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STABILITY OF MUTUALISMS IN A LATTICE GAS SYSTEM OF
TWO SPECIES

YUANSHI WANG, HONG WU

Abstract. This article considers mutualisms in a lattice gas system of two

species. The species are mutualistic since each one can provide resources to
the other. They are also competitive since they compete for empty sites on

the same lattice. The mutualisms are assumed to have a saturated response,

and the intraspecific competition is considered because of self-limitation. The
mutualism system is characterized by differential equations, which are derived

from reactions on lattice and are extension of a previous model. Global stabil-

ity analysis demonstrates that (i) When neither species can survive alone, they
can coexist if mutualisms between them are strong and population densities

are large, which exhibits the Allee effect in obligate mutualism; (ii) When one

species can survive alone but the other cannot, the latter one will survive if
the mutualistic effect from the former is strong. Even if the effect is inter-

mediate, the latter species can survive by strengthening its mutualistic effect
on the former and enhancing its population density; (iii) When either species

can survive alone, a weak mutualism will lead to extinction of one species.

When in coexistence, intermediate strength of mutualism is shown to be ben-
eficial under certain parameter range, while over- or under- mutualism is not

good. Furthermore, extremely strong/weak mutualism is exhibited to result

in extinction of one/both species. While seven typical dynamics are displayed
by numerical simulation in a previous work, they are proved in this work and

the eighth one is exhibited. Numerical simulations validate and extend our

conclusions.

1. Introduction

Mutualistic interactions are ubiquitous in nature since most biomass survive by
cooperating with the others [4]. For example, many microbial species are observed
to play a role in the abundance of interrelated species [10, 12], while various bacte-
rial species coexist in syntrophic colonies, in which one species consumes resources
produced by another (obligate mutualisms) [2, 17]. Many models have been pre-
sented to characterize mutualisms, among which Lotka-Volterra equations (LVEs)
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are the most famous [18, 19]. The LVEs can be modeled by
dx1

dt
= x1(r1 − d1x1 + e1x2)

dx2

dt
= x2(r2 − d2x2 + e2x1),

(1.1)

where variable xi represents population density of species i, while parameters ri
and di denote the intrinsic growth rate and self-competition degree in species i,
respectively (i = 1, 2). ei represents the mutualistic effect of species j on i, i 6=
j, i, j = 1, 2. It is known that the two species can coexist at a steady state if
mutualistic effects between them are weak (e1e2 < d1d2). Otherwise, population
densities of both species tend to infinity, which is called the convergence problem
[14]. Moreover, model (1.1) cannot characterize the Allee effect which predicts
that when the population density of a species is below a threshold, the species
goes to extinction [3]. In order to avoid these problems, several models have been
established, but most of them are very complicated such that their global dynamics
cannot be shown [3, 6, 8, 11, 14, 16, 21, 22, 23]. Therefore, it is necessary to form
an appropriate model to exhibit basic properties of mutualisms [1].

In a recent study, Iwata et al [9] established a lattice gas model of mutualisms,
which is derived from reactions on lattice and has a form similar to that of LVEs.
Numerical simulations and local stability analysis demonstrate interesting features
of mutualisms. However, global dynamics of the model are not shown and the model
is given in a simplified form. To demonstrate more properties of mutualisms, it is
important to extend the model and analyze its global stability.

In this article, we consider a lattice gas model of mutualisms, which is extended
from the model established by Iwata et al [9]. In the extended model, the mutu-
alisms are assumed to have a saturated response, while intraspecific competition is
considered because of self-limitation. Population densities of the species will not
tend to infinity because of spatial limitation on the lattice. Global stability analy-
sis demonstrates that (i) When neither species can survive alone, they can coexist
if mutualisms between them are strong and population densities are large, which
exhibits the Allee effect in obligate mutualism; (ii) When one species can survive
alone but the other cannot, the latter one will survive if the mutualistic effect from
the former is strong. Even if the effect is intermediate, the latter species can survive
by strengthening its mutualistic effect on the former and enhancing its population
density; (iii) When either species can survive alone, a weak mutualism will lead
to extinction of one species. When in coexistence, intermediate mutualisms are
exhibited to be favorable under certain parameter conditions, and over-mutualism
or under-mutualism is not good. Furthermore, extremely strong/weak mutualisms
are demonstrated to lead to extinction of one/both species. While seven typical
dynamics are displayed by Iwata et al [9], they are proved in this paper and the
eighth one is exhibited (see section 6 and Figure 3a).

