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GRADIENT ESTIMATES FOR A NONLINEAR PARABOLIC
EQUATION WITH POTENTIAL UNDER GEOMETRIC FLOW

ABIMBOLA ABOLARINWA

Abstract. Let (M, g) be an n dimensional complete Riemannian manifold.

In this article we prove local Li-Yau type gradient estimates for all positive
solutions to the nonlinear parabolic equation

(∂t −∆g +R)u(x, t) = −au(x, t) log u(x, t)

along the generalised geometric flow on M . Here R = R(x, t) is a smooth

potential function and a is an arbitrary constant. As an application we derive

a global estimate and a space-time Harnack inequality.

1. Preliminaries and main results

Gradient and Harnack estimates are fundamental tools to tackle classical and
modern problems in geometric analysis. These methods applied to parabolic equa-
tions were first studied by Li and Yau in their celebrated paper [12]. They have
been applied successfully to the setting of various geometric flows, for more details
see [1, 2, 3, 4, 5, 6, 9, 10, 11, 13] and the references therein. In this article we de-
rive various gradient estimates for the following nonlinear parabolic equation with
potential ( ∂

∂t
−∆ +R

)
u(x, t) = −au(x, t) log u(x, t), (1.1)

in a more general setting of geometric flow. Here the symbol ∆ = ∆g is the Laplace-
Beltrami operator acting on functions in space with respect to metric g(t) in time,
a is a constant and R : M × [0, T ]→ R is a C∞-function on M . For instance if we
take R to be the scalar curvature of the manifold and we allow g to evolve by the
Ricci flow, ∂tg = −2Rc, where Rc is the Ricci curvature tensor, it then reduces to
the study of gradient Ricci soliton. Taking f = log u, a standard calculation yields( ∂

∂t
−∆

)
f = |∇f |2 − af −R. (1.2)

The study of gradient estimates on M can be reduced to the study of the properties
of the solution f of (1.2) and it is related to gradient soliton equation [5, 6]. Let
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(M, g(t)), 0 ≤ t ≤ T , be an n-dimensional complete Riemannian manifold whose
metric g(t) evolves by the geometric flow

∂

∂t
gij(x, t) = 2hij(x, t), (x, t) ∈M × [0, T ], (1.3)

where hij is a general time-dependent symmetric (0, 2)-tensor and 0 < T < Tε is
taken to be the maximum time of existence for the flow; i.e., Tε is the first time
where the flow blows-up. In [1] we obtained local gradient estimates for

( ∂
∂t
−∆g +R

)
u(x, t) = 0 (1.4)

coupled to (1.3). In this paper we extend the results to the case of (1.1) under the
assumption that the geometry of the manifold remains uniformly bounded through-
out the evolution. In particular, our results here can be generalised to Ricci flow
and some other geometric flows on complete manifolds. Indeed, Ricci flow is a nice
setting because of contracted second Bianchi identity that makes the divergence of
Ricci tensor to be equal to the half gradient of scalar tensor.

We will impose boundedness condition on the Ricci curvature of the metric g(t).
We notice that when the metric evolves by the Ricci flow, boundedness and sign
assumptions are preserved as long as the flow exists, so it follows that the metrics
are uniformly equivalent. Precisely, if −K1g ≤ Rc ≤ K2g, where g(t), t ∈ [0, T ] is a
Ricci flow, then

e−K1T g(0) ≤ g(t) ≤ eK2T g(0). (1.5)

To see the bounds (1.5) we consider the evolution of a vector form |X|g = g(X,X),
X ∈ TxM . By the equation of the Ricci flow ∂tg(X,X) = −2Rc(X,X), 0 ≤ t1 ≤
t2 ≤ T and by the boundedness of the Ricci curvature we have |∂tg(X,X)| ≤
K2g(X,X), which implies (by integrating from t1 to t2)

∣∣ log
g(t2)(X,X)
g(t1)(X,X)

∣∣∣ ≤ K2t
∣∣t2
t1
.

