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MEASURE INTEGRAL INCLUSIONS WITH
FAST OSCILLATING DATA

BIANCA-RENATA SATCO

Abstract. We prove the existence of regulated or bounded variation solu-
tions, via a nonlinear alternative of Leray-Schauder type, for the measure

integral inclusion

x(t) ∈
Z t

0
F (s, x(s)) du(s),

under the assumptions of regularity, respectively bounded variation, on the
function u. Our approach is based on the properties of Kurzweil-Stieltjes

integral that, unlike the classical integrals, can be used for fast oscillating

multifunctions on the right hand side and the results allow one to study (by
taking the function u of a particular form) continuous or discrete problems, as

well as impulsive or retarded problems.

1. Introduction

Motivated by problems occurring in fields such as mechanics, electrical engineer-
ing, automatic control and biology (see [2,20,30]), an increasing attention has been
given to measure-driven differential equations in the theory of differential equations:
equations of the form

dx(t) = g(t, x(t))dµ(t),
where µ is a positive regular Borel measure. An equal interest has been shown to
the related integral problems and, more recently, for practical reasons (arising, e.g.,
from the theory of optimal control), to the set-valued associated problems. Such
studies cover some classical cases like usual differential inclusions (when µ is abso-
lutely continuous with respect to the Lebesgue measure), difference inclusions (for
discrete measure µ) or impulsive problems (when the measure µ is a combination
of the two types of measures).

We shall approach the matter of existence of solutions of measure integral inclu-
sion

x(t) ∈
∫ t

0

F (s, x(s)) du(s) (1.1)

via Stieltjes integration theory. As the function u will not be assumed absolutely
continuous, we will not be able to find classical solutions. More precisely, we will
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work with regulated or bounded variation function u and the obtained solutions
will be of the same kind.

Let us remark right from the start that the use of Riemann-Stieltjes integration
theory is not possible when the function to integrate and the function u are both
discontinuous. Also, the Lebesgue-Stieltjes integral will not be appropriate (as
in [9, 17, 28, 8], to cite only a few) when the function under the integral sign is
allowed to be highly oscillating. In the given situation, the most natural notion of
integral is the Kuzweil-Stieltjes integral.

In the single-valued framework there is a series of existence results for Stieltjes
integral equations using Kurzweil integral in the linear or nonlinear case (we refer
to [29,25,16] or to the more recent [10,11,1]). As for the set-valued case, as far as the
author knows, there are existence results via Lebesgue-Stieljes integral (such as [8]),
but the problem has not been investigated yet in the setting of Kurzweil-Stieltjes
integral.

In the first part, we will provide existence results for inclusion (1.1) under the
assumption that u is regulated, using the notion of equi-regularity (introduced
in [12]). In the second part, the function u will be assumed of bounded variation and
the existence of solutions will be studied. Finally, in view of practical applications,
the existence of bounded variation solutions will be obtained in a particular case:
by considering Kurzweil-Stieltjes integrals of regulated functions with respect to a
bounded variation function. As the theory of measure driven problems cover many
well-known situations (see [1] for a discussion in this sense), for a particular function
u, new existence results can be deduced for usual integral inclusions, difference
inclusions, impulsive or retarded problems for systems with fast oscillating data.

2. Definitions and notation

Let (X, ‖ · ‖) be a separable Banach space (the separability allows us to apply
the classical measurable selection theorems, see [7]). A function u : [0, 1] → X is
said to be regulated if there exist the limits u(t+) and u(s−) for all points t ∈ [0, 1)
and s ∈ (0, 1]. It is well-known ( [15]) that the set of discontinuities of a regulated
function is at most countable, that regulated functions are bounded and the space
G([0, 1], X) of regulated functions u : [0, 1] → X is a Banach space when endowed
with the sup-norm ‖u‖C = supt∈[0,1]‖u(t)‖.

For a function u : [0, 1]→ X the total variation will be denoted by var1
0(u) and

if it is finite then u will be said to have bounded variation (or to be a bounded
variation function). Any bounded variation function is regulated.

Let us now recall some basic facts from the theory of Kurzweil-Stieltjes integra-
tion in Banach spaces, which is a particular case of Kurzweil integration [16].

