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EXISTENCE OF INFINITELY MANY SYMMETRIC SOLUTIONS
TO PERTURBED ELLIPTIC EQUATIONS WITH

DISCONTINUOUS NONLINEARITIES IN RN

SHAPOUR HEIDARKHANI, FARIBA GHAREHGAZLOUEI, AREZOO SOLIMANINIA

Abstract. In this article we study the existence of infinitely many radially

symmetric solutions for a class of perturbed elliptic equations with discontinu-

ous nonlinearities in RN . We determine open intervals of positive parameters
for which the problem admits infinitely many symmetric solutions. Our proofs

are based on variational methods.

1. Introduction

We consider the perturbed elliptic problem

−∆pu+ |u|p−2u = λf(|x|, u) + µg(|x|, u), x ∈ RN , u ∈W 1,p
r (RN ) (1.1)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator, λ > 0, µ ≥ 0, 2 ≤
N < p < +∞, the functions f, g : RN × R→ R are continuous almost everywhere.
We recall that f is continuous almost everywhere if the set Df = ∪x∈RN {z ∈ R :
f(|x|, .) is discontinuous at z} has measure zero.

Since many free boundary problems and obstacle problems may be reduced to
partial differential equations with discontinuous nonlinearities, as it arises in physics
problems, such as nonlinear elasticity theory, mechanics and engineering topics,
the existence of multiple solutions for Dirichlet boundary value problems with dis-
continuous nonlinearities has been widely investigated in recent years. Chang [4]
extended the variational methods to a class of non-differentiable functionals, and
applied directly the variational methods for non-differentiable functionals to prove
some existence theorems for PDE with discontinuous nonlinearities. Later, Hu et
al. in [6] obtained the existence of two solutions for an eigenvalue Dirichlet prob-
lem involving the p-Laplacian with discontinuous nonlinearities. Next, Motreanu
and Panagiotopoulos [13, Chapter 3] studied the critical point theory for non-
smooth functionals and in this framework, very recently, Marano and Motreanu
[11] obtained an infinitely many critical points theorem, which extends the Varia-
tional Principle of Ricceri [15] to non-smooth functionals, and applies the result to
variational-hemivariational inequalities and semilinear elliptic eigenvalue problems
with discontinuous nonlinearities. In [2] Bonanno and Molica Bisci presented a more
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precise version of the infinitely many critical points theorem of Marano and Motre-
anu, and as an application of their result, they ensured the existence of infinitely
many solutions for a two-point boundary value problem with the Sturm-Liouville
equation having discontinuous nonlinear term. In [7] the authors employing the
same critical points theorem of Marano and Motreanu, investigated the existence
of infinitely many radially symmetric solutions for a class of differential inclusion
problems. In [17] the authors using a three critical points theorem for a non-
differentiable functional and a Sobolev embedding result, established the existence
of three radially symmetric solutions for the problem (1.1), in the case µ = 0.

In the present paper, under some appropriate hypotheses on the behavior of the
potential of f , under a condition on the potential of g, at infinity, we ensure the
existence of infinitely many radially symmetric solutions for the problem (1.1); this
is done in Theorem 3.1. We also list some special cases of Theorem 3.1. Further,
replacing the conditions at infinity of the potentials of f and g, by a similar one at
zero, the same results hold and, in addition, the sequence of symmetric solutions
uniformly converges to zero; this is done in Theorem 3.8. The abstract approach
is fully based on the critical point theorem proved in [2]. Our approach here is in
the one dimensional setting and is different from that employed in [7] in which the
author directly discussed the existence of infinitely many solutions for the original
differential inclusion problem, while here by setting ρ = |x| and treating (1.1) as an
ordinary differential equation we establish the existence of infinitely many solutions
for the ordinary differential equation which will be observed later (see (3.2)), and
since the solutions of the ordinary differential equation are the solutions of the
problem (1.1), we have the results for the problem (1.1).

A special case of our main result is the following theorem.

Theorem 1.1. Let f : RN ×R→ R be continuous almost everywhere, and assume
that for each δ > 0 there is a constant Mδ such that

sup
|z|≤δ

|f(ρ, z)| ≤Mδ,

where ρ = |x|, and that for all z ∈ D(f) the condition f−(ρ, z) ≤ 0 ≤ f+(ρ, z)
implies f(ρ, z) = 0, where

f−(ρ, z) = lim
δ→0+

ess inf |z−ζ|<δ f(ρ, ζ),

f+(ρ, z) = lim
δ→0+

ess sup|z−ζ|<δ f(ρ, ζ).
(1.2)

Put

F (ρ, t) =
∫ t

0

f(ρ, s)ds, ρ ∈ R+ ∪ {0}, t ∈ R.

Assume that

lim inf
ξ→+∞

∫ +∞
0

sup|t|≤ξ F (ρ, t)ρN−1dρ

ξp
= 0,

lim sup
ξ→+∞

∫ D
2

0
F (ρ, ξ)ρN−1dρ

ξp
= +∞ for some D > 0.

Then, the problem

−∆pu+ |u|p−2u = f(|x|, u), x ∈ RN , u ∈W 1,p
r (RN )

admits a sequence of symmetric solutions.
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2. Basic definitions and preliminary results

For basic notation and definitions on the subject, we refer the reader to [1, 3, 12,
14]. Let (X, ‖ · ‖X) be a real Banach space. We denote by X∗ the dual space of X,
while 〈·, ·〉 stands for the duality pairing between X∗ and X. A function ϕ : X → R
is called locally Lipschitz if, for all u ∈ X, there exist a neighborhood U of u and
a real number L > 0 such that

|ϕ(v)− ϕ(w)| ≤ L‖v − w‖X for all v, w ∈ U.
If ϕ is locally Lipschitz and u ∈ X, the generalized directional derivative of ϕ at u
along the direction v ∈ X is

ϕ◦(u; v) := lim sup
w→u, τ→0+

ϕ(w + τv)− ϕ(w)
τ

.

