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EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR
SUBLINEAR FOURTH-ORDER ELLIPTIC EQUATIONS

WEN ZHANG, XIANHUA TANG, JIAN ZHANG

Abstract. This article concerns the fourth-order elliptic equations

∆2u−∆u+ λV (x)u = f(x, u), x ∈ RN ,

u ∈ H2(RN ),

where λ > 0 is a parameter, V ∈ C(RN ) and V −1(0) has nonempty inte-

rior. Under some mild assumptions, we establish the existence of nontrivial

solutions. Moreover, the concentration of solutions is also explored on the set
V −1(0) as λ→∞.

1. Introduction and statement of main results

This article concerns the fourth-order elliptic equation

∆2u−∆u+ λV (x)u = f(x, u), x ∈ RN ,

u ∈ H2(RN ),
(1.1)

where ∆2 := ∆(∆) is the biharmonic operator and λ > 0 is a parameter.
Problem (1.1) arises in the study of travelling waves in suspension bridge and

the study of the static deflection of an elastic plate in a fluid, see [7, 8, 12]. There
are many results for fourth-order elliptic equations, but most of them are focused
on bounded domains, see [1, 2, 3, 6, 13, 21, 22, 24, 29, 33, 34] and the references
therein. Recently, the case of the whole space RN was also considered in some
works, see [9, 18, 19, 25, 26, 27, 28, 30, 31, 32]. For the whole space RN case, the
main difficulty of this problem is the lack of compactness for Sobolev embedding
theorem. To overcome this difficulty, some authors assumed that the potential V
satisfies certain coercive condition, see [20, 26, 28, 30]. Later, the authors in [9, 27]
considered the potential well case with a parameter. With the aid of parameter,
they proved that the energy functional possess the property of locally compact.
Moreover, the authors of these literatures proved the existence of infinitely many
high energy solutions for superlinear case. For somewhat related sublinear case
and the existence of infinitely many small negative-energy solutions, see [26, 31].
For singularly perturbed problem with superlinear nonlinearities and concentration
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phenomenon of semi-classical solutions, we refer readers to [10, 14, 15] and the
references therein.

Motivated by the above articles, we continue to consider problem (1.1) with
steep well potential and study the existence of nontrivial solution and concentra-
tion results (as λ→∞) under some mild assumptions different from those studied
previously. To reduce our statements, we make the following assumptions for po-
tential V :

(V1) V (x) ∈ C(RN ) and V (x) ≥ 0 on RN ;
(V2) There exists a constant b > 0 such that the set Vb := {x ∈ RN |V (x) < b}

is nonempty and has finite measure;
(V3) Ω = intV −1(0) is nonempty and has smooth boundary with Ω̄ = V −1(0).

This kind of hypotheses was first introduced by Bartsch and Wang [4] (see also [5])
in the study of a nonlinear Schrödinger equation and the potential λV (x) with V
satisfying (V1)–(V3) is referred as the steep well potential. It is worth mention-
ing that the above papers always assumed the potential V is positive (V > 0).
Compared with the case V > 0, our assumptions on V are rather weak, and per-
haps more important. Generally speaking, there may exist some behaviours and
phenomenons for the solutions of problem (1.1) under condition (V3), such as the
concentration phenomenon of solutions. We are also interested in the case that
the nonlinearity f(x, u) is sublinear and indefinite. To our knowledge, few works
concerning on this case up to now. Based on the above facts, the main purpose of
this paper is to prove the existence of nontrivial solutions and to investigate the
concentration phenomenon of solutions on the set V −1(0) as λ→∞. To state our
results, we need the following assumptions:

(F1) f ∈ C(RN ,R) and there exist constants 1 < γ1 < γ2 < · · · < γm < 2 and
functions ξi(x) ∈ L

2
2−γi (RN ,R+) such that

|f(x, u)| ≤
m∑
i=1

γiξi(x)|u|γi−1, ∀(x, u) ∈ RN × R.