Taking the exponential of this estimate with t1 = 0 and t2 = T yields |g(t)| ≤
ek2T g(0) from which the uniform boundedness of the metric follows. See [7] and
[8] for details on the theory of the Ricci flow. Similarly, if there holds boundedness
assumption −cg ≤ h ≤ Cg, the metric g(t) are uniformly bounded below and above
for all time 0 ≤ t ≤ T under the geometric flow (1.3). Then, it does not matter
what metric we use in the argument that follows.

We now state the general local space-time gradient estimate corresponding to
those of [1, Theorem 3.2]

Theorem 1.1 (Local gradient estimates). Let (M, g(t)), t ∈ be a complete solution
to the geometric flow (1.3) in some time interval [0, T ]. Suppose there exist some
nonnegative constants k1, k2, and k3, such that Rij(g) ≥ −k1g and −k2g ≤ h ≤ k3g
for all t ∈ [0, T ]. Let u ∈ C2,1(M×[0, T ]) be any smooth positive solution to (1.1) in
the geodesic ball B2ρ,T . Suppose |∇h|, |R|, |∇R| and |∆R| are uniformly bounded
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on M × [0, T ]. Then, the following estimate holds

sup
x∈B2ρ

{
|∇f |2 − αft − αaf − αR

}
≤ αnp

2t
+

αnp

4(α− 1)
C8 +

αn

2
(k2 + k3)ϕ

√
pq

+
αnp

2

{C9

ρ2

( αp

α− 1
+ ρ
√
k1 + ρ2(k2 + k3)2

)
− a
} (1.6)

for all (x, t) ∈ B2ρ,T , t > 0 and some constants C8 and C9 depending only on n, α
and uniform bounds for |∇h|, |∇R| and |∆R|, where f = log u and α > 1 are given
such that 1

p + 1
q = 1

α for any real numbers p, q > 0.

As an application of the above result we obtain global gradient estimates (Cf.
Remark 3.1, equation (3.9)). We then apply the global estimates obtained to derive
classical Harnack inequalities by integrating along a space-time path joining any
two points in M .

The rest of the paper is as follows; in the next section we state and prove an
important lemma that will be applied to prove the theorem above. The last section
is devoted to the descriptions of the cut-off function needed in the proof and the
detail of the proof of Theorem 1.1 itself and its application to Harnack inequality
(Cf. Corollary 3.2).

2. Important Lemma

We first prove the following technical lemma which is a generalization of [1,
Lemma 3.1]. It is originally proved for heat equation on static metric by Li and
Yau [12]. This is very crucial to derivation of both local and global estimate of
Li-Yau type.

Lemma 2.1. Let (M, g(t)) be a complete solution to the generalized flow (1.3) in
some time interval [0, T ]. Suppose there exist some nonnegative constants k1, k2, k3,
and k4 such that Rij(g) ≥ −k1g, −k2g ≤ h ≤ k3g and |∇h| ≤ k4 for all t ∈ [0, T ].
For any smooth positive solution u ∈ C2,1(M × [0, T ]) to equation (1.1) in the
geodesic ball B2ρ,T , it holds that

(∆− ∂t)F ≥ −2〈∇f,∇F 〉 − 2αt
np

(∆f)2 − F

t
− 3αn1/2k4t|∇f |

−
(
(α− 1)(2k3 + a) + 2k1

)
t|∇f |2 − αt∆R

− 2t(α− 1)〈∇f,∇R〉 − αnq

2
t(k2 + k3)2 + aF,

(2.1)

where f = log u, F = t(|∇f |2 − α∂tf − αR− αaf) and α ≥ 1 are given such that
1
p + 1

q = 1
α for any real numbers p, q > 0.

Proof. Recall from [1, Lemma 2.1] the following evolutions under the flow

(|∇f |2)t = −2hijfifj + 2fifti, (2.2)

(∆f)t = ∆(ft)− 2hijfij − 2〈div h,∇f〉+ 〈∇H,∇f〉, (2.3)

where div is the divergence operator, i.e., (div h)k = gij∇ihjk. Notice also that
ft = ∆f + |∇f |2 −R− af . Taking covariant derivative of F we have

Fi = t(2fjfji − αfti − αRi − αafi)
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and with Bochner-Weitzenböck’s formula

∆|∇f |2 = 2|fij |2 + 2fjfjji + 2Rijfifj (2.4)

we have

∆F =
n∑
i=1

Fii = t
(

2f2
ij + 2fjfjji + 2Rijfij − α∆(ft)− α∆R− αa∆f

)
.

