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HIGH ENERGY SOLUTIONS TO p(x)-LAPLACIAN EQUATIONS
OF SCHRÖDINGER TYPE

XIAOYAN WANG, JINGHUA YAO, DUCHAO LIU

Abstract. In this article, we study nonlinear Schrödinger type equations in
RN under the framework of variable exponent spaces. We proposed new as-

sumptions on the nonlinear term to yield bounded Palais-Smale sequences and

then prove that the special sequences we found converge to critical points re-
spectively. The main arguments are based on the geometry supplied by Foun-

tain Theorem. Consequently, we showed that the equation under investigation

admits a sequence of weak solutions with high energies.

1. Introduction

In recent years, there has been increasing interests in nonlinear partial differential
equations with nonstandard variable growth. In this article, inspired by Fan [15, 16]
and Jeanjean [29], we study the following nonlinear Schrödinger type equation on
the whole space RN :

−div(|Du|p(x)−2Du) + V (x)|u|p(x)−2u = f(x, u), x ∈ RN ,

u ∈W 1,p(x)(RN ),
(1.1)

where div(|Du|p(x)−2Du) is called the p(x)-Laplacian and V (x) satisfies the follow-
ing condition.

(V1) V (x) ∈ C(RN ,R), infx∈RN V (x) ≥ V0 > 0 where V0 is a constant, and for
every constant M > 0, the Lebesgue measure of the set {x ∈ RN ;V (x) ≤
M} is finite.

The equations involving the p(x)-Laplacian (also called p(x)-Laplacian equa-
tions) arise in the modeling of electrorheological fluids (see [2, 7, 40] and [36])
and image restorations among many other problems in physics and engineering.
A number of classical equations, for example the classical fluid equations, are also
studied in this general framework (see the new monograph [9] and the references
therein). Different from the Laplacian ∆ :=

∑
j ∂

2
j (linear and homogeneous) and

the p-Laplacian ∆pu(x) := div(|Du|p−2Du) (nonlinear but homonegeous) where
0 < p < ∞ is a positive number, the p(x)-Laplacian is nonlinear and nonhomo-
geneous. Consequently, the problems involving p(x)-Laplacian are usually much
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harder than those involving Laplacian or p-Laplacian from this point of view. Be-
sides the applications we mentioned at the beginning of this paragraph, the p(x)-
Laplacian equations can be regarded as a nonlinear and nonhomogeneous mathe-
matical generalization of the stationary Schrödinger equation Hu(x) = 0 where the
Hamiltonian is usually given by H := − ~2

2m∆ + V (x). For these connections and
potential further generalizations, see [4, 6, 41].

To proceed, we recall the definitions of variable exponent spaces in order to
describe our problem precisely.

Let Ω be an open domain in RN and denote:

C+(Ω) := {p(x) ∈ C(Ω) : 1 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
x∈Ω

p(x) <∞}.

For p(x) ∈ C+(Ω), we consider the set:

Lp(x)(Ω) = {u : u is real-valued measurable function,
∫

Ω

|u|p(x) dx <∞}.

We introduce a norm on Lp(x)(Ω) by

|u|p(x),Ω := inf{k > 0 :
∫

Ω

|u
k
|p(x) dx ≤ 1},

and (Lp(x)(Ω), | · |p(x),Ω) is a Banach Space and we call it a variable exponent
Lebesgue space.

Consequently, W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x); |Du| ∈ Lp(x)(Ω)}
with the norm

‖u‖p(x),Ω = inf{k > 0;
∫

Ω

|Du
k
|p(x) + |u

k
|p(x) dx ≤ 1}.

Then (W 1,p(x)Ω, ‖ · ‖p(x),Ω) also becomes a Banach space and we call it a variable
exponent Sobolev space.

For any function V (x) satisfying condition (V1), let

E := {u ∈W 1,p(x)(RN );
∫

RN

V (x)|u|p(x) dx <∞}.

Then E is a Banach space with the following norm

‖u‖ = inf{k > 0;
∫

RN

|Du
k
|p(x) + V (x)|u

k
|p(x) dx ≤ 1}.

Of course, our working space is E. Under proper assumptions, we shall show that
(1.1) has a sequence of high energy solutions {un} in E in this paper (Theorem
2.2).

In the previous two decades, there have been many studies on variable exponent
spaces; ssee [1, 2, 7, 10, 11], [12]-[23], [30], [40], [48]-[50]). These kinds of spaces are
extensions of the usual Lebesgue and Sobolev spaces Lp(Ω) and Wm,p(Ω) where
1 ≤ p < ∞ is a constant. They are special Orlicz spaces (see [26]). A lot of
mathematical work has been done under the framework of the variable exponent
spaces (see [1, 5, 14, 36, 38, 45]). Meanwhile, a number of typical and interesting
problems have come into light (see [5, 8, 13, 18, 23, 27, 28, 37, 38, 42]). For example,
local conditions on the exponent p(x) can assure the multiplicity of solutions to
p(x)-Laplacian equation; see [45].
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There is no doubt that there are mainly two characteristics when we work with
variable exponent spaces. On the one hand, these spaces are more complicated
than the usual spaces [3, 11, 20, 30]. As a result, the related problems are more
difficult. On the other hand, we will obtain more general results if we work under
the framework of the variable exponent spaces because there spaces are natural
generalizations of the usual Sobolev and Lebesgue spaces.

Fan [15] considered a constrained minimization problem involving p(x)-Laplacian
in RN . Under periodic assumptions, the author could elaborately deal with this un-
bounded problem by concentration-compactness principle of Lions [31, 32, 33, 34].
In a following paper, Fan [16] considered p(x)-Laplacian equations in RN with pe-
riodic data and non-periodic perturbations. Under proper conditions, the author
was able to show the existence of solutions and gave a concise description of the
ground sate solutions. It is worth noting that the periodicity assumptions are essen-
tial for the validity of concentration-compactness principle under the framework of
variable exponent spaces (see the recent paper of Bonder and coworkers [24, 25] for
the concentration-compactness theory in the variable exponent space framework in-
volving critical exponents). In our paper, we also consider an unbounded problem.
However, under condition (V1), we could get some compact embedding theorems.
In fact, other tricks can be used to recover some kinds of compactness. For example,
weight function method was used in [12]. In [46], we considered a combined effect
of the symmetry of the space and the coerciveness of potential V (x).