(F2) There exist three constants η, δ > 0, γ0 ∈ (1, 2) such that

|F (x, u)| ≥ η|u|γ0 for all x ∈ Ω and all |u| ≤ δ,
where F (x, u) =

∫ u
0
f(x, s)ds.

On the existence of solutions we have the following result.

Theorem 1.1. Assume that the conditions (V1)–(V3), (F1), (F2) hold. Then there
exists Λ0 > 0 such that for every λ > Λ0, problem (1.1) has at least a solution uλ.

On the concentration of solutions we have the following result.

Theorem 1.2. Let uλ be a solution of problem (1.1) obtained in Theorem 1.1, then
uλ → u0 in H2(RN ) as λ→∞, where u0 ∈ H2(Ω)∩H1

0 (Ω) is a nontrivial solution
of the equation

∆2u−∆u = f(x, u), in Ω,
u = 0, on ∂Ω.

(1.2)

The rest of this article is organized as follows. In Section 2, we establish the
variational framework associated with problem (1.1), and we also give the proof
of Theorem 1.1. In Section 3, we study the concentration of solutions and prove
Theorem 1.2.
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2. Variational setting and proof of Theorem 1.1

By ‖·‖q we denote the usual Lq-norm for 1 ≤ q ≤ ∞, ci, C, Ci stand for different
positive constants. Let

X =
{
u ∈ H2(RN ) :

∫
RN

(
|∆u|2 + |∇u|2 + V (x)u2

)
dx < +∞

}
,

be equipped with the inner product

(u, v) =
∫

RN

(
∆u∆v +∇u · ∇v + V (x)uv

)
dx, u, v ∈ X,

and the norm

‖u‖ =
(∫

RN
(|∆u|2 + |∇u|2 + V (x)u2) dx

)1/2

, u ∈ X.

For λ > 0, we also need the following inner product

(u, v)λ =
∫

RN
(∆u∆v +∇u · ∇v + λV (x)uv) dx, u, v ∈ X,

and the corresponding norm ‖u‖2λ = (u, u)λ. It is clear that ‖u‖ ≤ ‖u‖λ, for λ ≥ 1.
Set Eλ = (X, ‖u‖λ), then Eλ is a Hilbert space. By using (V1)-(V2) and the

Sobolev inequality, we can demonstrate that there exist positive constants λ0, c0
(independent of λ) such that

‖u‖H2(RN ) ≤ c0‖u‖λ, for all u ∈ Eλ, λ ≥ λ0.

In fact, by using conditions (V1)-(V2) and the Sobolev inequality, we have∫
RN

(|∆u|2 + |∇u|2 + u2) dx

=
∫

RN
(|∆u|2 + |∇u|2) dx+

∫
Vb

u2 dx+
∫

RN\Vb
u2 dx

≤
∫

RN
(|∆u|2 + |∇u|2) dx+ (meas(Vb))

2∗−2
2∗
(∫

RN
|u|2

∗
dx
)2/2∗

+
∫

RN\Vb
u2 dx

≤
∫

RN
(|∆u|2 + |∇u|2) dx+ (meas(Vb))

2∗−2
2∗
(∫

RN
|u|2

∗
dx
)2/2∗

+
1
λb

∫
RN\Vb

λV u2 dx

≤
∫

RN
(|∆u|2 + |∇u|2) dx+ S−1 (meas(Vb))

2∗−2
2∗

∫
RN
|∇u|2 dx+

1
λb

∫
RN

λV u2 dx

≤ max
{

1, 1 + S−1 (meas(Vb))
2∗−2
2∗ ,

1
λb

}∫
RN

(|∆u|2 + |∇u|2 + λV u2) dx

:= c0

∫
RN

(|∆u|2 + |∇u|2 + λV u2) dx,

for λ ≥ λ0 :=
1

b(1 + S−1 (meas(Vb))
2∗−2
2∗ )

.