Using (2.3) we obtain

∆F = t
[
2f2
ij + 2fjfjji + 2Rijfifj − α(∆f)t − 2αhijfij

− 2α(div h)ifj + αHifj − α∆R− αa∆f
]

= t
(
2f2
ij − 2αhijfij

)
+ 2t〈∇f,∇(ft + af +R− |∇f |2)〉

− αt(ft + af +R− |∇f |2)t − 2αt(div h)ifj
+ αtHifj − αt∆R− αat∆f + 2tRijfij .

Notice that
−αt(ft + af +R− |∇f |2)t = t(α|∇f |2 − αft − αaf − αtR)t

= t
(
|∇f |2 − αft − αaf − αR+ (α− 1)|∇f |2

)
t

= t
(F
t

+ (α− 1)|∇f |2
)
t

= Ft −
F

t
+ t(α− 1)(|∇f |2)t,

(2.5)

2t〈∇f,∇(ft + af +R− |∇f |2)〉+ t(α− 1)(|∇f |2)t

= 2t〈∇f,∇(ft + af +R− |∇f |2)〉+ 2t(α− 1)〈∇f,∇(ft)〉 − 2t(α− 1)hijfifj

= 2t〈∇f,∇(αft + af +R− |∇f |2)〉 − 2t(α− 1)hijfifj

= −2t〈∇f,∇
(F
t

+ (α− 1)(af +R)
)
〉 − 2t(α− 1)hijfifj

= −2〈∇f,∇F 〉 − 2t(α− 1)〈∇f,∇R〉 − 2t(α− 1)a|∇f |2 − 2t(α− 1)hijfifj ,
(2.6)

−αat∆f = at(α|∇f |2 − αft − αaf − αR)

= aF + t(α− 1)(|∇f |2).
(2.7)

From (2.5)–(2.7) we obtain

∆F − Ft = t
(

2f2
ij − 2αhijfij

)
− 2〈∇f,∇F 〉 − F

t
− 2t(α− 1)hijfifj

− αt(2(div h)ifj −Hifj)− 2t(α− 1)〈∇f,∇R〉 − αt∆R
+ 2tRijfij − 2t(α− 1)a|∇f |2 + t(α− 1)a|∇f |2 + aF.

(2.8)

We now choose any two real numbers p, q > 0 such that 1
p + 1

q = 1
α so that we can

write

2f2
ij − 2αhijfij =

2α
p
f2
ij + 2α

(1
q
f2
ij − hijfij

)
≥ 2α

p
f2
ij −

αq

2
h2
ij ,
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where we have used completing the square method to arrive at the last inequality.
Also by Cauchy-Schwarz inequality we have f2

ij ≥ 1
n (∆f)2. We can also write the

boundedness condition on hij as −(k2 + k3)g ≤ hij ≤ (k2 + k3)g so that

sup
M
|hij |2 ≤ n(k2 + k3)2

since hij is a symmetric tensor. Therefore,

t
(

2f2
ij − 2αhijfij

)
≥ 2αt

np
(∆f)2 − αnq

2
t(k2 + k3)2. (2.9)

Notice also that

αt
(

2(div h)ifj −Hifj

)
= 2αt

(
div h− 1

2
∇H

)
fj

= 2αt
(
gkl∇khli −

1
2
gkl∇ihkl

)
∇jf

≤ 2αt
(3

2
|g||∇h|

)
|∇f |

≤ 3αtn
1
2 k4|∇f |.

Putting together the last inequality, (2.9) and (2.8) with the assumption that Rij ≥
−k1g, we arrive at

(∆− ∂t)F ≥ −2〈∇f,∇F 〉 − 2αt
np

(∆f)2 − F

t
+ aF − 2t(α− 1)k3|∇f |2

− 2tk1|∇f |2 − 3αtn
1
2 k4|∇f | −

αnq

2
t(k2 + k3)2 − αt∆R

− 2t(α− 1)〈∇f,∇R〉 − t(α− 1)a|∇f |2.
Our calculation is valid in the ball B2ρ,T . Hence the desired claim follows. �

3. Proof of Theorem 1.1

To prove Theorem 1.1 we use the lemma above and the assumptions that the
sectional curvature, ‖∇h‖, |R|, |∇R| and |∆R| are uniformly bounded onM×[0, T ].
Then we write equation (2.1) as

(∆− ∂t)F ≥ −2〈∇f,∇F 〉 − 2αt
np

(∆f)2 − F

t
+ aF − C1t|∇f |2

− C2t|∇f | − 2k1t|∇f |2 −
αnq

2
t(k2 + k3)2,

(3.1)

where constants C1 > 0 depends on α, max{a, 0}, sup |h| and ‖∇h‖, and C2 > 0
depends on α, n and the space-time bounds of ‖∇h‖, |∇R|, |∆R|. We have used
the following inequality

3αn1/2k4t|∇f | ≤ 2tk4|∇f |2 + 2α2ntk4.

Furthermore, by using

−C2t|∇f | ≥ −δ−1tC2
2 − δt|∇f |2

for any number δ > 0, we have

(∆− ∂t)F ≥ −2〈∇f,∇F 〉 − 2αt
np

(∆f)2 − F

t
+ aF − C3t|∇f |2

− C4t− 2k1t|∇f |2 −
αnq

2
t(k2 + k3)2,

(3.2)
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where C3 > 0 depends on C1 and δ and C4 depends on C2 and δ.

Estimating the cut-off function. A natural function that will be defined on M
is the distance function from a given point. Namely, let y ∈ M and define d(x, y)
for all x ∈ M , where d(·, ·) is the geodesic distance. Note that d is everywhere
continuous except on the cut locus of y and on the point where x and y coincide. It
is then easy to see that |∇d| = gij∂id∂jd = 1 on M \ {{y} ∪ cut(y)}. Let d(x, y, t)
be the geodesic distance between x and y with respect to the metric g(t), we define
a smooth cut-off function ϕ(x, t) with support in the geodesic ball

B2ρ,T :=
{

(x, t) ∈M × (0, T ] : d(x, y, t) ≤ 2ρ
}
.

For any C2-function ψ(s) on [0,+∞) with ψ(s) = 1 on 0 ≤ s ≤ 1 and ψ(s) = 0 on
2 ≤ s ≤ +∞ such that −C5 ≤ ψ′(s) ≤ 0, −C6 ≤ ψ′′(s) ≤ C6 and −C6ψ ≤ |ψ′|2 ≤
C6ψ, where C5, C6 are absolute constants. Let ρ ≥ 1 and define a smooth function

ϕ(x, t) = ψ
(d(x, p, t)

ρ

)
and ϕ

∣∣
B2ρ,T

= 1.

We will apply maximum principle and invoke Calabi’s trick to assume everywhere
smoothness of ϕ(x, t) since ψ(s) is in general Lipschitz (see the argument of Li-
Yau in [12]). We need Laplacian comparison theorem [14] to do some calculation
on ϕ(x, t). Let M be a complete n-dimensional Riemannian manifold whose Ricci
curvature is bounded from below by Rc ≥ −(n − 1)k1 for some constant k1 ∈ R,
then the Laplacian of the distance function satisfies

∆d(x, y) ≤ (n− 1)
√
|k1| coth(

√
|k1|ρ), ∀x ∈M d(x, y) ≥ ρ.

We need the following calculation

|∇ϕ|2

ϕ
=
|ψ′|2 · |∇d|2

ρ2ψ
≤ C6

ρ2

and by the Laplacian comparison theorem we have

∆ϕ =
ψ′∆d
ρ

+
ψ′′|∇d|2

ρ2

≥ −C5

ρ
(n− 1)

√
k1 coth(

√
k1ρ)− C6

ρ2

≥ −C5

√
k1

ρ
− C6

ρ2
.