The generalized gradient of ϕ at u is the set

∂ϕ(u) := {u∗ ∈ X∗ : 〈u∗, v〉 ≤ ϕ◦(u; v) for all v ∈ X}.
So ∂ϕ : X → 2X

∗
is a multifunction. We say that ϕ has compact gradient if ∂ϕ

maps bounded subsets of X into relatively compact subsets of X∗.

Lemma 2.1 ([13, Proposition 1.1]). Let ϕ be a functional in C1(X). Then ϕ is
locally Lipschitz and

ϕ◦(u; v) = 〈ϕ′(u), v〉 for all u, v ∈ X;

∂ϕ(u) = {ϕ′(u)} for all u ∈ X.

Lemma 2.2 ([13, Proposition 1.3]). Let ϕ : X → R be a locally Lipschitz functional.
Then ϕ◦(u; ·) is subadditive and positively homogeneous for all u ∈ X, and

ϕ◦(u; v) ≤ L‖v‖ for all u, v ∈ X,
with L > 0 being a Lipschitz constant for ϕ with respect to u.

Lemma 2.3 ([5]). Let ϕ : X → R be a locally Lipschitz functional. Then ϕ◦ :
X ×X → R is upper semicontinuous and for all λ ≥ 0, u, v ∈ X,

(λϕ)◦(u; v) = λϕ◦(u; v).

Moreover, if ϕ,ψ : X → R are locally Lipschitz functionals, then

(ϕ+ ψ)◦(u; v) ≤ ϕ◦(u; v) + ψ◦(u; v) for all u, v ∈ X.

Lemma 2.4 ([13, Proposition 1.6]). Let ϕ,ψ : X → R be locally Lipschitz func-
tionals. Then

∂(λϕ)(u) = λ∂ϕ(u) for all u ∈ X, λ ∈ R, and
∂(ϕ+ ψ)(u) ⊆ ∂ϕ(u) + ∂ψ(u) for all u ∈ X.

We say that u ∈ X is a (generalized) critical point of a locally Lipschitz functional
ϕ if 0 ∈ ∂ϕ(u), i.e.,

ϕ◦(u; v) ≥ 0 for all v ∈ X.
When a non-smooth functional, g : X → (−∞,+∞), is expressed as a sum of a
locally Lipschitz function, ϕ : X → R, and a convex, proper, and lower semicon-
tinuous function, j : X → (−∞,+∞), that is, g := ϕ + j, a (generalized) critical
point of g is every u ∈ X such that

ϕ◦(u; v − u) + j(v)− j(u) ≥ 0
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for all v ∈ X (see [13, Chapter 3]).
Let the space

W 1,p(RN ) = {u ∈ Lp(RN ) : ∇u ∈ Lp(RN )},
be equipped with the norm

‖u‖W 1,p(RN ) =
(∫

RN
(|∇u(x)|p + |u(x)|p)dx

)1/p

.

The action of the orthogonal group O(N) on W 1,p(RN ) can be defined by gu(x) =
u(g−1x) for every g ∈ O(N), u ∈ W 1,p(RN ) and x ∈ RN (see [16]), and we can
define the subspace of radially symmetric functions of W 1,p(RN ) by

W 1,p
r (RN ) = {u ∈W 1,p(RN ) : gu = u,∀g ∈ O(N)}

equipped with the norm

‖u‖W 1,p
r (RN ) =

(∫ +∞

0

(|u′(ρ)|p + |u(ρ)|p)ρN−1dρ
)1/p

.

As pointed out in [7, Theorem 3.1], since 2 ≤ N < p < +∞, W 1,p
r (RN ) is compactly

embedded in L∞(RN ). In particular, there exists a positive constant k > 0 such
that

sup
ρ∈[0,+∞]

|u(ρ)| ≤ k‖u‖W 1,p
r (RN ) (2.1)

for each u ∈W 1,p
r (RN ).

Hereafter, we assume that X is a reflexive real Banach space, Φ : X → R is
a sequentially weakly lower semicontinuous functional, Υ : X → R is a sequen-
tially weakly upper semicontinuous functional, λ is a positive parameter, j : X →
(−∞,+∞) is a convex, proper, and lower semicontinuous functional, and D(j) is
the effective domain of j. Write

Ψ := Υ− j, Iλ := Φ− λΨ = (Φ− λΥ) + λj.

We also assume that Φ is coercive and

D(j) ∩ Φ−1(−∞, r) 6= ∅ (2.2)

for all r > infX Φ. Moreover, owing to (2.2) and provided r > infX Φ, we can define

ϕ(r) := inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r) Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

When Φ and Υ are locally Lipschitz functionals the following result is proved in [2,
Theorem 2.1]; it is a more precise version of [11, Theorem 1.1] (see also [15]), which
is the main tool to prove our results.

Theorem 2.5. Under the above assumptions on X,Φ and Ψ, one has
(a) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the func-

tional Iλ = Φ − λΨ to Φ−1(−∞, r) admits a global minimum, which is a critical
point (local minimum) of Iλ in X.