Here we use the fact that H2(RN ) ⊂ H1(RN ). Furthermore, the embedding Eλ ↪→
Lp(RN ) is continuous for p ∈ [2, 2∗], and Eλ ↪→ Lploc(RN ) is compact for p ∈ [2, 2∗),
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i.e., there are constants cp > 0 such that

‖u‖p ≤ cp‖u‖H2(RN ) ≤ cpc0‖u‖λ, for all u ∈ Eλ, λ ≥ λ0, 2 ≤ p ≤ 2∗, (2.1)

where 2∗ = +∞ if N ≤ 4, and 2∗ = 2N
N−4 if N > 4.

Let

Φλ(u) =
1
2

∫
RN

(
|∆u|2 + |∇u|2 + λV (x)u2

)
dx−

∫
RN

F (x, u) dx. (2.2)

By a standard argument, it is easy to verify that Φλ ∈ C1(Eλ,R) and

〈Φ′λ(u), v〉 =
∫

RN
[∆u∆v +∇u · ∇v + λV (x)uv] dx−

∫
RN

f(x, u)v dx, (2.3)

for all u, v ∈ Eλ. Then we can infer that u ∈ Eλ is a critical point of Φλ if and only
if it is a weak solution of problem (1.1). Next, we give a useful lemma.

Lemma 2.1 ([16]). Let E be a real Banach space and Φ ∈ C1(E,R) satisfy the
(PS)-condition. If Φ is bounded from below, then c = infE Φ is a critical value of
Φ.

Lemma 2.2. Suppose that (V1)-(V3), (F1), (F2) are satisfied. There exists Λ0 > 0
such that for every λ > Λ0, Φλ is bounded from below in E.

Proof. From (2.1), (2.2), (F1) and the Hölder inequality, we have

Φλ(u) =
1
2
‖u‖2λ −

∫
RN

F (x, u) dx

≥ 1
2
‖u‖2λ −

m∑
i=1

(∫
RN
|ξi(x)|

2
2−γi dx

)(2−γi)/2(∫
RN
|u|2 dx

)γi/2
≥ 1

2
‖u‖2λ −

m∑
i=1

cγi2 c
γi
0 ‖ξi‖ 2

2−γi
‖u‖γiλ ,

(2.4)

which implies that Φλ(u)→ +∞ as ‖u‖λ → +∞, since 1 < γ1 < γ2 < · · · < γm < 2.
Consequently, there exists Λ0 := max{1, λ0} > 0 such that for every λ > Λ0, Φλ is
bounded from below. �

Lemma 2.3. Suppose that (V1)–(V3), (F1), (F2) are satisfied. Then Φλ satisfies
the (PS)-condition for each λ > Λ0.

Proof. Assume that {un} ⊂ Eλ is a sequence such that Φλ(un) is bounded and
Φ′λ(un) → 0 as n → ∞. By Lemma 2.2, it is clear that {un} is bounded in Eλ.
Thus, there exists a constant C > 0 such that for all n ∈ N

‖un‖p ≤ cpc0‖un‖λ ≤ C, for all u ∈ Eλ, λ ≥ λ0, 2 ≤ p ≤ 2∗. (2.5)

Passing to a subsequence if necessary, we may assume that un ⇀ u0 in Eλ. For
any ε > 0, since ξi(x) ∈ L

2
2−γi (RN ,R+), we can choose Rε > 0 such that(∫

RN\BRε
|ξi(x)|

2
2−γi dx

)(2−γi)/2
< ε, 1 ≤ i ≤ m. (2.6)

By Sobolev’s embedding theorem, un ⇀ u0 in Eλ implies

un → u0 in L2
loc(RN ),
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and hence,

lim
n→∞

∫
BRε

|un − u0|2 dx = 0. (2.7)

By (2.7), there exists N0 ∈ N such that∫
BRε

|un − u0|2 dx < ε2, for n ≥ N0. (2.8)