We also want to mention the celebrated paper of Jeanjean [29]. In this paper,
the author illustrated a completely new idea to guarantee bounded (PS) sequences
for a given C1 functional. Roughly speaking, we could consider a family of func-
tionals which contains the original one we are interested in. When given additional
structure assumptions, almost all the functional in the family have bounded (PS)
sequences if the family of functionals enjoy specific geometry properties. In fact,
the information of relevant functionals in the family can provide useful information
for the original functional. Under our conditions (see Section 2), we could show
that the functional we consider satisfies the fountain geometry. Then following
Jeanjean’s idea and [51, Theorem 3.6], we could show that equation (1.1) has a
sequence of high energy solutions. We want to emphasize that our condition (C4)
is somewhat mild and is first used in dealing with p(x)-Laplacian equations. In
addition, we do not need the usual Ambrosetti-Rabinowits type condition here.

For the reader’s convenience, we recall some basic properties of the variable
exponent spaces and nonlinear functionals defined on these spaces in the following
part of this section.

Proposition 1.1 ([20, 21]). Lp(x)(Ω),W 1,p(x)(Ω) are both separable, reflexive and
uniformly convex Banach Spaces.

Proposition 1.2 ([20, 21]). Let ρ(u) =
∫

Ω
|u(x)|p(x) dx for u ∈ Lp(x)(Ω), then we

have
(1) |u|p(x),Ω = 1⇔ ρ(u) = 1;

(2) |u|p(x),Ω ≤ 1⇒ |u|p
+

p(x),Ω ≤ ρ(u) ≤ |u|p
−

p(x),Ω;

(3) |u|p(x),Ω ≥ 1⇒ |u|p
−

p(x),Ω ≤ ρ(u) ≤ |u|p
+

p(x),Ω;
(4) For un ∈ Lp(x)(Ω), ρ(un)→ 0⇔ |un|p(x),Ω → 0 as n→∞;
(5) For un ∈ Lp(x)(Ω), ρ(un)→∞⇔ |un|p(x),Ω →∞ as n→∞.
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Proposition 1.3 ([20, 21, 39]). Let ρ(u) =
∫

Ω
|Du(x)|p(x) + |u(x)|p(x) dx for u ∈

W 1,p(x)(Ω). Then we have
(1) ‖u‖p(x),Ω = 1⇔ ρ(u) = 1;

(2) ‖u‖p(x),Ω ≤ 1⇒ ‖u‖p
+

p(x),Ω ≤ ρ(u) ≤ ‖u‖p
−

p(x),Ω;

(3) ‖u‖p(x),Ω ≥ 1⇒ ‖u‖p
−

p(x),Ω ≤ ρ(u) ≤ ‖u‖p
+

p(x),Ω;
(4) For un ∈W 1,p(x)(Ω), ρ(un)→ 0⇔ ‖un‖p(x),Ω → 0 as n→∞;
(5) For un ∈W 1,p(x)(Ω), ρ(un)→∞⇔ ‖un‖p(x),Ω →∞ as n→∞.

The following property can be easily verified:

Proposition 1.4. For u ∈ E, let ρ(u) =
∫

RN |Du(x)|p(x) +V (x)|u(x)|p(x) dx. Then
we have the following relations:

(1) ‖u‖ = 1⇔ ρ(u) = 1;
(2) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;
(3) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ .

From the above-mentioned properties, we can see that the norm and the integral
functionals (i.e., the ρ(u)′s) don’t enjoy the equality relation, which is typical in
variable exponent spaces and very different from the constant exponent case.

Notation. For p(x) ∈ C+(Ω), p∗(x) refers to the critical exponent of p(x) in
the sense of Sobolev embedding, i.e., p∗(x) = Np(x)

N−p(x) if p(x) < N ; p∗(x) = ∞,
otherwise. For two continuous functions a(x) and b(x) in C(Ω), a(x)� b(x) means
that infx∈Ω(b(x) − a(x)) > 0. We will use the symbols “⇀”, “→” to represent
weak convergence and strong convergence in a Banach space respectively. And
“↪→”, “↪→↪→” will be used to denote continuous embedding and compact embedding
between spaces respectively. We use C to denote a generic positive constant which
may be different from line to line.

Proposition 1.5 ([20, 21, 45]). (1) Let Ω be a bounded domain in RN . As-
sume that the boundary ∂Ω possesses cone property and q(x) ∈ C(Ω, R)
with 1 ≤ q(x)� p∗(x), then W 1,p(x)(Ω) ↪→↪→ Lq(x)(Ω)

(2) W 1,p(x)(RN ) ↪→ Lq(x)(RN ) if p+ < N and q(x) ∈ C+(RN ) satisfies p(x) ≤
q(x)� p∗(x).

Following the spirit of [21], we have the following proposition.

Proposition 1.6. For u ∈ E, we define

I(u) =
∫

RN

1
p(x)

(|Du|p(x) + V (x)|u|p(x)) dx,

then I ∈ C1(E,R) and the derivative operator L of I is

〈L(u), v〉 =
∫

RN

(|Du|p(x)−2Du ·Dv + V (x)|u|p(x)−2uv) dx, ∀u, v ∈ E,

and we have:
(1) L : E → E∗ (the dual space of E) is a continuous, bounded and strictly

monotone operator;
(2) L is a mapping of type (S+), i.e. if un ⇀ u in E and lim supn→∞〈L(un)−

L(u), un − u〉 ≤ 0, then un → u in E;
(3) L : E → E∗ is a homeomorphism.
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Proposition 1.7 ([20, 21, 45]). Let Ω be a bounded domain in RN . If f(x, t) is a
Carathéodory function and satisfies

|f(x, t)| ≤ a(x) + b|t|
p1(x)
p2(x) , quad∀x ∈ Ω, t ∈ R1

where p1(x), p2(x) ∈ C+(Ω), b ≥ 0 is a constant, 0 ≤ a(x) ∈ Lp2(x)(Ω), then
the superposition operator S from Lp1(x)(Ω) to Lp2(x)(Ω) defined by (Su)(x) =
f(x, u(x)) is a continuous and bounded operator. Moreover, if Ω is unbounded
(e.g., Ω = RN ) and a(x) ≡ 0, the same conclusion is true.