(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either
(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

limn→+∞ Φ(un) = +∞.
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(c) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or
(c2) there is a sequence {un} of pairwise distinct critical points (local minima)

of Iλ, with limn→+∞ Φ(un) = infX Φ, which weakly converges to a global
minimum of Φ.

3. Main results

Let f : RN ×R→ R be continuous almost everywhere and assume that for each
δ1 > 0 there is a constant Mδ1 such that

sup
|z|≤δ1

|f(|x|, z)| ≤Mδ1 . (3.1)

Since x is away from the origin, we set ρ = |x| and treat (1.1) as an ordinary
differential equation. Thus we write u(ρ) instead of u(x), and the problem (1.1)
corresponds exactly to

− (ρN−1φ(u′))′ + ρN−1φ(u) = λρN−1f(ρ, u) + µρN−1g(ρ, u) (3.2)

where ′ denotes d
dρ and φ(s) = |s|p−2s. Put

F (ρ, t) =
∫ t

0

f(ρ, s)ds, ρ ∈ R+ ∪ {0}, t ∈ R.

Pick D > 0 such that S(0, D) ⊆ RN where S(0, D) denotes the ball with center at
0 and radius of D, and let ωN be the volume of the N -dimensional unit ball.

Our main result is stated using the following assumptions:

(A1) F (ρ, t) ≥ 0 for all (ρ, t) ∈ [D2 ,+∞)× (R+ ∪ {0});
(A2)

lim inf
ξ→+∞

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ

ξp

<
1

kpωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→+∞

∫ D
2

0
F (ρ, ξ)ρN−1dρ

ξp
;

(A3) for all z ∈ D(f) the condition f−(ρ, z) ≤ 0 ≤ f+(ρ, z) implies f(ρ, z) = 0,
where f−(ρ, z) and f+(ρ, z) are given as in (1.2).

Put

λ1 :=
ωND

N ( 2p

Dp (1− 1
2N

) + 1)

p lim supξ→+∞

R D
2

0 F (ρ,ξ)ρN−1dρ
ξp

λ2 :=
(
pkp lim inf

ξ→+∞

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ

ξp

)−1

.

Suppose that g : RN × R → R is continuous almost everywhere, and for
δ2 > 0 there is a constant Mδ2 such that

sup
|z|≤δ2

|g(|x|, z)| ≤Mδ2 , (3.3)
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(A4) for all z ∈ D(g) the condition g−(ρ, z) ≤ 0 ≤ g+(ρ, z) implies g(ρ, z) = 0,
where

g−(ρ, z) = lim
δ→0+

ess inf |z−ζ|<δ g(ρ, ζ), g+(ρ, z) = lim
δ→0+

ess sup|z−ζ|<δ g(ρ, ζ),

whose potential G(ρ, t) =
∫ t

0
g(ρ, s)ds, ρ ∈ R+∪{0}, t ∈ R, is a non-negative

function satisfying the condition

g∞ := lim
ξ→+∞

∫ +∞
0

(sup|t|≤ξ G(ρ, t))ρN−1dρ

ξp
< +∞ . (3.4)

Set

µg,λ :=
1

pkpg∞

(
1− λpkp lim inf

ξ→+∞

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ

ξp

)
.

Theorem 3.1. Under assumptions (A1)–(A4), for each λ ∈]λ1, λ2[ and for every
µ ∈ [0, µg,λ[, problem (1.1) has an unbounded sequence of symmetric solutions.

Proof. To apply Theorem 2.5 to our problem, we take X = W 1,p
r (RN ). Fix

λ ∈]λ1, λ2[ and let g be an almost everywhere continuous function satisfying the
condition (3.4). Arguing as in [1], we follow the proof in the case µ > 0. Since,
λ < λ2, one has

µg,λ :=
1

pkpg∞

(
1− λ pkp lim inf

ξ→+∞

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ

ξp

)
> 0.

Fix µ ∈]0, µg,λ[ and set ν1 := λ1 and ν2 := λ2

1+pkp µ
λ
λ2g∞

. If g∞ = 0, clearly, ν1 = λ1,

ν2 = λ2 and λ ∈]ν1, ν2[. If g∞ 6= 0, since µ < µg,λ, we obtain

λ

λ2
+ pkpµg∞ < 1,

and so
λ2

1 + pkp µ
λ
λ2g∞

> λ,

namely, λ < ν2. Hence, since λ > λ1 = ν1, one has λ ∈]ν1, ν2[. We now set

Φ(u) =
1
p
‖u‖p

W 1,p
r (RN )

, Υ(u) =
∫ +∞

0

[F (ρ, u) +
µ

λ
G(ρ, u)]ρN−1dρ,

j(u) = 0, Ψ(u) = Υ(u)− j(u) = Υ(u)

for each u ∈ X. Clearly, the functional Φ is locally Lipschitz and weakly sequen-
tially lower semi-continuous. Put Iλ := Φ − λΨ. Since f and g satisfy (3.1) and
(3.3), respectively, and W 1,p

r (RN ) is compactly embedded in L∞(RN ), the assertion
remains true regarding Ψ too (see [8, 9]). By a simple computation, we obtain

dΦ(u)
du

=
∫ +∞

0

[−(|u′|p−2u′)′ + |u|p−2u]ρN−1dρ.

From Chang [4, Theorem 2.1], we have

∂Ψ(u) = [(f−(ρ, u) +
µ

λ
g−(ρ, u))ρN−1, (f+(ρ, u) +

µ

λ
g+(ρ, u))ρN−1].
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So the critical point of the functional Iλ is precisely the solution of the differential
inclusion

− (ρN−1φ(u′))′ + ρN−1φ(u)

∈ λ[(f−(ρ, u) +
µ

λ
g−(ρ, u))ρN−1, (f+(ρ, u) +

µ

λ
g+(ρ, u))ρN−1]

(3.5)

for ρ ∈ [0,+∞]\(u−1(Df )
⋃
u−1(Dg)).