Hence, by (F1), (2.5), (2.8) and the Hölder inequality, for any n ≥ N0, we have∫
BRε

|f(x, un)− f(x, u0)| |un − u0| dx

≤
(∫

BRε

|f(x, un)− f(x, u0)|2 dx
)1/2(∫

BRε

|un − u0|2 dx
)1/2

≤
(∫

BRε

2
(
|f(x, un)|2 + |f(x, u0)|2

)
dx
)1/2

ε

≤ 2
[ m∑
i=1

γ2
i

(∫
BRε

|ξi(x)|2
(
|un|2(γi−1) + |u0(x)|2(γi−1)

)
dx
)1/2]

ε

≤ 2
[ m∑
i=1

γ2
i ‖ξi‖2 2

2−γi

(
‖un‖2(γi−1)

2 + ‖u0‖2(γi−1)
2

)]1/2
ε

≤ 2
[ m∑
i=1

γ2
i ‖ξi‖2 2

2−γi

(
C2(γi−1) + ‖u0‖2(γi−1)

2

)]1/2
ε.

(2.9)

On the other hand, by (2.5), (2.6), (2.8) and (F1), we have∫
RN\BRε

|f(x, un)− f(x, u0)| |un − u0| dx

≤ 2
m∑
i=1

∫
RN\BRε

γi|ξi(x)| (|un|γi + |u0|γi) dx

≤ 2ε
m∑
i=1

cγi2 c
γi
0 (‖un‖γiλ + ‖u0‖γiλ )

≤ 2ε
m∑
i=1

cγi2 c
γi
0 (Cγi + ‖u0‖γiλ ) , n ∈ N.

(2.10)

Since ε is arbitrary, combining (2.9)with(2.10), we have∫
RN
|f(x, un)− f(x, u0)| |un − u0| dx < ε, as n→∞. (2.11)

It follows from (2.3) that

〈Φ′λ(un)− Φ′λ(u0), un − u0〉

= ‖un − u0‖2λ +
∫

RN
|f(x, un)− f(x, u0)| |un − u0| dx.

(2.12)

It is clear that 〈Φ′λ(un) − Φ′λ(u0), un − u0〉 → 0, thus, from (2.11) and (2.12), we
get un → u0 in Eλ. Hence, Φλ satisfies (PS)-condition. �
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Proof of Theorem 1.1. From Lemmas 2.1, 2.2, 2.3, we know that cλ = infEλ Φλ(u)
is a critical value of Φλ; that is, there exists a critical point uλ ∈ Eλ such that
Φλ(uλ) = cλ. Next, similar to the argument in [17], we show that uλ 6= 0. Let
u∗ ∈

(
H2(Ω) ∩H1

0 (Ω)
)
\ {0} and ‖u∗‖∞ ≤ 1, then by (F2) and (2.2), we have

Φλ(tu∗) =
1
2
‖tu∗‖2λ −

∫
RN

F (x, tu∗) dx

=
t2

2
‖u∗‖2λ −

∫
Ω

F (x, tu∗) dx

≤ t2

2
‖u∗‖2λ − ηtγ0

∫
Ω

|u∗|γ0 dx,

(2.13)

where 0 < t < δ, δ be given in (F2). Since 1 < γ0 < 2, it follows from (2.13) that
Φλ(tu∗) < 0 for t > 0 small enough. Hence, Φλ(uλ) = cλ < 0, therefore, uλ is a
nontrivial critical point of Φλ and so uλ is a nontrivial solution of problem (1.1).
The proof is complete. �

3. Concentration of solutions

In the following, we study the concentration of solutions for problem (1.1) as
λ→∞. Define

c̃ = inf
u∈H2(Ω)∩H1

0 (Ω)
Φλ|H2(Ω)∩H1

0 (Ω)(u),

where Φλ|H2(Ω)∩H1
0 (Ω) is a restriction of Φλ on H2(Ω) ∩H1

0 (Ω); that is,

Φλ|H2(Ω)∩H1
0 (Ω)(u) =

1
2

∫
Ω

(
|∆u|2 + |∇u|2

)
dx−

∫
Ω

F (x, u) dx,

for u ∈ H2(Ω) ∩ H1
0 (Ω). Similar to the proof of Theorem 1.1, it is easy to prove

that c̃ < 0 can be achieved. Since
(
H2(Ω) ∩H1

0 (Ω)
)
⊂ Eλ for all λ > 0, we get

cλ ≤ c̃ < 0, for all λ > Λ0.

