain $V(x,t)=0$, $(x,t)\in Q_0$. Note that \eqref{vq} implies \[ |F_{01}(x,t)\varphi_0(x)+\Delta \varphi_0(x)| +|F_{02}(x,t)\varphi_0(x)|\ne 0, \quad (x,t)\in Q_0. \] Note also that \begin{align*} D^\beta_t u(x,t)=0&\iff f_{-\beta}(t)\ast u(x,t)=0\\ &\iff f_{\beta}(t)\ast f_{-\beta}(t)\ast u(x,t)=0\\ &\iff u(x,t)=0,\;\; (x,t)\in Q_0, \end{align*} for the function $u(x,t)$ satisfying zero initial conditions. Then it follows from the previous results that $u(x,t)=0$, $(x,t)\in Q_0$ and from \eqref{p2}, by the assumptions of this theorem, we obtain $r(t)\equiv 0$, $t\in [0,T]$. In separate case $F_{01}(x,t)\varphi_0(x)+\Delta \varphi_0(x)=0$ for all $(x,t)\in Q_0$ we may put $V_1(x,t)=F_{02}(x,t)\varphi_0(x)D^\beta_t u(x,t)$ and, as before, obtain the linear second type Volterra integral equation \[ V_1(x,t)=\int_{0}^{t}d\tau\int_{\Omega_0}K_1(x,t,z,\tau)V_1(z,\tau)dz,\quad (x,t)\in \bar{Q}_0 \] with integrable kernel \[ K_1(x,t,z,\tau)=F_{02}(x,t)\varphi_0(x)K^*(x,t,\tau)(t-\tau)^{-\beta}\big/ \Gamma(1-\beta)D^\beta F(\tau). \] As before, from here we obtain $V_1(x,t)=0$, $(x,t)\in Q_0$ and, as in the general case, since $F_{02}(x,t)\varphi_0(x)\ne 0$ on $Q_0$, conclude that $u(x,t)=0$, $(x,t)\in Q_0$ and $r(t)\equiv 0$, $t\in [0,T]$. \end{proof} The similar result holds for the inverse problem on determination of a pair of functions $(u,b)$: a solution $u$ of the first (or second) boundary-value problem for the equation \[ D^\alpha_t u=\Delta u+b(t)u=F_0(x,t), \quad (x,t) \in Q_0 \] and an unknown coefficient $b(t)$ under the same over-determinating condition \eqref{b2}. We may study the cases $N=1,2$ in the same way. \subsection*{Acknowledgments} The authors are grateful to Prof. Mokhtar Kirane for useful discussions. \begin{thebibliography}{00} \bibitem{Aleroev} T. S. Aleroev, M. Kirane, S. A. Malik; \emph{Determination of a source term for a time fractional diffusion equation with an integral type over-determination condition}, Electronic J. of Differential Equations, 2013 (2013), no. 270, 1--16. \bibitem{Anh} V. V. Anh, N. N. Leonenko; \emph{Spectral analysis of fractional kinetic equations with random datas}, 104 (2001), no. 5/6, 1349-1387. \bibitem{Cheng} J. Cheng, J. Nakagawa, M. Yamamoto, T. Yamazaki; \emph{Uniqueness in an inverse problem for a one-dimentional fractional diffusion equation}, Inverse problems, 25 (2000), 1--16. \bibitem{djr1} M. M. Djrbashian, A. B. Nersessyan; \emph{Fractional derivatives and Cauchy problem for differentials of fractional order}, Izv. AN Arm. SSR. Matamatika, 3 (1968), 3-29. \bibitem{Duan} Jun Sheng Duan; \emph{Time- and space-fractional partial differential equations}, J. Math. Phis., 46 (2005), 013504. \bibitem{El-Borai} Mahmoud M. El-Borai; \emph{On the solvability of an inverse fractional abstract Cauchy problem}, LJRRAS, 4 (2010), 411--415. \bibitem{mon} S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei; \emph{Analytic methods in the theory of differential and pseudo-differential equations of parabolic type}, Birkhauser Verlag, Basel-Boston-Berlin, 2004. \bibitem{Fr} A. Friedman; \emph{Partial differential equations of parabolic