Let u : [0, 1] → R. A partition of [0, 1] is a finite collection of pairs {(Ii, ξi) :
i = 1, . . . , p}, where I1, . . . , Ip are non-overlapping subintervals of [0, 1], ξi ∈ Ii,
i = 1, . . . , p and ∪p

i=1Ii = [0, 1]. A gauge δ on [0, 1] is a positive function on [0, 1].
For a given gauge δ we say that a partition {(Ii, ξi) : i = 1, . . . , p} is δ-fine if
Ii ⊂ (ξi − δ(ξi), ξi + δ(ξi)), i = 1, . . . , p.

Definition 2.1. A function f : [0, 1]→ X is said to be Kurzweil-Stieltjes-integrable
with respect to u : [0, 1] → R on [0, 1] (shortly, KS-integrable) if there exists a
function denoted by (KS)

∫ ·
0
f(s)du(s) : [0, 1]→ X such that, for every ε > 0, there
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is a gauge δε on [0, 1] with
p∑

i=1

∥∥f(ξi)(u(ti)− u(ti−1))−
(

(KS)
∫ ti

0

f(s)du(s)− (KS)
∫ ti−1

0

f(s)du(s)
)∥∥ < ε

for every δε-fine partition {([ti−1, ti], ξi) : i = 1, . . . , p} of [0, 1].

The KS-integrability is preserved on all sub-intervals of [0, 1]. The function
t 7→ (KS)

∫ t

0
f(s)du(s) is called the KS-primitive of f with respect to u on [0, 1]

(we refer to [29] or [25] for the case where X is finite dimensional).

Remark 2.2. When u(s) = s, this definition gives the concept of Henstock-
Lebesgue-integrable function ( [5]) or variational Henstock-integral [18]. If moreover
X is finite dimensional, in the preceding definition the norm can be put outside
the sum, giving the equivalent concept of Henstock integral (see [5, 18, 27] for a
comparison between the two notions in general Banach spaces).

Definition 2.3. A collection A of KS-integrable functions is said to be KS equi-
integrable if for every ε > 0 there exists a gauge δε (the same for all elements of A)
s uch that all f ∈ A satisfy the condition in Definition 2.1.

As the KS-integral satisfies the Saks-Henstock Lemma [25, Lemma 1.13], the
proof of [25, Theorem 1.16] works in our setting and gives:

Proposition 2.4. Let u : [0, 1] → R and f : [0, 1] → X be KS-integrable with
respect to u.

(i) If u is regulated, then so is the primitive h : [0, 1]→ X,

h(t) = (KS)
∫ t

0

f(s) du(s)

and for every t ∈ [0, 1],

h(t+)− h(t) = f(t)[u(t+)− u(t)], h(t)− h(t−) = f(t)[u(t)− u(t−)].

(ii) If u is of bounded variation and f is bounded, then h is of bounded variation.

For the rest of this article, unless otherwise stated, the function u will be sup-
posed to be regulated. The space of all functions that are KS-integrable with respect
to u will be denoted by KS(u) and endowed with the supremum norm of the prim-
itive (that is regulated, see Proposition 2.4 (i), namely the Alexiewicz norm with
respect to u:

‖f‖uA = sup
t∈[0,1]

‖(KS)
∫ t

0

f(s)du(s)‖.

A compact convex-valued multifunction Γ : [0, 1] → Pck(X) is said to be upper
semi-continuous at a point t0 ∈ [0, 1] if for every ε > 0 there exists δε > 0 such that
the excess of Γ(t) over Γ(t0) (in the sense of Pompeiu-Hausdorff metric) is less than
ε whenever |t− t0| < δε. Otherwise stated,

Γ(t) ⊂ Γ(t0) + εB,

where B is the unit ball of X. A multifunction is upper semi-continuous when
it is upper semi-continuous at each point t0 ∈ [0, 1]. Moreover, it is completely
continuous if it is totally bounded and upper semi-continuous. The symbol SΓ

stands for the family of measurable selections of Γ. We refer to [3, 7, 14, 23, 22] for
any aspect (classical or not) related to multivalued analysis.
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A technical result will be used (see [24]).