Since m(Df ) = m(Dg) = 0, we can obtain −(ρN−1φ(u′))′ + ρN−1φ(u)) = 0 for
almost all ρ ∈ u−1(Df )∩u−1(Dg). On the other hand, in view of Assumptions (A3)
and (A4), we obtain f(ρ, u(ρ)) = 0 for almost all ρ ∈ u−1(Df ) and g(ρ, u(ρ)) = 0
for almost all ρ ∈ u−1(Dg), respectively, i.e.

− (ρN−1φ(u′))′ + ρN−1φ(u) = λρN−1f(ρ, u) + µρN−1g(ρ, u) (3.6)

for almost all ρ ∈ u−1(Df )∩u−1(Dg). Combining (3.5) and (3.6), we can obtain that
the solutions of the problem (3.2) are exactly the critical points of the functional
Iλ. Now, we claim that γ < +∞.

Let {ξn} be a sequence of positive numbers such that ξn → +∞ as n→∞ and

lim
n→∞

∫ +∞
0

(sup|t|≤ξn [F (ρ, t) + µ

λ
G(ρ, t)])ρN−1dρ

ξpn

= lim inf
ξ→+∞

∫ +∞
0

(sup|t|≤ξ[F (ρ, t) + µ

λ
G(ρ, t)])ρN−1dρ

ξp
.

Put rn = 1
p ( ξnk )p for all n ∈ N. Bearing in mind (2.1), we have

Φ−1(−∞, rn) = {u ∈ X; Φ(u) < rn}
= {u ∈ X; ‖u‖p

W 1,p
r (RN )

< prn}

⊆ {u ∈ X; |u(ρ)| ≤ ξn for all ρ ∈ [0,+∞]}.

Hence, taking into account that infX Φ(0) = 0 and Ψ(0) = 0 for every n large
enough, one has

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(supv∈Φ−1(−∞,rn) Ψ(v))−Ψ(u)
rn − Φ(u)

≤
supv∈Φ−1(−∞,rn) Ψ(v)

rn

≤

∫ +∞
0

(sup|t|≤ξn
[
F (ρ, t) + µ

λ
G(ρ, t)

]
)ρN−1dρ

1
p ( ξnk )p

≤
∫ +∞

0
(sup|t|≤ξn F (ρ, t))ρN−1dρ

1
p ( ξnk )p

+
µ

λ

∫ +∞
0

(sup|t|≤ξn G(ρ, t))ρN−1dρ
1
p ( ξnk )p

.

From Assumption (A2) and the condition (3.4) one has

lim
n→∞

∫ +∞
0

(sup|t|≤ξn F (ρ, t))ρN−1dρ
1
p ( ξnk )p

+ lim
n→∞

µ

λ

∫ +∞
0

(sup|t|≤ξn G(ρ, t))ρN−1dρ
1
p ( ξnk )p

< +∞,



8 S. HEIDARKHANI, F. GHAREHGAZLOUEI, A. SOLIMANINIA EJDE-2015/123

from which it follows that

lim
n→∞

∫ +∞
0

(sup|t|≤ξn [F (ρ, t) + µ

λ
G(ρ, t)])ρN−1dρ

1
p ( ξnk )p

< +∞.

Therefore,

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ lim
n→∞

∫ +∞
0

(sup|t|≤ξn [F (ρ, t) + µ

λ
G(ρ, t)])ρN−1dρ

1
p ( ξnk )p

< +∞. (3.7)

Since ∫ +∞
0

(sup|t|≤ξ[F (ρ, t) + µ

λ
G(ρ, t)])ρN−1dρ

1
p ( ξk )p

≤
∫ +∞

0
(sup|t|≤ξ F (ρ, t))ρN−1dρ

1
p ( ξk )p

+
µ

λ

∫ +∞
0

(sup|t|≤ξ G(ρ, t))ρN−1dρ
1
p ( ξk )p

,

taking into account (3.4), one has

lim inf
ξ→+∞

∫ +∞
0

(sup|t|≤ξ[F (ρ, t) + µ

λ
G(ρ, t)])ρN−1dρ

ξp

≤ lim inf
ξ→+∞

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ

ξp
+
µ

λ
g∞.

(3.8)

Since G is nonnegative, we obtain

lim sup
ξ→+∞

∫ D
2

0
[F (ρ, ξ) + µ

λ
G(ρ, ξ)]ρN−1dρ

ξp
≥ lim sup

ξ→+∞

∫ D
2

0
F (ρ, ξ)ρN−1dρ

ξp
. (3.9)

Therefore, in view of (3.8) and (3.9), we have

λ ∈]ν1, ν2[

⊆
] ωND

N ( 2p

Dp (1− 1
2N

) + 1)

p lim supξ→+∞

R D
2

0 [F (ρ,ξ)+µ

λ
G(ρ,ξ)]ρN−1dρ

ξp

,

1

pkp lim infξ→+∞

R +∞
0 (sup|t|≤ξ[F (ρ,t)+µ

λ
G(ρ,t)])ρN−1dρ

ξp

[
⊆]0,

1
γ

[,

where we used (A2) and (3.7).
For a fixed λ, inequality (3.7) implies that the condition (b) of Theorem 2.5 can

be applied and either Iλ has a global minimum or there exists a sequence {un} of
solutions of the problem (3.2) such that limn→∞ ‖un‖ = +∞.