In the variable Lebesgue space case, Hölder type inequality still holds.

Proposition 1.8 ([17]). Let Ω be a domain in RN (either bounded or unbounded)
and u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω) where p′(x) := p(x)

p(x)−1 is the conjugate exponent of
p(x) ∈ C+(Ω). Then the following Hölder type inequality holds∫

Ω

|uv| dx ≤ (
1
p−

+
1
p′−

)|u|p(x),Ω|v|p′(x),Ω.

We will use this inequality in the following sections .
This article is divided into three sections. For the readers’ convenience, we have

recalled some basic properties of the variable exponent spaces W 1,p(x)(Ω), Lp(x)(Ω)
in this section. In Section 2, we will state our assumptions on the nonlinear term
and our main result. Meanwhile, we shall prove some useful auxiliary results in
this section. In our opinion, these results are interesting and important when we
study variable exponent problems. In Sections 3, we are devoted to proving the
main result.

2. Main result

In this section, we first specify our assumptions on the nonlinear term f . Then
some comments about these assumptions will be given. Finally, we state the main
result.

We use the following assumptions:
(C1) f ∈ C(RN × R,R) satisfies

|f(x, t)| ≤ C(|t|p(x)−1 + |t|q(x)−1), ∀t ∈ R, x ∈ RN ,

f(x, t)t ≥ 0, for t ≥ 0, x ∈ RN ,

p(x) ≤ q(x)� p∗(x), ∀x ∈ RN .

(C2) There exists a constant µ > p+ such that

lim inf
|t|→∞

f(x, t)t
|t|µ

≥ C0 uniformly for x ∈ RN .

where C0 is a positive constant.
(C3) lim sup|t|→0

f(x,t)t

|t|p+ = 0, uniformly for x ∈ RN .

(C4) Let F (x, t) =
∫ t

0
f(x, s)ds and G,F be defined as

G(x, t) := f(x, t)t− p−F (x, t), H(x, t) := f(x, t)t− p+F (x, t).

We assume G and H satisfy the monotonicity condition: there exist two
positive constants D1 and D2 such that

G(x, t) ≤ D1G(x, s) ≤ D2H(x, s), for 0 ≤ t ≤ s.
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(C5) f(x,−t) = −f(x, t), ∀t ∈ R, x ∈ RN .

Definition 2.1. We say u ∈ E is a weak solution to the equation (1.1) if for any
v ∈ E, ∫

RN

|Du|p(x)−2DuDv + V (x)|u|p(x)−2uv dx =
∫

RN

f(x, u)v dx.

Define a functional Φ from E to R by

Φ(u) =
∫

RN

1
p(x)

(|Du|p(x) + V (x)|u|p(x)) dx−
∫

RN

F (x, u) dx.

Under our assumptions, we know that the functional is C1 (Proposition 1.6, Lemma
2.7 below) and for v ∈ E,

Φ′(u)v =
∫

RN

|Du|p(x)−2DuDv + V (x)|u|p(x)−2uv dx−
∫

RN

f(x, u)v dx.

So the critical points of the functional Φ are corresponding to the weak solutions
of the equation (1.1).

Now we are in a position to comment and analyze the assumptions proposed
above.

1. Conditions (C1)-(C4) are compatible. We shall give two examples to demon-
strate this claim. Let f(x, t) = |t|q(x)−2t with q(x) ∈ C+(RN ) satisfying q(x) �
p∗(x), q− > p+. Obviously, (C1), (C2), (C3), (C5) hold. In order to verify
(C4), we know that F (x, t) = |t|q(x)

q(x) , f(x, t)t = |t|q(x). Consequently, G(x, t) =

(1− p−

q(x) )|t|q(x), H(x, t) = (1− p+

q(x) )|t|q(x). It is easy to verify that G(x, t) is non-
decreasing in t ≥ 0. Therefore, G(x, t) ≤ G(x, s) if 0 ≤ t ≤ s. In view of G,H ≥ 0,
we know that

G(x, s)
H(x, s)

=
q(x)− p−

q(x)− p+
≤ q+ − p−

q− − p+
.

Choosing D2 = q+−p−
q−−p+ , we obtain G(x, s) ≤ D2H(x, s) when s ≥ 0. Therefore,

(C4) holds.
Next, we illustrate another example. Let f(x, t) = |t|q(x)−2t lna(|t| + 1) where

q(x) satisfies q(x) � p∗(x), q− > p+ and ε > a > 0 is a real number. In view of
the following two relations:

lim
|t|→∞

lna(|t|+ 1)
|t|ε

= 0 ∀a ≥ 0, ε > 0;

lim
|t|→0

lna(|t|+ 1)
|t|ε

=∞ ∀a ≥ 0, ε > 0.

we can verify (C4) similarly. Obviously, (C1), (C2), (C3), (C5) hold.
From the two examples we gave, we know that there are many functions which

satisfy our assumptions. As a result, our main result is quite general.
2. Condition (C1) means that f(x, t) is subcritical in the variable sense. Different

from things in constant case (i.e. p+ = p−), here we need q(x)� p∗(x).
3. Condition (C4) is crucial for our proof. It is because of this condition that we

could obtain bounded Palais-Smale sequence (bounded (PS) sequences for short).
We impose this condition on f other than the famous Ambrosetti-Rabinowitz type
condition. However, we could still get bounded (PS) sequences via an indirect
method. Lots of authors have tried to weaken the Ambrosetti-Rabinowits type
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condition and they can only get weak type (PS) sequences (usually the Cerami
Condition). It is known that (C5) is much weaker than the Ambrosetti-Rabinowitz
type condition in the constant exponent case (p+ = p−) (see [26]).