Lemma 2.5. For any sequence (yn)n of measurable selections of a Pck(X)-valued
measurable multifunction Γ, there exists zn ∈ conv{ym,m≥n} a.e. convergent to a
measurable y.

3. Existence results - regulated case

In this section, we prove an existence result for measure integral inclusions con-
sidering Kurzweil-Stieltjes integrability with respect to a regulated function u, the
main tool being the following concept:

Definition 3.1 ( [12]). A set A ⊂ G([0, 1], X) is said to be equi-regulated if for
every ε > 0 and every t0 ∈ [0, 1] there exists δ > 0 such that:

(i) for any t0 − δ < t′ < t0: ‖x(t′)− x(t−0 )‖ < ε;
(ii) for any t0 < t′′ < t0 + δ: ‖x(t′′)− x(t+0 )‖ < ε for all x ∈ A.

A useful version of Ascoli’s Theorem for regulated functions was proved in [19]
(see also [12] in finite dimensional setting).

Lemma 3.2. Let A ⊂ G([0, 1], X) be equi-regulated and, for every t ∈ [0, 1], A(t) =
{x(t), x ∈ A} be relatively compact. Then A is relatively compact in G([0, 1], X).

Moreover, as in the case of equi-continuous functions, one can prove the following
result.

Lemma 3.3. An equi-regulated family A ⊂ G([0, 1], X) which is pointwise bounded
is uniformly bounded.

Proof. [19, Theorem 1.2] states that for every ε > 0 one can find a finite collection
0 = t0 < t1 < · · · < tnε

= 1 such that

‖x(t′)− x(t′′)‖ ≤ ε

for any x ∈ A and [t′, t′′] ⊂ (tj−1, tj), j = 1, . . . , nε. Take now ε = 1. There exist
0 = t0 < t1 < · · · < tn1 = 1 such that

‖x(t′)− x(t′′)‖ ≤ 1

for any x ∈ A and [t′, t′′] ⊂ (tj−1, tj), j = 1, . . . , n1. If we note by Mj =
sup{‖x

( tj−1+tj

2

)
‖, x ∈ A} and by Nj = sup{‖x(tj)‖, x ∈ A}, j = 0, . . . , n1, then

for every t ∈ [0, 1] and any x ∈ A one gets

‖x(t)‖ ≤ max
(
{Mj + 1, j = 1, . . . , n1} ∪ {Nj , j = 0, . . . , n1}

)
and the uniform boundedness property is achieved. �

Bearing in mind the fact that the primitive of a function which is KS-integrable
with respect to a regulated function is regulated as well, we prove the following
result.

Proposition 3.4. Let u : [0, 1] → R be regulated and K be pointwise bounded and
KS equi-integrable with respect to u. Then the set {(KS)

∫ ·
0
f(s)du(s), f ∈ K} is

equi-regulated.
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Proof. Fix t0 ∈ [0, 1] and let ε > 0. There exists M > 0 such that ‖f(t0)‖ ≤M for
every f ∈ K. One can also find a gauge δε with

n∑
i=1

‖f(ξi)(u(t̃i+1)− u(t̃i))− (KS)
∫ t̃i+1

t̃i

f(s)du(s)‖ ≤ ε

2
, ∀f ∈ K

for any δε-fine partition
{

(t̃i, t̃i+1), ξi, 0 = 1, . . . , n
}

. On the other hand, as u is
regulated, there exist δε > 0 such that

‖u(t′)− u(t−0 )‖ ≤ ε

2M
whenever t0 − δε < t′ < t0 and the similar for the limit at the right.

We will prove that δ′ε = min(δε(t0), δε) satisfies that for every t0 − δ′ε < t′ < t0:

‖(KS)
∫ t′

0

f(s)du(s)− (KS)
∫ t−0

0

f(s)du(s)‖ < ε, ∀f ∈ K

(and, obviously, the same for the right limit). Indeed, as in the proof of [25, Theorem
1.16]:

(KS)
∫ t′

0

f(s)du(s)− (KS)
∫ t0

0

f(s)du(s)

= f(t0)(u(t′)− u(t0)) +
(

(KS)
∫ t′

0

f(s)du(s)− (KS)
∫ t0

0

f(s)du(s)

− f(t0)(u(t′)− u(t0))
)

where the last term can be made, by Saks-Henstock Lemma, (in norm) less that
ε/2 and, from here:

(KS)
∫ t−0

0

f(s)du(s)− (KS)
∫ t0

0

f(s)du(s) = f(t0)(u(t−0 )− u(t0)).