The other step is to show that for the fixed λ the functional Iλ has no global
minimum. Let us verify that the functional Iλ is unbounded from below. Since

1
λ
<

p

ωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→+∞

∫ D
2

0
F (ρ, ξ)ρN−1dρ

ξp
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≤ p

ωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→+∞

∫ D
2

0
[F (ρ, ξ) + µ

λ
G(ρ, ξ)]ρN−1dρ

ξp
,

we can consider a real sequence {dn} and a positive constant τ such that dn → +∞
as n→∞ and

1
λ
< τ <

p

ωNDN ( 2p

Dp (1− 1
2N

) + 1)

∫ D
2

0
[F (ρ, dn) + µ

λ
G(ρ, dn)]ρN−1dρ

dn
(3.10)

for each n ∈ N large enough. Let {wn} be a sequence in X defined by

wn(x) =


0 if x ∈ RN \ S(0, D),
2dn
D (D − |x|) if x ∈ S(0, D) \ S(0, D2 ),
dn if x ∈ S(0, D2 ).

(3.11)

For any fixed n ∈ N, it is easy to see that wn ∈ X and, in particular, one has

‖wn‖pW 1,p
r (RN )

≤ dpnωNDN
( 2p

Dp
(1− 1

2N
) + 1

)
. (3.12)

On the other hand, since 0 ≤ wn(x) ≤ dn for every x ∈ RN , from (A1) and since
G is nonnegative, from the definition of Ψ, we infer

Ψ(wn) ≥
∫ D

2

0

[F (ρ, dn) +
µ

λ
G(ρ, dn)]ρN−1dρ. (3.13)

So, according to (3.10), (3.12) and (3.13), we obtain

Iλ(wn) ≤ 1
p
dpnωND

N
( 2p

Dp
(1− 1

2N
) + 1

)
− λ

∫ D
2

0

[F (ρ, dn) +
µ

λ
G(ρ, dn)]ρN−1dρ

<
1
p
dpnωND

N
( 2p

Dp
(1− 1

2N
) + 1

)
(1− λτ)

for every n ∈ N large enough. Since λτ > 1 and limn→+∞ dn = +∞ we have

lim
n→+∞

Iλ(wn) = −∞ .

Hence, the functional Iλ is unbounded from below, and it follows that Iλ has
no global minimum. Therefore, applying Theorem 2.5 we deduce that there is a
sequence {un} ⊂ X of critical points of Iλ such that limn→∞ ‖un‖W 1,p

r (RN ) = +∞.
Hence, since the critical points of the functional Iλ are exactly the solutions of the
problem (3.2), and then they are the solutions of the problem (1.1), the conclusion
is achieved. �

Remark 3.2. We notice that instead of Assumption (A2) in Theorem 3.1 we are
allowed to assume the more general condition

(A5) there exist two sequence {αn} and {βn} with(
ωND

N (
2p

Dp
(1− 1

2N
) + 1)

)1/p

αn <
βn
k

for every n ∈ N and limn→+∞ βn = +∞ such that

lim
n→+∞

∫ +∞
0

(sup|t|≤βn F (ρ, t))ρN−1dρ−
∫ D

2
0
F (ρ, αn)ρN−1dρ

(βnk )p − ωNDN ( 2p

Dp (1− 1
2N

) + 1)αpn
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<
1

ωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→+∞

∫ D
2

0
F (ρ, ξ)ρN−1dρ

ξp
.

Obviously, Assumption (A2) follows from Assumption (A5), by choosing αn = 0
for all n ∈ N. Moreover, if we assume (A5) instead of (A2) and set rn = 1

p (βnk )p for
all n ∈ N, by the same reasoning as in Theorem 3.1, we obtain

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(supv∈Φ−1(−∞,rn) Ψ(v))−Ψ(u)
rn − Φ(u)

≤
supv∈Φ−1(−∞,rn) Ψ(v)−

∫ +∞
0

F (ρ, wn(x))ρN−1dρ

rn − 1
p‖wn‖

p

W 1,p
r (RN )

≤
∫ +∞

0
(sup|t|≤∈ξ F (ρ, t))ρN−1dρ−

∫ D
2

0
F (ρ, αn)ρN−1dρ

1
p (βnk )p − 1

pωND
N ( 2p

Dp (1− 1
2N

) + 1)αpn
,

where wn(x) is defined as given in (3.11), for x ∈ RN with αn instead of dn. We
then have the same conclusion as in Theorem 3.1 with λ2 replaced by

λ′2 :=
(
p lim
n→+∞

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ−
∫ D

2
0
F (ρ, αn)ρN−1dρ

(βnk )p − ωNDN ( 2p

Dp (1− 1
2N

) + 1)αpn

)−1

The following result is a special case of Theorem 3.1 with µ = 0.

Theorem 3.3. Assume that (A1)–(A3) hold. Then, for each

λ ∈ Λ1 :=
] ωND

N ( 2p

Dp (1− 1
2N

) + 1)

p lim supξ→+∞

R D
2

0 F (ρ,ξ)ρN−1dρ
ξp

,

1

pkp lim infξ→+∞

R +∞
0 (sup|t|≤ξ F (ρ,t))ρN−1dρ

ξp

[
the problem

−∆pu+ |u|p−2u = λf(|x|, u), x ∈ RN , u ∈W 1,p
r (RN ) (3.14)

has an unbounded sequence of symmetric solutions.

Here we point out the following consequence of Theorem 3.3.