4. Condition (C5) assures that the functional Φ we defined before is an even
functional. So the condition is necessary for us to take advantage of the fountain
geometry.

In this article, we always assume condition (V1) holds and p+ < N . Hence,
we know E ↪→ W 1,p(x)(RN ). Consequently, E ↪→ Lp(x)(RN ), E ↪→ Lq(x)(RN ) if
q(x) ∈ C+(RN ) satisfies p(x) ≤ q(x)� p∗(x).

Now we can state our main result clearly.

Theorem 2.2. Under conditions (V1), (C1)–(C5), equation (1.1) has a sequence
of solutions {un}. Moreover, these solutions have high energies; i.e., Φ(un) → ∞
as n→∞.

To make the exposition more concise, we give some auxiliary results some of
which are very useful.

Lemma 2.3. Let Ω be a nonempty domain in RN which can be bounded or un-
bounded. We also allow Ω = RN . Then

Lp(x)(Ω) ∩ Lq(x)(Ω) ⊂ La(x)(Ω)

if p(x), q(x), a(x) ∈ C+(Ω) and p(x) ≤ a(x) ≤ q(x). Moreover, if p(x) � a(x) �
q(x), the following interpolation inequality holds for u ∈ Lp(x)(Ω) ∩ Lq(x)(Ω):∫

Ω

|u|a(x) dx ≤ 2||u|a1(x)|m(x),Ω||u|a2(x)|m′(x),Ω, (2.1)

where

a1(x) =
p(x)(q(x)− a(x))

q(x)− p(x)
, a2(x) =

q(x)(a(x)− p(x))
q(x)− p(x)

;

m(x) =
q(x)− p(x)
q(x)− a(x)

, m′(x) =
q(x)− p(x)
a(x)− p(x)

.

Sketch of the proof. For Lp(x)(Ω) ∩ Lq(x)(Ω), we have∫
Ω

|u|p(x) dx <∞,
∫

Ω

|u|q(x) dx <∞.

Obviously, |u(x)|a(x) ≤ |u(x)|p(x) + |u(x)|q(x) for x ∈ Ω. Hence,
∫

Ω
|u|a(x) ≤∫

Ω
|u|p(x) dx +

∫
Ω
|u|q(x) dx < ∞, which means u ∈ La(x)(Ω). For the interpola-

tion inequality, the readers can see [20]. �

Lemma 2.4. Under condition (V1), E ↪→↪→ Lp(x)(RN ).

Proof. We know that E ↪→ Lp(x)(RN ). Next, we assume un ⇀ 0 in E. We need to
show un → 0 in Lp(x)(RN ) to complete the proof. By Proposition 1.2, it suffices to
verify that

∫
RN |un|p(x) dx→ 0 as n→∞. For any given R > 0, we write

I(n) :=
∫

RN

|un|p(x) dx

=
∫
B(0,R)

|un|p(x) dx+
∫

RN\B(0,R)

|un|p(x) dx := I1(n) + I2(n).
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Since E ↪→W 1,p(x)(RN ) and W 1,p(x)(B(0, R)) ↪→↪→ Lp(x)(B(0, R)), it follows that
I1(n)→ 0 as n→∞.

For any constant M > 0, Let A = {x ∈ RN\B(0, R);V (x) > M} and B = {x ∈
RN\B(0, R);V (x) ≤M}. Then we have∫

A

|un|p(x) dx ≤
∫
A

V (x)
M
|un|p(x) dx ≤ 1

M

∫
RN

V (x)|un|p(x) dx ≤ C

M
.

Since for the constant M > 0,mes{x ∈ RN ;V (x) ≤M} is finite, we can choose R >
0 large enough such that meas{x ∈ RN\B(0, R);V (x) ≤ M} → 0. Consequently,∫
B
|un|p(x) → 0.
Now Let M →∞ and R→∞, we have I(n)→ 0 as n→∞. �

Lemma 2.5. Under condition (V1), E ↪→↪→ La(x)(RN ) if a(x) ∈ C+(RN ) and
p(x) ≤ a(x)� p∗(x).

Proof. Let un ⇀ 0 in E. We need to show un → 0 in La(x)(RN ) to complete the
proof.

First, we assume that p(x) � a(x) � p∗(x). We can choose q(x) ∈ C+(RN )
such that a(x) � q(x) � p∗(x). It is obvious that E ↪→ Lq(x)(RN ). In view of
p(x)� a(x)� q(x), we use Lemma 2.3 with Ω = RN and obtain∫

Ω

|un|a(x) dx ≤ 2||un|a1(x)|m(x),Ω||un|a2(x)|m′(x),Ω, (2.2)

where the symbols are the same as those of Lemma 2.3.
Let λn := ||un|a1(x)|m(x),Ω and µn := ||un|a2(x)|m′(x),Ω. By Proposition 1.2, we

have ∫
RN

| |un|
a1(x)

λn
|m(x) dx =

∫
RN

|un|p(x)

λ
m(x)
n

dx = 1;∫
RN

| |un|
a2(x)

µn
|m
′(x) dx =

∫
RN

|un|q(x)

µ
m′(x)
n

dx = 1.

From the two equalities above and Lemma 2.4, we know

min{λm
+

n , λm
−

n } ≤
∫

RN

|un|p(x) dx→ 0,

min{µm
′+

n , µm
′−

n } ≤
∫

RN

|un|q(x) dx ≤ C.

We have λn → 0 as n→∞ and 0 ≤ µn ≤ C. So (2.2) yields
∫

RN |un|a(x) dx→ 0 as
n→∞.