type}, Englewood Cliffs, N. J., Prentice-Hall, 1964. \bibitem{Hatano} Y. Hatano, J. Nakagawa, Sh. Wang, M. Yamamoto; \emph{Determination of order in fractional diffusion equation}, Journal of Math-for-Industry, 5A, (2013), 51--57. \bibitem{ivas} S. D. Ivasyshen; \emph{Green matrix of parabolic boundary value problems}, Vyshcha shkola, Kiev, 1990. \bibitem{Koch} A. N. Kochubei; \emph{Fractional-order diffusion}, Differential Equations, 26 (1990), 485-492. \bibitem{Kocubei1} A. N. Kochubei, S. D. Eidelman; \emph{Equations of one-dimentional fractional-order diffusion}, Dop. NAS of Ukraine, 12 (2003), 11-16. \bibitem{LLP} H. Lopushanska, A. Lopushansky, E. Pasichnyk; \emph{The Cauchy problem in a space of generalized functions for the equations possessing the fractional time derivative}, Sib. Math. J., 52 (2011), no. 6, 1288-1299. \bibitem{LL} H. P. Lopushanska, A. O. Lopushansky; \emph{Space-time fractional Cauchy problem in spaces of generalized functions}, Ukrainian Math. J., 64 (2013), no. 8, 1215-1230. doi: 10.1007/s11253-013-0711-z (translaited from Ukr. Mat. Zhurn. 64 (2012), 8, 1067-1080) \bibitem{L} A. O. Lopushansky; \emph{Solution of fractional Cauchy problem in spaces of generalized functions}, Visnyk Lviv. Univ. Ser. Mech.-Math., 77 (2012), 132-144. \bibitem{Lopushansky} A. O. Lopushansky; \emph{The Cauchy problem for an equation with fractional derivatives in Bessel potential spaces}, Sib. Math. J., 55 (2014), no. 6, 1089-1097 - DOI: 10.1134/30037446614060111. \bibitem{L-1} A. O. Lopushansky, H. P. Lopushanska; \emph{One inverse boundary value problem for diffusion-wave equation with fractional derivarive}, Ukr. math. J., 66 (2014), no. 5, 655-667. \bibitem{Luchko} Yu. Luchko; \emph{Boundary value problem for the generalized time-fractional diffusion equation of distributed order}, Fract. Calc. Appl. Anal., 12 (2009), no 4, 409-422. \bibitem{E} M. M. Meerschaert, Nane Erkan, P. Vallaisamy; \emph{Fractional Cauchy problems on bounded domains}, Ann. Probab., 37 (2009), 979-1007. \bibitem{Nakagawa} J. Nakagawa, K. Sakamoto, M. Yamamoto; \emph{Overview to mathematical analysis for fractional diffusion equation -- new mathematical aspects motivated by industrial collaboration}, Journal of Math-for-Industry, 2A (2010), 99--108. \bibitem{Povstenko} Y. Povstenko; \emph{Theories of thermal stresses based on space-time-fractional telegraph equations}, Computers and Mathematics with Applications, 64 (2012), 3321 --3328. \bibitem{Rundell} W. Rundell, X. Xu and L. Zuo; \emph{The determination of an unknown boundary condition in fractional diffusion equation}, Applicable Analysis, 1 (2012), 1--16. \bibitem{Sh} G. Å. Shilov; \emph{Mathimatical Analyses. Second special curse}, Nauka, Moskow, 1965. \bibitem{voroshylov} A. A. Voroshylov, A. A. Kilbas; \emph{Conditions of the existence of classical solution of the Cauchy problem for diffusion-wave equation with Caputo partial derivative}, Dokl. Ak. Nauk., 414 (2007), no. 4, 1-4. \bibitem{Zhang} Y. Zhang, X. Xu; \emph{Inverse source problem for a fractional diffusion equation}, Inverse problems, 27 (2011), 1--12. \end{thebibliography} \end{document}