Corollary 3.4. Assume that (A1) and (A3) hold. Also assume that:
(A6)

lim inf
ξ→+∞

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ

ξp
<

1
pkp

;

(A7)

lim sup
ξ→+∞

∫D/2
0

F (ρ, ξ)ρN−1dρ

ξp
>

1
p
ωND

N (
2p

Dp
(1− 1

2N
) + 1) .

Then the problem

−∆pu+ |u|p−2u = f(|x|, u), x ∈ RN , u ∈W 1,p
r (RN )

has an unbounded sequence of symmetric solutions.

Remark 3.5. Theorem 1.1 is an immediately consequence of Corollary 3.4.
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Now, we point out a special situation of Theorem 3.3 when the nonlinear term has
separable variables. To be precise, let α be a continuous function such that α(|x|) ≥
0 a.e. x ∈ RN , α 6≡ 0, and let h : R → R be non-negative and continuous almost
everywhere; namely, m(Dh) = 0 where Dh = {z ∈ R, h(z) is discontinuous at z}.
We also assume that for each ι > 0 there is a constant Mι such that

sup
|z|≤ι
|h(z)| ≤Mι.

Put H(t) =
∫ t

0
h(s)ds, t ∈ R. Then, we have the following consequence of Theorem

3.1.

Theorem 3.6. Assume that
(A8)

lim inf
ξ→+∞

H(ξ)
ξp

<

∫ D
2

0
α(ρ)ρN−1dρ

kpωNDN ( 2p

Dp (1− 1
2N

) + 1)(
∫ +∞

0
α(ρ)ρN−1dρ)

lim sup
ξ→+∞

H(ξ)
ξp

;

(A9) for all z ∈ D(h) the condition h−(z) ≤ 0 ≤ h+(z) implies h(z) = 0, where

h−(z) = lim
δ→0+

ess inf |z−ζ|<δ h(ζ), h+(z) = lim
δ→0+

ess sup|z−ζ|<δ h(ζ).

Put

Λ2 :=
] ωND

N ( 2p

Dp (1− 1
2N

) + 1)

p(
∫ D

2
0
α(ρ)ρN−1dρ) lim supξ→+∞

H(ξ)
ξp

,

1

pkp(
∫ +∞

0
α(ρ)ρN−1dρ) lim infξ→+∞

H(ξ)
ξp

[
.

Suppose that g : RN×R→ R is an almost everywhere continuous function such that
for δ2 > 0 there is a constant Mδ2 such that (3.3) holds, and satisfies (A4), whose
potential G(ρ, t) =

∫ t
0
g(ρ, s)ds, ρ ∈ R+ ∪ {0}, t ∈ R, is a non-negative function

satisfying the condition (3.4). Set

µ′g,λ :=
1

pkpg∞

(
1− λpkp(

∫ +∞

0

α(ρ)ρN−1dρ) lim inf
ξ→+∞

H(ξ)
ξp

)
.

Then, for each λ ∈ Λ2 and for every µ ∈ [0, µ′g,λ[ the problem

−∆pu+ |u|p−2u = λα(|x|)h(u) + µg(|x|, u), x ∈ RN , u ∈W 1,p
r (RN ) (3.15)

has an unbounded sequence of symmetric solutions.

Next we give an example where the hypotheses of Theorem 3.6 are satisfied.

Example 3.7. Let 2 ≤ N < p < +∞ and h : R→ R be defined by

h(z) =


ez, z < 2,
0, z = 2,
z2, z > 2.

The function h has only one discontinuity point at z0 = 2 where h(z0) = 0. Hence,
the condition (A9) is satisfied. A direct calculation shows that

H(z) =


ez − 1, z < 2,
0, z = 2,
z3/3, z > 2.
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Therefore,

lim inf
ξ→+∞

sup|t|≤ξH(t)
ξp

= 0, lim sup
ξ→+∞

H(ξ)
ξp

= +∞,

and we observe that (A8) is fulfilled. Hence, using Theorem 3.6, the problem

−∆pu+ |u|p−2u = λ
h(u)

(1 + |x|2)2
+ µ

g1(u)
1 + |x|2

, x ∈ RN ,

where

g1(z) =

{
ez, z < 2,
0, z ≥ 2.

for every (λ, µ) ∈]0,+∞[×[0,+∞[ admits an unbounded sequence of radially sym-
metric solutions in W 1,p

r (RN ).

Arguing as in the proof of Theorem 3.1, but using conclusion (c) of Theorem 2.5
instead of (b), the following result holds.

Theorem 3.8. Assume that (A1) and (A3) hold and
(B1)

lim inf
ξ→0+

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ

ξp

<
1

kpωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→0+

∫ D
2

0
F (ρ, ξ)ρN−1dρ

ξp
.

Put

λ3 :=
ωND

N ( 2p

Dp (1− 1
2N

) + 1)

p lim supξ→0+

R D
2

0 F (ρ,ξ)ρN−1dρ
ξp

,

λ4 :=
1

pkp lim infξ→0+

R +∞
0 (sup|t|≤ξ F (ρ,t))ρN−1dρ

ξp

.

Suppose that g : RN ×R→ R is continuous almost everywhere, and that for δ2 > 0
there is a constant Mδ2 such that (3.3) holds, and satisfies (A4), whose potential
G(ρ, t) =

∫ t
0
g(ρ, s)ds, ρ ∈ R+ ∪{0}, t ∈ R is a non-negative function satisfying the

condition

g0 := lim
ξ→0+

∫ +∞
0

(sup|t|≤ξ G(ρ, t))ρN−1dρ

ξp
< +∞ (3.16)

and set

µ̄g,λ :=
1

pkpg0

(
1− λpkp lim inf

ξ→0+

∫ +∞
0

(sup|t|≤ξ F (ρ, t))ρN−1dρ

ξp

)
.