Proof of Theorem 1.2. We follow the arguments in [5]. For any sequence λn →∞,
let un := uλn be the critical points of Φλn obtained in Theorem 1.1. Thus

Φλn(un) ≤ c̃ < 0 (3.1)

and

Φλn(un) =
1
2
‖un‖2λn −

∫
RN

F (x, un) dx

≥ 1
2
‖un‖2λn −

m∑
i=1

cγi2 c
γi
0 ‖ξi‖ 2

2−γi
‖un‖γiλn ,

which implies
‖un‖λn ≤ c1, (3.2)

where the constant c1 is independent of λn. Therefore, we may assume that un ⇀ u0

in Eλ and un → u0 in Lploc(RN ) for 2 ≤ p < 2∗. From Fatou’s lemma, we have∫
RN

V (x)|u0|2 dx ≤ lim inf
n→∞

∫
RN

V (x)|un|2 dx ≤ lim inf
n→∞

‖un‖2λn
λn

= 0,
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which implies that u0 = 0 a.e. in RN \ V −1(0) and u0 ∈ H2(Ω) ∩H1
0 (Ω) by (V3).

Now for any ϕ ∈ C∞0 (Ω), since 〈Φ′λn(un), ϕ〉 = 0, it is easy to verify that∫
Ω

(∆u0∆ϕ+∇u0 · ∇ϕ) dx−
∫

Ω

f(x, u0)ϕdx = 0,

which implies that u0 is a weak solution of problem (1.2) by the density of C∞0 (Ω)
in H2(Ω) ∩H1

0 (Ω).
Next, we show that un → u0 in Lp(RN ) for 2 ≤ p < 2∗. Otherwise, by Lions

vanishing lemma [11, 22], there exist δ > 0, ρ > 0 and xn ∈ RN such that∫
Bρ(xn)

|un − u0|2 dx ≥ δ.

Since un → u0 in L2
loc(RN ), |xn| → ∞. Hence meas (Bρ(xn) ∩ Vb) → 0. By the

Hölder inequality, we have∫
Bρ(xn)∩Vb

|un − u0|2 dx ≤ (meas (Bρ(xn) ∩ Vb))
2∗−2
2∗

(∫
RN
|un − u0|2∗

)2/2∗
→ 0.

Consequently,

‖un‖2λn ≥ λnb
∫
Bρ(xn)∩{x∈RN :V (x)≥b}

|un|2 dx

= λnb

∫
Bρ(xn)∩{x∈RN :V (x)≥b}

|un − u0|2 dx

= λnb
(∫

Bρ(xn)

|un − u0|2 dx−
∫
Bρ(xn)∩Vb

|un − u0|2 dx+ o(1)
)

→∞,

which contradicts (3.2). Next, we show that un → u0 in H2(RN ). By virtue
of 〈Φ′λn(un), un〉 = 〈Φ′λn(un), u0〉 = 0 and the fact that un → u0 in Lp(RN ) for
2 ≤ p < 2∗, we have

lim
n→∞

‖un‖2λn = lim
n→∞

(un, u0)λn = lim
n→∞

(un, u0) = ‖u0‖2;

therefore
lim sup
n→∞

‖un‖2 ≤ ‖u0‖2.

On the other hand, the weakly lower semi-continuity of norm yields

‖u0‖2 ≤ lim inf
n→∞

‖un‖2.

Hence,
un → u0 in H2(RN ).

From (3.1), we have

1
2

∫
Ω

(
|∆u0|2 + |∇u0|2

)
dx−

∫
Ω

F (x, u0) dx ≤ c̃ < 0,

which implies that u0 6= 0. This completes the proof. �
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