The article is organized as follows. Section 2 describes the model. Sections 3-5
consider obligate mutualism, obligate-facultative mutualism and facultative mutu-
alism, respectively. Discussion is in section 6.

2. Model

In this section, we characterize the lattice gas model of mutualisms. First, we
describe the lattice gas system of one species. On a lattice of species A, a site is
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labeled by A if it is occupied by an individual of A, while an empty site is labeled
by O. The site A will become site O in a mortality rate m. Any pair of sites on
the lattice contact in a random and independent way. The “contact process” can
be described as follows [5, 20]

A→ O with mortality rate m
A+O → 2A with birth rate b

A+A→ A+O with exclusive rate d,
(2.1)

where A represents the site occupied by species A and O denotes the empty one.
The first (second) reaction describes the death (birth) process of species A, while
the third one characterizes the self-competition in A. Dynamics of lattice gas
systems are usually described by differential equations, which are called the mean-
field theory of lattice model [13]. Based on the models in [9, 20], dynamics of
reactions in (2.1) can be represented by the rate equation

dx

dt
= x[−m+ b(1− x)− dx] (2.2)

where x and 1 − x represent densities of the species and empty sites, respectively.
Let r̃ = b − m, d̃ = b + d. Then (2.2) can be rewritten as the logistic equation
dx/dt = x(r̃ − d̃x).

Second, we consider a lattice gas system of two species A and B. The site on
lattice is labeled by A (B) if it is occupied by an individual of species A (B), while
an empty site is labeled by O. Reactions occur between any pair of sites randomly
and independently. Thus the reactions on a lattice of two species can be described
as follows

A→ O with mortality rate m1

B → O with mortality rate m2

A+O → 2A with birth rate b1
B +O → 2B with birth rate b2

A+A→ A+O with exclusive rate d1

B +B → B +O with exclusive rate d2,

(2.3)

where the first (third) reaction describes the death (birth) process of species A,
while the fifth characterizes the self-competition in A. The second, fourth and sixth
reactions have similar meanings for species B. The birth rates can be described by

b1 = r1 +
e1x2

1 + c1x2
, b2 = r2 +

e2x1

1 + c2x1
,

where xi represents population density of species i and ri is the intrinsic growth rate
of species i in the absence of species j, i 6= j, i, j = 1, 2. The term e1x2/(1 + c1x2)
represents the functional response in the mutualisms: e1/c1 denotes the saturation
level in the Holling Type II functional response, while 1/c1 is the half-saturation
constant. For convenience, we focus on parameter e1, which represents the mutu-
alistic effect of species 2 on 1. e1 can be defined by e1 = µ1ν2, where ν2 denotes
resources (energy, service, etc.) provided by species 2 and µ1 is the efficiency of
species 1 in converting the resources/services into fitness. A similar discussion can
be given for e2x1/(1 + c2x1).
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Therefore, dynamics of reactions in (2.3) can be described by

dx1

dt
= x1[−m1 + b1(1− x1 − x2)− d1x1],

dx2

dt
= x2[−m2 + b2(1− x1 − x2)− d2x2],

(2.4)

where the factor (1−x1−x2) in the righthand sides represents the density of empty
sites.

Model (2.4) is an extension of the model in [9] Since it considers saturated
response and intraspecific competition. Indeed, let ci = di = 0, i = 1, 2, then model
(2.4) becomes the model in [9]. On the other hand, we can see that model (2.4)
has the same form as that of LVEs since in the brackets of its righthand sides, the
three terms represent death, birth and exclusive rates, respectively.