Next, we assume p(x) ≤ a(x)� p∗(x). We can choose q(x) ∈ C+(RN ) such that
a(x)� q(x)� p∗(x). By the arguments above, we have∫

RN

|un|q(x) dx→ 0.

By Lemma 2.3 and Lemma 2.4, we have∫
RN

|un|a(x) dx ≤
∫

RN

|un|p(x) dx+
∫

RN

|un|q(x) dx→ 0.

�
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The following lemma can be considered as an extension of the result in [44,
Appendix A].

Lemma 2.6. Assume 1 ≤ p1(x), p2(x), q1(x), q2(x) ∈ C(Ω). Let f(x, t) be a
Carathéodory function on Ω× R and satisfy

|f(x, t)| ≤ a|t|
p1(x)
q1(x) + b|t|

p2(x)
q2(x) , (x, t) ∈ Ω× R,

where a, b > 0 and Ω is either bounded or unbounded. Define a Carathéodory
operator by

Bu := f(x, u(x)), u ∈H := Lp1(x)(Ω) ∩ Lp2(x)(Ω)

Define the space E := Lq1(x)(Ω) + Lq2(x)(Ω) with the norm

‖u‖E = inf{|v|q1(x),Ω + |w|q2(x),Ω : u = v + w, v ∈ Lq1(x)(Ω), w ∈ Lq2(x)(Ω)}.

If p1(x)
q1(x) ≤

p2(x)
q2(x) for x ∈ Ω, then B = B1 + B2, where Bi is a bounded and contin-

uous mapping from Lpi(x)(Ω) to Lqi(x)(Ω), i = 1, 2. In particular, B is a bounded
continuous mapping from H to E .

Proof. Let ψ : R → [0, 1] be a smooth function such that ψ(t) = 1 for t ∈
(−1, 1);ψ(t) = 0 for t /∈ (−2, 2). Let

g(x, t) = ψ(t)f(x, t), h(x, t) = (1− ψ(t))f(x, t).

Because p1(x)
q1(x) ≤

p2(x)
q2(x) for x ∈ Ω, there are two constants d > 0,m > 0 such that

|g(x, t)| ≤ d|t|
p1(x)
q1(x) , |h(x, t)| ≤ m|t|

p2(x)
q2(x) .

Define
B1u = g(x, u), u ∈ Lp1(x)(Ω), B2u = h(x, u), u ∈ Lp2(x)(Ω).

Then by Proposition 1.7, Bi is a bounded and continuous mapping from Lpi(x)(Ω)
to Lqi(x)(Ω), i = 1, 2. It is readily to see that B := B1 +B2 is a bounded continuous
mapping from H to E . �

From Lemmas 2.4 and 2.5, we know that the condition (V1) plays an important
role. It enables E to be compactly embedded into Lp(x)(RN ) type spaces. Using
Lemmas 2.5 and 2.6, we can prove the following result.

Lemma 2.7. Under assumptions (V1), (C1), the functional J(u) =
∫

RN F (x, u) dx
on E is a C1 functional. Moreover, J ′ is compact.

Proof. The verification that J is a C1 functional is routine and we omit it here.
We only show that J ′ is compact. Because E ↪→↪→ Lp(x)(RN ) (Lemma 2.4)
and E ↪→↪→ Lq(x)(RN ) (Lemma 2.5), any bounded sequence {uk} in E has a
renamed subsequence still denoted by {uk} which converges to u0 in Lp(x)(RN )
and Lq(x)(RN ). Using Lemma 2.6 with p1(x) = p(x), q1(x) = p(x)

p(x)−1 , p2(x) = q(x),

q2(x) = q(x)
q(x)−1 and Ω = RN , we have J ′(u)v =

∫
RN (B1u + B2u)v dx for v ∈ E.

Hence, B1(uk) → B1(u0) in Lq1(x)(Ω) and B2(uk) → B2(u0) in Lq2(x)(Ω). Then
Hölder type inequality (Proposition 1.8) and Sobolev embedding (Lemma 2.5) as-
sure J ′(uk)→ J ′(u0) in E∗, i.e., J ′ is compact. �

For convenience, we give the definition of (PS)c sequence for c ∈ R.
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Definition 2.8. Let Π be a C1 functional defined on a real Banach space X. Any
sequence {un} satisfying Π(un)→ c and Π′(un)→ 0 is called a (PS)c sequence. In
addition, we call c here a prospective critical level of Π.

Remark 2.9 (See [17]). Under the assumptions of Theorem 2.2, we have the
following comments. Φ(u) = I(u) + J(u) and Φ′(u) = I ′(u) + J ′(u) for u ∈ E.
Since I ′ is of type (S+) (Proposition 1.6) and J ′ is a compact (Lemma 2.7), we
can easily derive that Φ′ is of type (S+). It is well-known that any bounded (PS)c
sequence of a functional whose Fréchet derivative is of type (S+) in a reflexive
Banach space has a convergent subsequence and so does Φ here.

3. Proof of Theorem 2.2

We state the Fountain Theorem, before presenting the proof of the main result.
Let X be a Banach space with the norm ‖ · ‖ and let {Xj} be a sequence of
subspaces of X with dimXj < ∞ for each j ∈ N. Further, X = ⊕∞j=1Xj ,Wk :=
⊕kj=1Xj , Zk := ⊕∞j=kXj . Moreover, for k ∈ N and ρk > rk > 0, we denote:

Bk = {u ∈Wk : ‖u‖ ≤ ρk}; Sk = {u ∈ Zk : ‖u‖ = rk};
ck := inf

γ∈Γk

max
u∈Bk

Φ(γ(u)), where

Γk := {γ ∈ C(Bk, X) : γ is odd and γ|∂Bk
= id}.