Next is to estimate time derivative of ϕ: consider a fixed smooth path γ : [a, b]→M

whose length at time t is given by d(γ) =
∫ b
a
|γ′(s)|g(t)ds, where s is the arc length

along the path. Differentiating we get

∂

∂t
(d(γ)) =

1
2

∫ b

a

∣∣γ′(s)∣∣−1

g(t)

∂g

∂t

(
γ′(s), γ′(s)

)
ds =

∫
γ

hij(X,X)ds,

where X is the unit tangent vector to the path γ. Now
∂

∂t
ϕ = ψ′

1
ρ

d

dt
(d(t)) = ψ′

1
ρ

∫
γ

hij(X,X)ds

≤
√
C6ψ

1/2

ρ
(k2 + k3)2

∫
γ

dr ≤
√
C6(k2 + k3)2
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by choosing 0 ≤ s ≤ 1, ρ ≥ 1 and fixing the path to be of length not more than
unit so that it always stays inside the geodesic ball B2ρ,T . Hence we denote

(∆− ∂t)ϕ ≥
(
− C5

√
k1

ρ
− C6

ρ2
−
√
C6(k2 + k3)2

)
=: C7.

which will be used in the proof of our result.

Proof of Theorem 1.1. Using the same notation as in the previous lemma, we write
K̃ = (k2 +k3)2. For a fixed τ ∈ (0, T ] and a smooth cut-off function ϕ(x, t) (chosen
as before), we now estimate the inequality (3.2) at the point (x0, t0) ∈ B2ρ,T ⊂
(M × [0, T ]) such that d(x, x0, t) < 2ρ. The argument follows from the identity

(∆− ∂t)(ϕF ) = 2∇ϕ∇F + ϕ(∆− ∂t)F + F (∆− ∂t)ϕ. (3.3)

Suppose (ϕF ) attains its maximum value at (x0, t0) ∈ M × [0, T ], for t0 > 0. If
(ϕF )(x0, t0) ≤ 0 for any ρ ≥ 1, then the result holds trivially in M × [0, T ] and
we are done. Hence we may assume without loss of generality that there exists
(ϕF )(x0, t0) > 0. Then since (ϕF )(x, 0) = 0 for all x ∈ M , we have by the
maximum principle that

∇(ϕF )(x0, t0) = 0,
∂

∂t
(ϕF )(x0, t0) ≥ 0, ∆(ϕF )(x0, t0) ≤ 0, (3.4)

where the function (ϕF ) is being considered with support on B2ρ × [0, T ] and we
have assumed that (ϕF )(x0, t0) > 0 for t0 > 0. By (3.4) we notice that

(∆− ∂t)(ϕF )(x0, t0) ≤ 0.

Hence we have by using the inequality (3.2) and equation (3.3):

0 ≥ (∆− ∂t)(ϕF )

≥ 2∇ϕ∇F + C7F + ϕ
{2α
np
t0(∆f)2 − 2〈∇f,∇F 〉 − F

t0
+ aF

− C3t0|∇f |2 − C4t0 − 2k1t0|∇f |2 −
αnq

2
t0(k2 + k3)2

}
.

(3.5)

The above inequality holds in the part of B2ρ,T where ϕ(x, t) is strictly positive
(0 < ϕ(x, t) ≤ 1 ). Notice that since ∇(ϕF ) = 0, the product rule tells us that we
can always replace −F∇ϕ with ϕ∇F at the maximum point (x0, t0). Indeed, the
following equalities hold

2∇ϕ∇F = 2ϕ
∇ϕ
ϕ
∇F = 2

∇ϕ
ϕ

(−F∇ϕ) = −2F
C6

ρ2
,

−2ϕ∇F · ∇f = 2F∇ϕ · ∇f = 2F |∇f |ϕ |∇ϕ|
ϕ
≥ −2

√
C6

ρ
|∇f |ϕ1/2F.

Multiplying (3.5) by (t0ϕ), after some simple calculations involving the last two
identities at the maximum point we obtain

0 ≥ −2t0
C6

ρ2
ϕF − ϕ2F − 2t0

√
C6

ρ
|∇f |ϕ 3

2F + C7t0ϕF + aϕ2t0F

+ ϕ
2t20
n

(α
p

(ϕ|∇f |2 − ϕ(ft + af + ϕR)
)2

− αnq

2
t20K̃ϕ

2

− C3t
2
0ϕ

2|∇f |2 − C4ϕ
2t20 − 2k1t

2
0ϕ

2|∇f |2
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≥ −2t0
C6

ρ2
ϕF − ϕ2F − 2t0

√
C6

ρ
|∇f |ϕ 3

2F + C7t0ϕF + aϕ2t0F

+ ϕ
2t20
n

(α
p

(ϕ|∇f |2 − ϕ(ft + af + ϕR)
)2

− αnq

2
t20K̃ϕ

2 − C8t
2
0ϕ

2|∇f |2,

where C8 depends on C3, C4 and k1. Using a similar technique as in Li-Yau
paper [12], when t0 > 0, let y = ϕ|∇f |2 and z = ϕ(ft + af + R) to obtain
ϕ2|∇f |2 = ϕy ≤ y, y1/2(y − αz) = 1