In the following analysis, we focus on the case of r1 > 0, r2 > 0, while cases of
r1 > 0, r2 = 0 and r1 = r2 = 0 are considered in Appendices A and B respectively.
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Figure 1. Intersection points of parabolas L1 and L2 on the whole
plane. Let m1 = m2 = 0.02, e1 = e2 = 40, c1 = c2 = 0.001,
d1 = 0.8, d2 = 0.75. Then L1 and L2 have four intersection points,
while two of them are in the second and fourth quadrants, respec-
tively.

Assume r1 > 0, r2 > 0. Then each species can reproduce in the absence of the
other as shown in [9]. Denote

m1 :=
m1

r1
, m2 :=

m2

r2
, e1 :=

e1
r1
, e2 :=

e2
r2
. (2.5)

Then model (1.1) can be rewritten as

dx1

dt
= r1x1[−m1 + (1 +

e1x2

1 + c1x2
)(1− x1 − x2)− d1x1],

dx2

dt
= r2x2[−m2 + (1 +

e2x1

1 + c2x1
)(1− x1 − x2)− d2x2].

(2.6)
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Equilibria of (2.6) are determined by their relative positions of isoclines Li, which
can be described as

L1 : −m1 + (1 +
e1x2

1 + c1x2
)(1− x1 − x2)− d1x1 = 0

L2 : −m2 + (1 +
e2x1

1 + c2x1
)(1− x1 − x2)− d2x2 = 0.

(2.7)

The expression of L1 can be rewritten as

(α1 − x1 − β1x2)[1 + d1 + (e1 + c1 + c1d1)x2] = γ1,

x1 = x1(x2, e1) = α1 − β1x2 −
γ1

1 + d1 + (e1 + c1 + c1d1)x2
,

(2.8)

where

αi =
eidi + (ei + ci −mici)(ei + ci + cidi)

(ei + ci + cidi)2
, βi =

ei + ci
ei + ci + cidi

,

γi =
eimi

ei + ci + cidi
+
eidi(1 + di + ei + ci + cidi)

(ei + ci + cidi)2
, i = 1, 2.

Thus, P1((1−m1)/(1 + d1), 0) ∈ L1 as shown in the first quadrant of Figure 1. L1

is a parabola which is convex rightward and has a vertex P̄ (x̄1, x̄2) with

x̄1 = x1(x̄2, e1), x̄2 =
√

γ1

β1(e1 + c1 + c1d1)
− 1 + d1

e1 + c1 + c1d1
.

The asymptotes of L1 are

L11 : α1 − x1 − β1x2 = 0, L12 : x2 = − 1 + d1

e1 + c1 + c1d1
.

Since
∂x1

∂e1
=

x2(1− x1 − x2)
1 + d1 + (e1 + c1 + c1d1)x2

> 0 as 1− x1 − x2 > 0 (2.9)

the function x1 = x1(x2, e1) increases monotonously as e1 increases. From (2.8),
we have

lim
e1→+∞

x1(x2, e1) = 1− x2, lim
e1→0

x1(x2, e1) = (1−m1 − x2)/(1 + d1).

If α1 ≤ 0, then L1 ∩ intR2
+ = ∅ by (2.8) and dx1/dt < 0 by (2.6), which implies

that species 1 goes to extinction. A similar discussion can be given for species 2.
Thus, we assume the following hypothesis in this work

αi > 0, i = 1, 2.

When 1 − m1 > 0, we have L1 ∩ intR2
+ 6= ∅ since P1 ∈ L1 and L1 has an

asymptote α1 − x1 − β1x2 = 0. When 1 − m1 ≤ 0, we have L1 ∩ intR2
+ 6= ∅ if

and only if L1 and the positive x2-axis have two intersection points. That is, the
following equation has two positive roots

G(x2) ≡ ãx2
2 + b̃x2 + c̃ = 0,

where
ã = e1 + c1, b̃ = 1− e1 + c1(m1 − 1), c̃ = m1 − 1.