It follows that

(KS)
∫ t′

0

f(s)du(s)− (KS)
∫ t−0

0

f(s)du(s)

= f(t0)(u(t′)− u(t−0 )) +
(

(KS)
∫ t′

0

f(s)du(s)

− (KS)
∫ t0

0

f(s)du(s)− f(t0)(u(t′)− u(t0))
)

and so,

‖(KS)
∫ t′

0

f(s)du(s)− (KS)
∫ t−0

0

f(s)du(s)‖ ≤M ε

2M
+
ε

2
= ε

for any f ∈ K and t′ with t0 − δ′ε < t′ < t0. �

Let us recall a nonlinear alternative of Leray-Schauder type that will be applied
below.

Theorem 3.5 ( [21]). Let D and D be open and closed subsets of a normed linear
space E such that 0 ∈ D and let T : D → Pck(E) be completely continuous. Then
either
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(i) the inclusion x ∈ T (x) has a solution, or
(ii) there exists x ∈ ∂D such that λx ∈ T (x) for some λ > 1.

Applying this theorem will necessitate a convergence result, such as

Lemma 3.6 ( [4, Theorem 6.1]). Let u be ACG∗∗ and (fn)n a sequence KS equi-
integrable with respect to u which pointwise converges to f . Then f is KS-integrable
with respect to u and

(KS)
∫ 1

0

fn(s)du(s)→ (KS)
∫ 1

0

f(s)du(s).

It works for functions u that are more than regulated (but not necessarily of
bounded variation), namely:

Definition 3.7 ( [4]). (i) u : [0, 1] → R is said to be ACG∗∗ if it is continuous
and the unit interval can be written as a countable union of closed sets on each of
which F is AC∗∗;

(ii) A function u : [0, 1]→ R is AC∗∗ on E ⊂ [0, 1] if, for any ε > 0, there exists
ηε > 0 and a gauge δ : E → R+ such that, whenever D1, D2 are δ-fine partitions
of E with

∑
D1\D2 |t′ − t′′| < ηε, one has∑

D1\D2

|u(t′)− u(t′′)| < ε;

here D1 \D2 denotes the collection of all connected components of ∪D1 \ ∪D2.

We give now the main result of this section. Notice that in [29] it was explained
why the space of regulated functions is the best choice for the space of solutions.

Definition 3.8. A solution of measure driven inclusion (1.1) is a regulated function
x : [0, 1]→ X for which there exists g ∈ SF (·,x(·)) such that

x(t) = (KS)
∫ t

0

g(s) du(s), ∀t ∈ [0, 1].

Theorem 3.9. Let u : [0, 1]→ R be ACG∗∗ and F : [0, 1]×X → Pck(X) satisfy:
(i) for every x ∈ X, F (·, x) is measurable;

(ii) for every R > 0:
(ii1) the family

∪{SF (·,x(·)), x ∈ G([0, 1], X), ‖x‖C ≤ R}

is pointwise bounded and KS equi-integrable with respect to u;
(ii2) the map x ∈ G([0, 1], X), ‖x‖C ≤ R → SF (·,x(·)) is upper semi-con-

tinuous with respect to the ‖ · ‖uA-topology on the space KS(u);
(ii3) for each t ∈ [0, 1] ,{

(KS)
∫ t

0

f(s)du(s), f ∈ SF (·,x(·))
}

is relatively compact for every x ∈ G([0, 1], X), ‖x‖C ≤ R and{
(KS)

∫ t

0

f(s)du(s), f ∈ SF (·,x(·)), x ∈ G([0, 1], X), ‖x‖C ≤ R
}

is bounded.
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If moreover there exists R0 such that ‖x‖C 6= R0 for any regulated solution x of

x(t) ∈ λ
(
x0 +

∫ t

0

F (s, x(s))du(s)
)

for all λ ∈ (0, 1), then our integral inclusion possess regulated solutions with ‖x‖C ≤
R0.