Theorem 3.1 (Fountain Theorem, Bartsch 1992 [34]). Under the aforementioned
assumptions, let Φ ∈ C1(X,R) be an even functional. If for k > 0 large enough,
there exists ρk > rk > 0 such that

ak := max{Φ(u) : u ∈Wk, ‖u‖ = ρk} ≤ 0, (3.1)

bk := inf{Φ(u) : u ∈ Zk, ‖u‖ = rk} → ∞ as k →∞. (3.2)

then Φ has a (PS)ck
sequence for each prospective critical value ck and ck →∞ as

k →∞.

Definition 3.2. LetX be a Banach space, Φ ∈ C1(X,R) and c ∈ R. The functional
Φ satisfies the (PS)c condition if any sequence {uk} ⊂ X such that

Φ(un)→ c, Φ′(un)→ 0 (3.3)

has a convergent subsequence.

Remark 3.3. In fact, if the following condition holds
(C) Φ satisfies the (PS)c condition for every c > 0,

the sequence {ck} in Theorem 3.1 is a sequence of unbounded critical values of Φ.
However, the condition (C) is not necessary to guarantee that ck is a critical level.
We just need (PS)ck

condition.

To use the decomposition technique, we need a theorem on the structure of a
reflexive and separable Banach space.

Lemma 3.4 ([47, Section 17]). Let X be a reflexive and separable Banach space,
then there are {en}∞n=1 ⊂ X and {fn}∞n=1 ⊂ X∗ such that

fn(em) = δn,m =

{
1, if n = m

0, if n 6= m
,

X = span{en : n = 1, 2, . . . , }, X∗ = spanW
∗
{fn : n = 1, 2, . . . , }.
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For k = 1, 2, . . . , and X = E, we choose

Xj = span{ej},Wk = ⊕kj=1Xj , Zk = ⊕∞j=kXj .

In the following, we shall identify the Banach space E and the functional Φ as
those we consider. Next, we will prove the main result step by step. First, we give
a useful lemma. For simplicity, we write |u|p(x),RN as |u|p(x) when Ω = RN for
p(x) ∈ C+(RN ).

Lemma 3.5. Let q(x) ∈ C+(RN ) with p(x) ≤ q(x)� p∗(x) and denote

αk = sup{|u|q(x) : ‖u‖ = 1, u ∈ Zk}, (3.4)

then αk → 0 as k →∞.

Proof. Obviously, αk is decreasing as k →∞. Noting that αk ≥ 0, we may assume
that αk → α ≥ 0. For every k > 0, there exists uk ∈ Zk such that ‖uk‖ = 1 and
|uk|q(x) >

αk

2 . By definition of Zk, uk ⇀ 0 in E. Then Lemma 2.5 implies that
uk → 0 in Lq(x)(RN ). Thus we have proved that α = 0. �

Using lemma 3.5, we can prove the following Lemma.

Lemma 3.6. Under the assumptions of Theorem 3.1, the geometry conditions of
the Fountain Theorem hold, i.e. (3.1) and (3.2) hold.

Proof. By (C2) and (C3), for any ε > 0, there exists a C(ε) > 0 such that

f(x, u)u ≥ C(ε)|u|µ − ε|u|p
+
.

In view of (C5), we have a constant, still denoted by C(ε), such that

F (x, u) ≥ C(ε)|u|µ − ε|u|p
+
.

When ‖u‖ > 1, we have

Φ(u) =
∫

RN

1
p(x)

(|Du|p(x) + V (x)|u|p(x)) dx−
∫

RN

F (x, u) dx

≤ 1
p−
‖u‖p

+
− C(ε)

∫
RN

|u|µ dx+ ε

∫
RN

|u|p
+
dx.

(3.5)

Let u ∈ Wk, since dim(Wk) < ∞. all norms on Wk are equivalent. Hence Φ(u) ≤
C‖u‖p+ − C‖u‖µ. Because µ > p+, we can choose ρk > 0 large enough such that
Φ(u) ≤ 0 when ‖u‖ = ρk. We have shown that (3.1) holds.

To verify (3.2), we can still let ‖u‖ > 1 without loss of generality. By (C1) and
(C3), for any ε > 0, there exists a C = C(ε) > 0 such that

|F (x, u)| ≤ ε|u|p
+

+ C|u|q(x),

So
Φ(u) =

∫
RN

1
p(x)

(|Du|p(x) + V (x)|u|p(x) dx)−
∫
RN

F (x, u) dx

≥ 1
p+
‖u‖p

−
− ε|u|p

+

p+ − C max{|u|q
−

q(x), |u|
q+

q(x)}.
(3.6)

Let u ∈ Zk with ‖u‖ = rk > 0. We can choose uniformly an ε > 0 small enough
such that ε|u|p

+

p+ ≤
1

2p+ ‖u‖
p− . Hence

Φ(u) ≥ 1
2p+
‖u‖p

−
− C max{|u|q

−

q(x), |u|
q+

q(x)}.
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If max{|u|q
−

q(x), |u|
q+

q(x)} = |u|q
−

q(x), we choose rk = (2q−Cαq
−

k )
1

p−−q− and get that

Φ(u) ≥ 1
2p+
‖u‖p

−
− C|u|q

−

q(x) ≥
1

2p+
− Cαp

−

k ‖u‖
q−

≥ (
1

2p+
− 1

2q−
)rp
−

k .

(3.7)

Since q− > p+ and αk → 0, we obtain bk →∞.
If max{|u|q

−

q(x), |u|
q+

q(x)} = |u|q
+

q(x), we can similarly derive that bk →∞. Hence we
have shown (3.2) holds. �

By far, we have shown that the geometry conditions of the Fountain Theorem
hold. In fact, in order to use the Fountain Theorem to get our main result, we do
not need to verify the functional Φ satisfies the (PS)c condition for every c > 0. It
suffices if we could find a special (PS) sequence for each ck and verify the sequence
we find has a convergence subsequence. Of course, the first step is to show that
the (PS)ck

sequence is bounded. Because there is no Ambrosetti-Rabinowits type
condition, we couldn’t give a direct proof. Following the ideas in Jeanjean [29] and
Zou [51], we consider Φ as a member in a family of functional. We will show almost
all the functional in the family have bounded (PS) sequences. The following result
(Theorem 3.7) due to Zou and Schechter [51] is crucial for this purpose.