t0
|∇f |ϕ 3

2F and ϕF = t0(y − αz). We obtain

0 ≥ 2t20
n

(α
p

(y − z)2 − C8

2
ny − n

√
C6

ρ
y1/2(y − αz)

)
− αnq

2
t20K̃ϕ

2 +
(
C7t0 − 2t0

C6

ρ2
− 1 + aϕt0

)
(ϕF ).

(3.6)

Notice that by direct calculations,

(y − z)2 = [
1
α

(y − αz) +
α− 1
α

y]2

=
1
α2

(y − αz)2 +
(α− 1)2

α2
y2 +

2(α− 1)
α2

y(y − αz).

Then, the first term in the right hand side of inequality (3.6) can be simplified as
follows:

2t20
n

{α
p

[
(y − z)2 − C8np

2α
y − np

α

√
C6

ρ
y(y − αz)

]}
=

2t20
n

{α
p

[ 1
α2

(y − αz)2 +
( (α− 1)2

α2
y2 − C8np

2α
y
)

+
(2(α− 1)

α2
y − np

α

√
C6

ρ
y1/2

)
(y − αz)

]}
≥ 2t20

n

{ 1
αp

(y − αz)2 − C4
8αn

2p

16(α− 1)2
− C6αn

2p

8ρ2(α− 1)
(y − αz)

}
=

2
αnp

(ϕF )2 − C2
8αnp

8(α− 1)2
t20 −

C6αnp

4ρ2(α− 1)
t0(ϕF ).

We have used the inequality of the form ax2 − bx ≥ − b2

4a , (a, b > 0), to compute

(α− 1)2

α2
y2 − C2

8np

2α
y ≥ − C4

8n
2p2

16(α− 1)2
,

2(α− 1)
α2

y − np

α

√
C6

ρ
y1/2 ≥ − C6n

2p2

8(α− 1)ρ2
.

Therefore, putting all these together into (3.6), we get a quadratic polynomial in
(ϕF )

0 ≥ 2
αnp

(ϕF )2 +
(
C7t0 − 2t0

C6

ρ2
− 1 + at0 −

C6αnp

4ρ2(α− 1)
t0

)
(ϕF )

−
( C2

8αnp

8(α− 1)2
t20 +

αnq

2
t20K̃ϕ

2
)
.

Then we develop a formula for quadratic inequality of the form ax2 + bx + c ≤ 0,
for x ∈ R. Note that when a > 0 and c < 0, then b2 − 4ac > 0 and we have an
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upper bound

x ≤ −b+
√
b2 − 4ac

2a
≤ 1
a

{
− b+

√
−ac

}
. (3.7)

The next is to make more explicit the term

b :=
(
C7t0 − 2t0

C6

ρ2
− 1 + at0 −

C6αnp

4ρ2(α− 1)
t0

)
=
(
− C5

√
k1

ρ
t0 −

C6

ρ2
t0 −

√
C6K̃t0 − 2t0

C6

ρ2
− 1 + at0 −

C6αnp

4ρ2(α− 1)
t0

)
= −

(C9

ρ2
t0

( αp

α− 1
+ ρ
√
k1 + ρ2K̃

)
− at0 + 1

)
,

where C9 > 0 depends on C6 and n. Hence, we have by applying (3.7)

ϕF ≤ αnp

2
+
αnp

2

{C9

ρ2
t0

( αp

α− 1
+ ρ
√
k1 + ρ2(k2 + k3)2

)
− at0

}
+

αnp

4(α− 1)
C8t0 +

αn

2
(k2 + k3)t0ϕ

√
pq.