Proof. Let N : BR0 → G([0, 1], X) be the operator defined on the ball centered at
the origin of radius R0 of G([0, 1], X) by

N(x)(t) =
{

(KS)
∫ t

0

f(s)du(s), f ∈ SF (·,x(·))
}
.

Obviously, the fixed points of this operator will be solutions to our inclusion.
We will check the hypothesis of Theorem 3.5. Let us note first that the values of

N are convex and non-empty; indeed, hypothesis ii2) implies that for any t ∈ [0, 1]
the map F (t, ·) is upper semi-continuous and, thanks to hypothesis i), this yields
the existence of measurable selections for the superpositional map F (·, x(·)).

Let us prove that the values are compact. We will get the relative compactness
by Lemma 3.2. From hypotheses (ii1), we are able to apply Proposition 3.4 to
obtain the equi-regularity, while the second condition in Lemma 3.2 is stated by
hypotheses (ii3).

It remains thus to prove that the values are closed. Fix then x and consider a
sequence ((KS)

∫ ·
0
fn(s)du(s))n ⊂ N(x) convergent to g ∈ G([0, 1], X) and show

that there exists f ∈ SF (·,x(·)) with g(t) = (KS)
∫ t

0
f(s)du(s) for any t ∈ [0, 1].

As F is compact convex-valued, one can find a sequence of convex combinations
f̃n ∈ co{fm,m ≥ n} that pointwise converges to some selection f of F (·, x(·)).
Lemma 3.6 implies that

(KS)
∫ t

0

f̃n(s)du(s)→ (KS)
∫ t

0

f(s)du(s)

and so, g(t) = (KS)
∫ t

0
f(s)du(s) for any t ∈ [0, 1].

In the sequel, let us prove that N is completely continuous. The total bound-
edness comes from Proposition 3.4 and the pointwise boundedness hypothesis (ii3)
since we can apply Lemma 3.3.

Let us now check that it is upper semi-continuous. To this aim, fix x0 ∈ BR0

and consider an arbitrary ε > 0. Hypothesis (ii2) says that there exists δε,x0 > 0
such that for any x ∈ G([0, 1], X) with ‖x− x0‖C < δε,x0 :

SF (·,x(·)) ⊂ SF (·,x0(·)) + εBA,

where BA is the unit open ball of KS(u) endowed with the ‖ · ‖uA-topology. By the
definition of ‖·‖uA, it follows that for every f ∈ SF (·,x(·)) one can find f0 ∈ SF (·,x0(·))
such that ‖(KS)

∫ ·
0
f(s)du(s)− (KS)

∫ ·
0
f0(s)du(s)‖C < ε which means that

N(x) ⊂ N(x0) + εBG,

BG being the open unit ball of G([0, 1], X) and thus, the upper semi-continuity of
N is verified.

The conditions of Theorem 3.5 are satisfied and, as the alternative is excluded
by hypothesis, it follows that the operator N has fixed points and our inclusion has
solutions. �
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Another version of this result could be obtained in a similar manner.

Theorem 3.10. Let u : [0, 1]→ R be ACG∗∗ and F : [0, 1]×X → Pck(X) satisfy:
(i) for every x ∈ X, F (·, x) is measurable;

(ii) for every x ∈ G([0, 1], X), the family SF (·,x(·)) is KS equi-integrable with
respect to u;

(iii) for every R > 0:
(iii1) the map x ∈ G([0, 1], X), ‖x‖C ≤ R → SF (·,x(·)) is upper semi-con-

tinuous with respect to the ‖ · ‖uA-topology on the space KS(u);
(iii2) for each t ∈ [0, 1] ,

{(KS)
∫ t

0

f(s)du(s), f ∈ SF (·,x(·))}

is relatively compact for every x ∈ G([0, 1], X), ‖x‖C ≤ R and{
(KS)

∫ t

0

f(s)du(s), f ∈ SF (·,x(·)), x ∈ G([0, 1], X), ‖x‖C ≤ R
}

is uniformly bounded.
If there exists R0 as in Theorem 3.9, then the integral inclusion possess regulated
solutions.