Let ∆̃ = b̃2 − 4ãc̃, then

∆̃ = e21 − 2e1[c1(m1 − 1) + 2m1 − 1] + [c1(m1 − 1)− 1]2.
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Thus the equation G(x2) = 0 has two positive roots if and only if b̃ < 0 and ∆̃ > 0.
From b̃ < 0 we have e1 > ẽ1 = c1(m1 − 1) + 1. From ∆̃ > 0 we have e1 > e+1 or
e1 < e−1 with

e±1 = c1(m1 − 1) + 2m1 − 1± 2
√
m1(m1 − 1)(1 + c1).

Since

e−1 − ẽ1 = 2(m1 − 1)− 2
√
m1(m1 − 1)(1 + c1) < 0,

e+1 − ẽ1 = 2(m1 − 1) + 2
√
m1(m1 − 1)(1 + c1) > 0,

the equation G(x2) = 0 has two positive roots if and only if e1 > e
(1)
1 with

e
(1)
i = ci(mi − 1) + 2mi − 1 + 2

√
mi(mi − 1)(1 + ci), i = 1, 2. (2.10)

Similarly, the expression of L2 can be rewritten as

(α2 − x2 − β2x1)[1 + d2 + (e2 + c2 + c2d2)x1] = γ2

x2 = x2(x1, e2) = α2 − β2x1 −
γ2

1 + d2 + (e2 + c2 + c2d2)x1
.

(2.11)

Thus, P2(0, (1−m2)/(1+d2)) ∈ L2 and L2 is a parabola and convex upward, which
has a vertex P̂ (x̂1, x̂2). The asymptotes of L2 are

L21 : α2 − x2 − β2x1 = 0, L22 : x1 = − 1 + d2

e2 + c2 + c2d2
.

From equations (2.6)-(2.8) we have

∂x2

∂e2
> 0 as 1− x1 − x2 > 0

lim
e2→+∞

x2(x1, e2) = 1− x1, lim
e2→0

x2(x1, e2) = (1−m2 − x1)/(1 + d2).
(2.12)

When 1 −m2 > 0, then L2 ∩ intR2
+ 6= ∅ since P2 ∈ L2 and L2 has an asymptote

α2 − x2 − β2x1 = 0. When 1 − m2 ≤ 0, we have L2 ∩ intR2
+ 6= ∅ if and only if

e2 > e
(1)
2 .

Lemma 2.1. The parabolas L1 and L2 have at most four intersection points on
the plane, while system (2.6) has at most two positive equilibria P+(x+

1 , x
+
2 ) and

P−(x−1 , x
−
2 ) with x+

1 > x−1 .

Proof. Let P (x1, x2) be the intersection point of L1 and L2. From (2.8) and (2.11),
a direct computation shows that P (x1, x2) satisfies

a0x
4
1+a1x

3
1+a2x

2
1+a3x1+a4 = 0, a0 = β2(1−β1β2)(e1+c1+c1d1)(e2+c2+c2d2)2.

Thus, the parabolas L1 and L2 have at most four intersection points on the plane.
Assume asymptotes L11 and L21 coincide. From (2.8) and (2.11), x1 is a linear

function of x2. By (2.8), x1 satisfies a quadratic equation, which implies that system
(2.6) has at most two positive equilibria.

Assume asymptotes L11 and L21 do not coincide but are parallel. Then we have
1 − β1β2 = 0 and a0 = 0. Thus, x1 satisfies a cubic equation, which implies that
the parabolas L1 and L2 have at most three intersection points on the plane. If L11

is above L21. then L1 and L2 have an intersection point in the second quadrant. If
L11 is below L21. then L1 and L2 have an intersection point in the fourth quadrant.
Thus, system (2.6) has at most two positive equilibria.
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Assume asymptotes L11 and L21 intersect. Without loss of generality, we suppose
β2 < 1/β1 as shown in Figure 1. Let L+