To obtain the required bound on F (x, τ) for an appropriate range of x ∈ M , we
take ϕ(x, τ) ≡ 1 whenever d(x, x0, τ) < 2ρ and since (x0, t0) is the maximum point
for (ϕF ) in B2ρ,T , we have

F (x, τ) = (ϕF )(x, τ) ≤ (ϕF )(x0, t0)

for all x ∈M , such that d(x, x0, τ) < ρ and τ ∈ (0, T ] was arbitrarily chosen, then
we have the conclusion in a more compact way, that

sup
x∈B2ρ

{
|∇f |2 − αft − αaf − αR

}
≤ αnp

2t
(1− at) + C10, (3.8)

where C10 depends on α, τ, ρ, k1, k2, k3, n, p and q. This completes the proof. . �

Remark 3.1. Global estimate follows by letting ρ→∞ for all t > 0. For instance,
if we set p = 2α = q and allow ρ goes to infinity, we have the estimate

|∇u|2

u2
− αut

u
− αa log u− αR ≤ α2n

t
+ C11 (3.9)

where C11 is an absolute constant depending on n, τ, α and the upper bounds of
|Rc|, |∇R|, |∆R|, |h|, |∇h| and −min{a, 0}.

As an application of the global gradient estimates derived in Theorem 1.1, we
obtain the following result for the corresponding Harnack estimates.

Corollary 3.2 (Hanarck estimates). With the same assumption as in Theorem
1.1. The estimate

u(x1, t1)
u(x2, t2)e−a(t2−t1) ≤

( t2
t1

)αn
exp

{d2(x1, x2)
4(t2 − tt)

+ C12(t2 − t1)
}

(3.10)

holds for all (x, t) ∈ M × (0, T ], where C12 is an absolute constant depending on
n, τ, α and the upper bounds of |Rc|, |R|, |∇R|, |∆R|, |h|, |∇h| and −min{a, 0}.
Here d(x1, x2) is the geodesic distance between points x1 and x2. The space-time
path γ : [t1, t2] → M connects points x1 = γ(t1) and x2 = γ(t2) in M . Denote
|γ̇(t)| = d(x1, x2)/(t2 − t1), where the norm | · | depends on t.
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Proof. Equation (3.9) implies

ft ≥
1
α
|∇f |2 − αn

t
− af −R− 1

α
C11. (3.11)

Straight computation yields

eat2f(x2, t2)− eat1f(x1, t1)

=
∫ t2

t1

d

dt

(
eatf(γ(t), t)

)
dt

=
∫ t2

t1

{
eat(ft + 〈∇f(γ(t), t), γ̇(t)〉) + aeatf

}
dt

≥
∫ t2

t1

{
eat
( 1
α
|∇f |2 − αn

t
−R− 1

α
C11 + 〈∇f(γ(t), t), γ̇(t)〉

)}
dt

≥ −eat1
(∫ t2

t1

{α|γ̇(t)|2

4
+
αn

t
+

1
α
C11

}
dt
)

= −eat1
(∫ t2

t1

αd2(x1, x2)
4(t2 − tt)2

dt+ log
( t2
t1

)αn
+ C12(t2 − t1)

)
.

In the computation above we have used (3.11) to arrive at the inequality in the
third line, whereas the quantity eat coming up in the first line helped to get rid of
the term af in (3.11). We also used an inequality of the form Ay2 +By ≥ −B2/4A
to obtain the inequality in the fourth line and denoted |γ̇(t)| = d(x1, x2)/(t2 − t1)
by defining a curve η in M × (0, Tε), η : [t1, t2]→M × (0, Tε), by η(s) = (γ(s), s).
Positive constant C12 depends on α,C11 and the uniform bound for |R|. Now,
multiplying both sides by e−at1 the expression in the left hand side becomes

f(x1, t1)− ea(t2−t1)f(x2, t2) = log
( u(x1, t1)
u(x2, t2)ea(t2−t1)

)
.

By exponentiation we arrive at

u(x1, t1) ≤ u(x2, t2)e
a(t2−t1)

( t2
t1

)αn
exp

{∫ t2

t1

d2(x1, x2)
4(t2 − tt)2

dt+ C12(t2 − t1)
}
,

which concludes the proof of the corollary. �
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