Proof. Following the same line as in the preceding result, the operator N has rel-
atively compact values: they are equi-regulated by hypothesis (ii) and Proposition
3.4 and they are pointwisely contained in a compact set by hypothesis (iii2). The
values are closed (this can be proved as in Theorem 3.9) and convex. Besides, N is
totally bounded by (iii2) and upper semi-continuous by (iii1). Thus, the conditions
of fixed point theorem are checked and so, the existence of solutions is obtained. �

4. Existence results - bounded variation case

When u is of bounded variation, instead of [4, Theorem 6.1] we can use another
convergence result.

Lemma 4.1. Let u : [0, 1] → R be of bounded variation and fn : [0, 1] → X be a
sequence of functions KS equi-integrable with respect to u that converges pointwise
to f : [0, 1]→ X. Then f is KS-integrable with respect to u and

(KS)
∫ 1

0

f(s)du(s) = lim
n→∞

(KS)
∫ 1

0

fn(s)du(s).

Proof. Let ε > 0. There exists a partition P0 = {(ti−1, ti), ξi}n0
i=1 of [0, 1] such that

n0∑
i=1

∥∥fn(ξi)(u(ti)−u(ti−1))−
(

(KS)
∫ ti

0

fn(s)du(s)−(KS)
∫ ti−1

0

fn(s)du(s)
)∥∥ < ε,

for all n ∈ N. At the same time, one can find nε ∈ N such that ‖fn(ξi)− fm(ξi)‖ <
ε

var10(u)
for every i = 1, . . . , n0 and every m,n ≥ nε. It follows that

n0∑
i=1

∥∥∥fn(ξi)(u(ti)− u(ti−1))−
n0∑
i=1

fm(ξi)(u(ti)− u(ti−1))
∥∥∥ < ε, ∀m,n ≥ nε,

whence ∥∥(KS)
∫ 1

0

fn(s)du(s)− (KS)
∫ 1

0

fm(s)du(s)
∥∥ < 3ε, ∀m,n ≥ nε
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and the same for each t ∈ [0, 1]: the sequence ((KS)
∫ t

0
fn(s)du(s))n is Cauchy. As

in the proof of [27, Theorem 3.6.18] it can be proved that its limit L(t) equals the
KS-integral of f with respect to u on [0, t]. �

We thus obtain, this time for a bounded variation function u (instead of ACG∗∗):

Theorem 4.2. Let u : [0, 1] → R be of bounded variation and F : [0, 1] × X →
Pck(X) satisfy the hypothesis of Theorem 3.9, except (ii2), instead of which we
impose:

(ii2’) the map x ∈ G([0, 1], X), ‖x‖C ≤ R → F (t, x(t)) is upper semi-continuous
uniformly in t.

Then our integral inclusion possess regulated solutions with ‖x‖C ≤ R0.

Proof. Only the proof of the upper semi-continuity of N has to be changed. By
(ii2’) for each x0 and ε > 0 there exists δε,x0 > 0 such that for any x ∈ G([0, 1], X)
with ‖x− x0‖C < δε,x0 :

F (t, x(t)) ⊂ F (t, x0(t)) + εB, ∀ t ∈ [0, 1],

where B is the unit open ball of X. It follows that for every f ∈ SG
F (·,x(·)) one

can find f0 ∈ SG
F (·,x0(·)) such that ‖f(t) − f0(t)‖ ≤ ε for every t ∈ [0, 1], whence

(see [26])

‖(KS)
∫ t

0

f(s)du(s)− (KS)
∫ t

0

f0(s)du(s)‖ ≤ ‖f − f0‖C var1
0(u) ≤ ε var1

0(u)

which means that
N(x) ⊂ N(x0) + ε var1

0(u)BG,

BG being the open unit ball of G([0, 1], X) and thus, the upper semi-continuity of
N is verified. �

For an alternative existence theorem, remark that in this setting a mean value
result is available.