Then for each λ ∈]λ3, λ4[ and for every µ ∈ [0, µ̄g,λ[, problem (1.1) has a sequence
of symmetric solutions, which strongly converges to 0 in W 1,p

r (RN ).

Proof. We take X, Φ, Υ, j, Ψ and Iλ as in the proof of Theorem 3.1. By a similar
way as in the proof of Theorem 3.1 we show that δ < +∞. For this, let {ξn} be a
sequence of positive numbers such that ξn → 0+ as n→ +∞ and

lim
n→+∞

∫ +∞
0

(sup|t|≤ξn [F (ρ, t) + µ
λG(ρ, t)])ρN−1dρ

ξpn
< +∞.
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Setting rn = 1
p ( ξnk )p for all n ∈ N, arguing as in the proof of Theorem 3.1, it follows

that δ < +∞. Fix λ ∈]λ3, λ4[. The functional Iλ does not have a local minimum
at zero. Indeed, let {dn} be a sequence of positive numbers and τ > 0 such that
dn → 0+ as n→∞ and

1
λ
< τ <

p

ωNDN ( 2p

Dp (1− 1
2N

) + 1)

∫ D
2

0
[F (ρ, dn) + µ

λ
G(ρ, dn)]ρN−1dρ

dn
(3.17)

for each n ∈ N large enough. Let {wn} be a sequence in W 1,p
r (RN ) defined as given

in (3.11). According to (3.12), (3.13) and (3.17), we obtain

Iλ(wn) ≤ 1
p
dpnωND

N
( 2p

Dp
(1− 1

2N
) + 1

)
− λ

∫ D
2

0

[F (ρ, dn) +
µ

λ
G(ρ, dn)]ρN−1dρ

<
1
p
dpnωND

N
( 2p

Dp
(1− 1

2N
) + 1

)
(1− λτ) < 0

for every n ∈ N large enough. Since Iλ(0) = 0, this means the functional Iλ does not
have a local minimum at zero. Hence, the part (c) of Theorem 2.5 concludes that
there exists a sequence {un} in X of critical points of Iλ such that ‖un‖W 1,p

r (RN ) → 0
as n→∞, and the proof is complete. �

Remark 3.9. Note that Assumption (B1) in Theorem 3.8 could be replaced by
the more general condition

(B2) there exist two sequences {αn} and {βn} with(
ωND

N (
2p

Dp
(1− 1

2N
) + 1)

)1/p

αn <
βn
k

for every n ∈ N and limn→+∞ βn = 0 such that

lim
n→+∞

∫ +∞
0

(sup|t|≤βn F (ρ, t))ρN−1dρ−
∫ D

2
0
F (ρ, αn)ρN−1dρ

(βnk )p − ωNDN ( 2p

Dp (1− 1
2N

) + 1)αpn

<
1

ωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→0+

∫ D
2

0
F (ρ, ξ)ρN−1dρ

ξp
.

Remark 3.10. We observe that in Theorem 3.3, Corollary 3.4 and Theorem 3.6
by Theorem 3.8 and replacing ξ → +∞ with ξ → 0+, by the same reasoning, we
have the conclusions, ξ → +∞ replaced by ξ → 0+, but the sequences of symmetric
solutions strongly converge to 0 in W 1,p

r (RN ), instead.

We here give the following example to illustrate our results.

Example 3.11. Put N = 2 and p = 3. Let f : R→ R be defined by

f(z) =

{
1, (z − 1) ∈ [0, 1] \ C,
0, otherwise

where C is the “middle third set” of Cantor. Clearly, m(Df ) = m(1 + C) = 0 and
for each z ∈ Df one has f(z) = 0. A direct calculation shows

F (z) =

{
z, (z − 1) ∈ [0, 1] \ C,
0, otherwise.
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Therefore,

lim inf
ξ→0+

sup|t|≤ξ F (t)
ξ3

= 0, lim sup
ξ→0+

F (ξ)
ξ3

= +∞.

Hence, taking Remark 3.10 into account, by the similar result to Theorem 3.8, for a
fixed continuous almost everywhere function g : RN ×R→ R satisfying the required
assumptions in Theorem 3.8, the problem

−∆3u+ |u|u = λf(u) + µg(|x|, u), x ∈ R2, u ∈W 1,3
r (R2),

for every λ ∈]0,+∞[ and µ lying in a convenient interval, admits a sequence of
symmetric solutions, which converges strongly to 0 in W 1,3

r (R2).

We now consider the problem

−∆pu+ |u|p−2u = λα(x)f(u) + µβ(x)g(u), x ∈ RN , u ∈W 1,p(RN ) (3.18)

where λ > 0 and µ ≥ 0 are two parameters, α, β ∈ L1(RN ) ∩ L∞(RN ) are radially
symmetric, α, β ≥ 0, α, β 6≡ 0, f, g : R → R are non-negative continuous almost
everywhere, namely, m(Df ) = 0 where Df = {z ∈ R : f(z) is discontinuous at z},
and m(Dg) = 0 where Dg = {z ∈ R, g(z) is discontinuous at z}. We also assume
that for each ι1 > 0 there is a constant Mι1 such that

sup
|z|≤ι1

|f(z)| ≤Mι1 . (3.19)

Let k∞ be the embedding constant of W 1,p(RN ) ⊂ L∞(RN ); we obtain

sup
x∈RN

|u(x)| ≤ k∞‖u‖W 1,p(RN ),

and k∞ ≤ 2p(p−N)−1 (see [7]). Put

F (t) =
∫ t

0

f(s)ds, t ∈ R.