Let the notions be the same as in Theorem 3.1. Consider a family of real C1

functional Φλ of the form: Φλ(u) := I(u)−λJ(u), where λ ∈ Λ and Λ is a compact
interval in [0,∞). We make the following assumptions:

(A1) Φλ maps bounded sets into bounded sets uniformly for λ ∈ Λ. Moreover,
Φλ(−u) = Φλ(u) for all (λ, u) ∈ Λ×X.

(A2) J(u) ≥ 0 for all u ∈ E; I(u)→∞ or J(u)→∞ as ‖u‖ → ∞.
Let

ak(λ) := max{Φλ(u) : u ∈Wk, ‖u‖ = ρk}, (3.8)

bk(λ) := inf{Φλ(u) : u ∈ Zk, ‖u‖ = rk}. (3.9)

Define

ck(λ) = inf
γ∈Γk

max
u∈Bk

Φλ(γ(u)),

Γk := {γ ∈ C(Bk, X) : γ is odd and γ|∂Bk
= id}.

Theorem 3.7. Assume that (A1) and (A2) hold. If bk(λ) > ak(λ) for all λ ∈
Λ, then ck(λ) ≥ bk(λ) for all λ ∈ Λ. Moreover, for almost every λ ∈ Λ, there
exists a sequence of {ukn(λ)}∞n=1 such that supn ‖ukn(λ)‖ < ∞,Φ′λ(ukn(λ)) → 0 and
Φλ(ukn(λ))→ ck(λ) as n→∞.

Next, we let I(u) =
∫

RN
1

p(x) (|Du|p(x) + V (x)|u|p(x)) dx, J(u) =
∫

RN F (x, u) dx
for u ∈ E and Λ = [1, 2]. Under these terminologies, Φ(u) = Φ1(u). Under the
assumptions of Theorem 3.1. It is easy to see that (A1) and (A2) hold.

Lemma 3.8. Under the assumptions of Theorem 3.1, bk(λ) > ak(λ) for all λ ∈
[1, 2] when k is large enough.

Sketch of the proof. Let ρk > rk > 0 large enough. Using same reasoning, we can
show that ak(λ) ≤ 0 and bk(λ) → ∞ uniformly for λ ∈ [1, 2] as k → ∞. Hence,
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we have shown the Lemma. Moreover, ck(λ) ≤ supu∈Bk
Φλ(u) ≤ supu∈Bk

Φ(u) =
maxu∈Bk

Φ1(u) = maxu∈Bk
Φ(u) := ck <∞. �

Remark 3.9. Since Φ′λ(u) is of type (S+) (Remark 2.9), we know that any bounded
(PS)c(λ) sequence of Φλ has a convergent subsequence which converges to a critical
point of Φλ with critical level c(λ).

Now, applying Theorem 3.7, we obtain that for almost every λ ∈ [1, 2], there
exists a sequence of {ukn(λ)}∞n=1 such that supn ‖ukn(λ)‖ < ∞,Φ′λ(ukn(λ)) → 0 and
Φλ(ukn(λ))→ ck(λ) as n→∞. Denote the set of these λ by Λ0. If 1 ∈ Λ0, we have
found bounded (PS)ck

sequence for the functional Φ.
If 1 /∈ Λ0, we can choose a sequence {λn} ⊂ Λ0 such that λn → 1 decreasingly. In

view of Note 3.9, for each λ ∈ Λ0, the bounded (PS)ck(λ) sequence has a convergent
subsequence. We denote the limit by uk(λ). Accordingly, uk(λ) is the critical point
of the functional Φλ with critical level ck(λ). Next, we are going to show the
sequence {uk(λn)}∞n=1 is a bounded (PS)ck

sequence of Φ. For simplicity, we write
{uk(λn)} as {u(λn)}.

In fact, we only need to show {u(λn)} is bounded. Indeed, if {u(λ)} is bounded,
we have

Φ(u(λn)) = Φλn
(u(λn)) + (1− λn)J(u(λn))→ ck,

Φ′(u(λn)) = Φ′λn
(u(λn)) + (1− λn)J ′(u(λn))→ 0.

We have used the fact that Φλ, J map bounded sets into bounded sets under the
assumptions of Theorem 2.2.

Lemma 3.10. Under the assumption of Theorem 2.2, the sequence {u(λn)} is
bounded.

Proof. By contradiction. We assume ‖u(λn)‖ → ∞ and consider wn = u(λn)
‖u(λn)‖ .

Then up to a subsequence, we get that wn ⇀ w in E,wn → w in Lq(x)(RN ) for
p(x) ≤ q(x)� p∗(x), wn → w a.e. in RN .

We first consider the case w 6= 0 in E. Since Φ′λn
(u(λn)) = 0, we have∫

RN

|Du(λn)|p(x) + V (x)|u(λn)|p(x) dx = λn

∫
RN

f(x, u(λn))u(λn) dx.

Assume ‖u(λn)‖ > 1. Dividing both sides by ‖u(λn)‖p+ , we get∫
RN

f(x, u(λn))u(λn)
‖u(λn)‖p+

dx ≤ 1
λn
≤ 1.

Further, by Fatou’s Lemma and (C2), we have∫
RN

f(x, u(λn))u(λn)
‖u(λn)‖p+

dx =
∫

RN

f(x, u(λn))u(λn)|wn(x)|p+

‖un(x)‖p+
dx→∞,

a contradiction.
For the case w = 0 in E, we define Φλn

(tnu(λn)) = maxt∈[0,1] Φλn
(tu(λn)). Then

for any C > 1, wn := Cu(λn)
‖u(λn)‖ and n large enough, we have

Φλn(tnu(λn))

≥ Φλn
(wn)
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=
∫

RN

1
p(x)

(|CDwn|p(x) + V (x)|Cwn|p(x)) dx− λn
∫
RN

F (x,Cwn) dx

≥ 1
p+
Cp
−
− λn

∫
RN

F (x,Cwn) dx.