Lemma 4.3. Let u : [0, 1] → R be of bounded variation and f : [0, 1] → X be
KS-integrable with respect to u.

(i) If u is nondecreasing, then

(KS)
∫ t

0

f(s)du(s) ∈ (u(t)− u(0))co(f([0, t])), ∀t ∈ [0, 1].

(ii) If u is of bounded variation, then

(KS)
∫ t

0

f(s)du(s) ∈ vart
0(u)co({0} ∪ f([0, t]))− vart

0(u)co({0} ∪ f([0, t])),

for all t ∈ [0, 1].

Proof. When u is nondecreasing, the assertion is a consequence of the definition of
KS-integral, since for any partition of [0, t]:

p∑
i=1

f(ξi)(u(ti)− u(ti−1)) = (u(t)− u(0))
p∑

i=1

f(ξi)
u(ti)− u(ti−1)
u(t)− u(0)

.
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When u is of bounded variation, it can be written as the difference of two non-
decreasing functions u1 and u2 and so, by the first step,

(KS)
∫ t

0

f(s)du(s) ∈ (u1(t)− u1(0))co(f([0, t]))− (u2(t)− u2(0))co(f([0, t]))

⊂ vart
0(u)co({0} ∪ f([0, t]))− vart

0(u)co({0} ∪ f([0, t])).

�

From Theorem 4.2 we then get the existence of bounded variation solutions.

Corollary 4.4. Let u : [0, 1] → R be of bounded variation and F : [0, 1] × X →
Pck(X) satisfy the hypothesis (i) and (ii2’) of Theorem 4.2 together with:

(ii1’) the family

∪{SF (·,x(·)), x ∈ G([0, 1], X), ‖x‖C ≤ R}
is KS equi-integrable with respect to u;

(ii3’) for each t ∈ [0, 1] ,{
(KS)

∫ t

0

f(s)du(s), f ∈ SF (·,x(·))
}

is relatively compact for every x ∈ G([0, 1], X), ‖x‖C ≤ R and for any
bounded A ⊂ X,

F ([0, 1]×A) is bounded.

If there exists R0 as in Theorem 3.9, then our integral inclusion possess bounded
variation solutions with ‖x‖C ≤ R0.

Proof. The only modification to be made in the proof of Theorem 4.2 is at the step
where the total boundedness of the operator N must be verified, more precisely
the pointwise boundedness of N(BR0); at that point, under our assumptions, the
property easily comes from Lemma 4.3 and hypothesis ii3′). Besides, as the found
solution is the primitive of a bounded function with respect to a bounded variation
function, by Proposition 2.4, it is of bounded variation. �

In concrete situations, the Kurzweil-Stieltjes integral is mostly used in the case
where the integrand is regulated and the function with respect to one integrates
is of bounded variation (or viceversa); therefore, it could be more convenient to
have an existence result for this case. For this purpose, let us recall the following
convergence result.

Lemma 4.5 ( [26, Theorem I.4.17]). Let u : [0, 1]→ R be of bounded variation and
fn : [0, 1] → X be KS-integrable with respect to u with ‖fn − f‖C → 0. Then f is
KS-integrable with respect to u and (KS)

∫ 1

0
fn(s)du(s)→ (KS)

∫ 1

0
f(s)du(s).

Applying it will be possible by using another result.

Lemma 4.6 ( [19, Lemma 1.14]). If an equi-regulated sequence of functions con-
verges pointwise, then it converges uniformly towards the limit.

Theorem 4.7. Let u : [0, 1] → R be of bounded variation and F : [0, 1] × X →
Pck(X) satisfy:

(i) for every x ∈ G([0, 1], X), the family SG
F (·,x(·)) of regulated selections of

F (·, x(·)) is non-empty;
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(ii) for every R > 0:
(ii1) the family

∪
{
SG

F (·,x(·)), x ∈ G([0, 1], X), ‖x‖C ≤ R
}

is equi-regulated;
(ii2’) the map x ∈ G([0, 1], X), ‖x‖C ≤ R → F (t, x(t)) is upper semi-

continuous uniformly in t;
(ii3) for each t ∈ [0, 1],{

(KS)
∫ t

0

f(s)du(s), f ∈ SG
F (·,x(·))

}
is relatively compact for every x ∈ G([0, 1], X), ‖x‖C ≤ R and the
family{

(KS)
∫ ·

0

f(s)du(s), f ∈ SG
F (·,x(·)), x ∈ G([0, 1], X), ‖x‖C ≤ R

}
is equi-regulated and pointwise bounded.