Next we have an existence result under the following assumptions:
(A10)

lim inf
ξ→+∞

‖α‖L1(RN )F (ξ)
ξp

<
‖α‖L1(S(0,D2 ))

kp∞ωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→+∞

F (ξ)
ξp

;

(A11) for all z ∈ D(f) the condition f−(z) ≤ 0 ≤ f+(z) implies f(z) = 0, where

f−(z) = lim
δ→0+

ess inf |z−ζ|<δ f(ζ), f+(z) = lim
δ→0+

ess sup|z−ζ|<δ f(ζ).

Put

λ5 :=
ωND

N ( 2p

Dp (1− 1
2N

) + 1)

p‖α‖L1(S(0,D2 )) lim supξ→+∞
F (ξ)
ξp

,

λ6 :=
1

pk∞‖α‖L1(RN ) lim infξ→+∞
F (ξ)
ξp

.

Suppose that g : R → R is a non-negative continuous almost everywhere function
such that for each ι2 > 0 there is a constant Mι2 such that

sup
|z|≤ι2

g(z) ≤Mι2 , (3.20)
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(A12) for all z ∈ D(g) the condition g−(z) ≤ 0 ≤ g+(z) implies g(z) = 0, where
g−(z) = limδ→0+ ess inf |z−ζ|<δ g(ζ), g+(z) = limδ→0+ ess sup|z−ζ|<δ g(ζ),
whose potential G(t) =

∫ t
0
g(s)ds, t ∈ R, is a non-negative function satis-

fying the condition

g′∞ := ‖β‖L1(RN ) lim
ξ→+∞

G(ξ)
ξp

< +∞ (3.21)

and set

µ̄′g,λ :=
1

pkp∞g′∞

(
1− λpkp∞‖β‖L1(RN ) lim inf

ξ→+∞

F (ξ)
ξp

)
.

Theorem 3.12. Under assumptions (A10)–(A12), for each λ ∈]λ5, λ6[ and for ev-
ery µ ∈ [0, µ̄′g,λ[, problem (3.18) has an unbounded sequence of symmetric solutions
in W 1,p

r (RN ).

We remark that no symmetry requirements on the nonlinear terms f and g are
needed.

Proof of Theorem 3.12. Fix λ and µ as in the conclusion. Take X = W 1,p(RN )
and define the functionals

Φ(u) =
1
p
‖u‖p

W 1,p(RN )
, Υ(u) =

∫
RN

[α(x)F (u(x)) +
µ

λ
β(x)G(u(x))]dx,

j(u) = 0, Ψ(u) = Υ(u)− j(u) = Υ(u)

for each u ∈ X. Put Iλ = Φ − λΨ. Clearly, the functional Φ is locally Lipschitz
and weakly sequentially lower semi-continuous. Since f and g satisfy (3.19) and
(3.20), respectively, and W 1,p

r (RN ) is compactly embedded in L∞(RN ), the asser-
tion remains true regarding Iλ too. Moreover, like for Theorem 3.1, we obtain that
any critical point u ∈ W 1,p(RN ) of the functional Iλ is a solution of the problem
(3.18). Thanks to a non-smooth version of the principle of symmetric criticality
introduced by Krawcewicz and Marzantowicz [10], we can obtain any critical point
of Irλ = Iλ|W 1,p

r (RN ) will be also a critical point of Iλ. Consider a real sequence {dn}
such that dn → +∞ as n→∞. Let {wn} be a sequence in W 1,p(RN ) defined as in
(3.11). It is easy to verify that wn ∈W 1,p(RN ) and it is radially symmetric. Since
0 ≤ wn(x) ≤ dn for every x ∈ RN , and f and α are non-negative, one has∫

S(0,D)\S(0,D2 )

α(x)F (wn(x))dx ≥ 0.

Hence, one has∫
RN

α(x)F (wn(x))dx =
∫
S(0,D2 )

α(x)F (wn(x))dx+
∫
S(0,D)\S(0,D2 )

α(x)F (wn(x))dx

≥
∫
S(0,D2 )

α(x)F (wn(x))dx

= ωN (
D

2
)N‖α‖L1(S(0,D2 ))F (dn).

Then, from (A10) we have

lim inf
ξ→+∞

‖α‖L1(RN )F (ξ)
ξp

<
‖α‖L1(S(0,D2 ))

kp∞ωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→+∞

F (ξ)
ξp
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≤
∫

RN α(x)dx
kp∞ωNDN ( 2p

Dp (1− 1
2N

) + 1)
lim sup
ξ→+∞

F (ξ)
ξp

.

As in Theorem 3.1, we can prove that the functional Iλ is unbounded from below,
and it follows that Iλ has no global minimum. Therefore, applying Theorem 2.5
we deduce that there is a sequence {un} ⊂ W 1,p

r (RN ) of critical points of Iλ such
that limn→∞ ‖un‖W 1,p

r (RN ) = +∞. Hence, we have the conclusion. �

Remark 3.13. We also observe that in Theorem 3.12 by Theorem 3.8 and replacing
ξ → +∞ with ξ → 0+, by the same reasoning, we have the conclusions, ξ → +∞
replaced by ξ → 0+, but the sequences of symmetric solutions strongly converge to
0 in W 1,p

r (RN ), instead.
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