Since wn → 0 a.e. in RN and λn ∈ [1, 2], we have λn
∫

RN F (x,Cwn) dx→ 0 as n→
∞. Since C is arbitrary, we have Φλn(tnu(λn))→∞ as n→∞. Consequently, we
know tn ∈ (0, 1) when n is large enough, which implies Φ′λn

(tnu(λn))tnu(λn) = 0.
Thus,

Φλn
(tnu(λn))− 1

p−
Φ′λn

(tnu(λn))tnu(λn)→∞,

which implies∫
RN

(
1

p(x)
− 1
p−

)(|tnDu(λn)|p(x) + V (x)|tnu(λn)|p(x)) dx

+ λn

∫
RN

1
p−
f(x, tnu(λn))tnu(λn)− F (x, tnu(λn)) dx→∞.

So ∫
RN

1
p−
f(x, tnu(λn))tnu(λn)− F (x, tnu(λn)) dx→∞.

However,

Φλn
(u(λn)) = Φλn

(u(λn))− 1
p+

Φ′λn
(u(λn))u(λn)

=
∫

RN

(
1

p(x)
− 1
p+

)(|Du(λn)|p(x) + V (x)|u(λn)|p(x)) dx

+ λn

∫
RN

1
p+
f(x, u(λn))u(λn)− F (x, u(λn)) dx

≥ λn
∫

RN

1
p+
f(x, u(λn))u(λn)− F (x, u(λn)) dx.

In view of (C4), there exist two positive constants C1 and C2 such that

Φλn
(u(λn)) ≥ λn

∫
RN

1
p+
f(x, u(λn))u(λn)− F (x, u(λn)) dx

≥ λnC1

∫
RN

1
p−
f(x, u(λn))u(λn)− F (x, u(λn)) dx

≥ λnC1C2

∫
RN

1
p−
f(x, tnu(λn))tnu(λn)− F (x, tnu(λn)) dx

≥ C
∫

RN

1
p−
f(x, tnu(λn))tnu(λn)− F (x, tnu(λn)) dx→∞.

However, for each k large enough, Φλn
(u(λn)) = ck(λn) ≤ ck < ∞ (See Lemma

3.8), a contradiction. �

Proof of Theorem 2.2. Whether 1 ∈ Λ0 or not, we have found a special bounded
(PS)ck

sequence {uk(λn)}∞n=1 for each ck in the Fountain Theorem when k is large
enough. In view of Remark 3.9, we know {uk(λn)}∞n=1 has a convergent subsequence
and ck is indeed an critical level of Φ and Theorem 2.2 follows. �
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We end this paper with the following brief comments on our argument structure.
We prove Theorem 2.2 in such a way to emphasize the procedure of finding critical
points. First, we consider the original functional and verify the functional satisfies
some geometry properties (e.g. Mountain Pass Geometry in [29], Fountain geometry
in this paper, general linking geometry, etc) to ensure prospective critical levels.
Then, we consider our functional as a member in a family of functionals. Some
given structure conditions on the family will yield bounded (PS) sequences for
almost all the functionals. Using the information supplied by these functionals, we
could find special bounded (PS) sequences for those prospective critical levels. At
last, we prove that the special (PS) sequences we found converge to critical points
respectively up to subsequences.
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[38] M. Mihăilescu, V. Rădulescu; On a nonhomogeneous quasilinear eigenvalue problem in
Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007) 2929-2937.

[39] J. Musielak; Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034,
Springer, Berlin, 1983.

[40] M. Ruz̆ic̆ka; Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in
Math., Vol. 1748, Springer-Verlag, Berlin, 2000.

[41] J. J. Sakuri; Modern Quantum Mechanics (Revised Edition), Addision-Wesley Publishing
Company, 1994, +503 pages.

[42] S. Samko; On a progress in the theory of Lebesgue spaces with variable exponent: maximal
and singular operators, Integral Transforms and Special Functions, 16 (2005) 461-482.

[43] M. Struwe; Variational Method (Second Edition), Springer, Berlin, 1996.
[44] M. Willem; Minimax Theorems, Birkhauser, Basel, 1996.
[45] J. H. Yao, X. Y. Wang; On an open problem involving the p(x)−Laplacian: A further study

on the multiplicity of weak solutions to p(x)-Laplacian equations, Nonlinear Anal. 69 (2008)

1445-1453.
[46] J. H. Yao, X. Y. Wang; Compact imbeddings between variable exponent spaces with unbounded

underlying domain, Nonlinear Anal.70 (2009) 3472-3482.
[47] J. F. Zhao; Structure Theory of Banach Spaces, Wuhan Univ. Press, Wuhan, 1991.



EJDE-2015/136 HIGH ENERGY SOLUTIONS 17

[48] V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory,

Math. USSR. Izv, 29 (1987) 33-66.

[49] V. V. Zhikov; On Lavrentiev’s phenomenon, Russian J. Math. Phys. 3 (1995) 249-269.
[50] V. V. Zhikov; On some variational problems, Russian J. Math. Phys. 5 (1997) 105-116.

[51] W. M. Zou, M. Schechter; Critical point theory and its applications, Springer, 2006.

Xiaoyan Wang

Department of Mathematics, Indiana University Bloomington, IN 47405, USA
E-mail address: wang264@indiana.edu

Jinghua Yao (corresponding author)
Department of Mathematics, The University of Iowa, Iowa City, IA 52246, USA

E-mail address: jinghua-yao@uiowa.edu

Duchao Liu

Department of Mathematics, Lanzhou University, Lanzhou 730000, China

E-mail address: liuduchao@gmail.com, liudch@lzu.edu.cn


	1. Introduction
	2. Main result
	3. Proof of Theorem ??
	References