If moreover there exists R0 such that ‖x‖C 6= R0 for any regulated solution x of

x(t) ∈ λ
(
x0 +

∫ t

0

F (s, x(s))du(s)
)

for all λ ∈ (0, 1), then our integral inclusion possess bounded variation solutions
with ‖x‖C ≤ R0.

Proof. Consider now the modified operator N : BR0 → G([0, 1], X) defined on the
ball centered at the origin of radius R0 of G([0, 1], X) by

N(x)(t) =
{

(KS)
∫ t

0

f(s)du(s), f ∈ SG
F (·,x(·))

}
.

The proof of the fact that N has fixed points is essentially that of Theorem 3.9,
except the point where it must be proved that the values of operator N are closed;
here this comes from the fact that the sequence f̃n pointwise converges to f and it
is equi-regulated so, by [19, Lemma 1.14], ‖fn−f‖C → 0. Moreover, [15, Corollary
3.2] states that f is regulated. Now applying Lemma 4.5 gives the convergence of
the integrals of fn towards the integral of f and thus the closedness of the values
of N .

Let us now check that N is upper semi-continuous. Fix x0 ∈ BR0 and consider
an arbitrary ε > 0. Hypothesis (ii2’) yields that there exists δε,x0 > 0 such that for
any x ∈ G([0, 1], X) with ‖x− x0‖C < δε,x0 :

F (t, x(t)) ⊂ F (t, x0(t)) + εB, ∀t ∈ [0, 1],

where B is the unit open ball of X. It follows that for every f ∈ SG
F (·,x(·)) one

can find f0 ∈ SG
F (·,x0(·)) such that ‖f(t) − f0(t)‖ ≤ ε for every t ∈ [0, 1], whence

(see [26]):

‖(KS)
∫ t

0

f(s)du(s)− (KS)
∫ t

0

f0(s)du(s)‖ ≤ ‖f − f0‖C var1
0(u) ≤ ε var1

0(u)

which means that
N(x) ⊂ N(x0) + ε var1

0(u)BG,
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BG being the open unit ball of G([0, 1], X) and thus, the upper semi-continuity of
N is verified.

Finally, as any solution is the KS-primitive of a regulated function (therefore
bounded) with respect to the bounded variation function u, Proposition 2.4. (ii)
asserts that it is more than regulated: it is of bounded variation. �

Remark 4.8. The imposition of assumption (ii3) (equi-regularity of primitives)
together with (ii1) (equi-regularity of selections) might look artificial but, in fact,
the equi-regularity of primitives follows from the equi-regularity of selections only
if we impose a pointwise boundedness condition on the family of selections. This
pointwise boundedness condition would be very strong since, by Lemma 3.3, it
would imply the uniform boundedness and many of the properties given above
would then be obtained in a much simpler manner.

Remark 4.9. New existence results can be deduced in particular cases, namely
when u is absolutely continuous (leading to usual continuous problems), the sum
of step functions (leading to discrete problems) or a sum between an absolutely
continuous function and a sum of step functions (in which case one gets impulsive
problems), as well as for retarded problems (see [1]).
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[29] Tvrdý, M.; Differential and Integral Equations in the Space of Regulated Functions. Habil.

Thesis, Praha (2001).
[30] Zavalishchin, S. T.; Sesekin, A.N.; Dynamic Impulse Systems. Dordrecht, Kluwer Academic

(1997).

Bianca-Renata Satco
Stefan cel Mare University, Faculty of Electrical Engineering and Computer Science,

Universitatii 13 - 720229 Suceava, Romania

E-mail address: bianca.satco@eed.usv.ro Phone/Fax +40 230 524 801


	1. Introduction
	2. Definitions and notation
	3. Existence results - regulated case
	4. Existence results - bounded variation case
	Acknowledgements

	References