1 be the part of L1 above L11. Let L−2 be the
part of L2 below L21. Then L+

1 divide the fourth quadrant into two parts. If L−2
starts at a point above L+

1 , then L−2 and L+
1 have an intersection point in the fourth

quadrant since they have asymptotes L21 and L12, respectively. If L−2 starts at a
point below L+

1 , then L−2 and L+
1 have an intersection point in the fourth quadrant

since they have asymptotes L22 and L11, respectively. Thus, L1 and L2 always have
an intersection point in the fourth quadrant. A similar discussion could show that
L1 and L2 always have an intersection point in the second quadrant. Therefore,
system (2.6) has at most two positive equilibria. �

Lemma 2.2. There is no periodic orbit of system (2.6) and solutions of (2.6) are
bounded.

Proof. Let fi(x1, x2) be the right-hand sides of the equalities in (2.6), respectively.
Denote g(x1, x2) = 1/x1x2. Then we obtain

∂(gf1)
∂x1

+
∂(gf2)
∂x2

= −γ1

x2
(1 +

e1x2

1 + c1x2
)− γ2

x1
(1 +

e2x1

1 + c2x1
) < 0.

By Bendixson-Dulac Theorem [7], there is no periodic orbit of (2.6).
If x1 + x2 ≥ 1, then dx1/dt < 0 and dx2/dt < 0 by (2.6). Thus, all solutions of

(2.6) satisfy x1 + x2 ≤ 1 as t is sufficiently large, which implies that solutions of
(2.6) are bounded. �

The equilibria of (2.6) on axes are analyzed as follows, while their local stability
is determined by eigenvalues of Jacobian matrix of (2.6) at these equilibria.

(a) The trivial equilibrium O(0, 0) always exists and has eigenvalues r1(1−m1),
r2(1−m2).

(b) The semi-trivial equilibrium P1((1 −m1)/(1 + d1), 0) exists if 1 −m1 > 0,
while P2(0, (1 − m2)/(1 + d2)) exists if 1 − m2 > 0. The eigenvalues of Pi are
−ri(1−mi),−rjDj with

Dj = mj −
di +mi

1 + di

[
1 +

ej(1−mi)
1 + di + cj(1−mi)

]
, i, j = 1, 2, i 6= j.

Stability analysis of system (2.6) is considered in three situations: (i) obligate
mutualisms, i.e., 1−m1 ≤ 0, 1−m2 ≤ 0; (ii) obligate-facultative mutualisms, i.e.,
1−m1 > 0, 1−m2 ≤ 0; (iii) facultative mutualisms, i.e., 1−m1 > 0, 1−m2 > 0.

3. Obligate mutualisms

In this section, we consider the situation 1−m1 ≤ 0, 1−m2 ≤ 0, which means
that neither species can survive in the absence of the other. Denote

ki =
γi(ei + ci + cidi)

(1 + di)2
− βi, i = 1, 2.

Theorem 3.1. Assume 1−m1 = 0, 1−m2 = 0. If e1 > 1, e2 > 1 and k1k2 > 1, then
system (2.6) has a unique positive equilibrium P+, which is globally asymptotically
stable as shown in Figure 2a. Otherwise, all positive solutions of (2.6) converge to
O.
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Figure 2. Population dynamics of (2.6). Red and green curves
are isoclines L1 and L2, and black lines are separatrices of saddle
points. Grey arrows denote the direction and strength of the vector
fields on the portrait, while filled and open circles represent the
stable and unstable equilibria, respectively. (a) Let m1 = m2 =
1, e1 = e2 = 10, c1 = c2 = 0.001, d1 = d2 = 0.8. Then system (2.6)
has a unique positive equilibrium, which is globally asymptotically
stable. (b-c) Fix m1 = m2 = 1.2, c1 = c2 = 0.001, d1 = d2 = 0.8
and let e1, e2 vary. When e1 = e2 = 10 in (b), there are two positive
equilibria P− and P+. P− is unstable while P+ is asymptotically
stable. When e1 = e2 = 4.75 in (c), P− and P+ coincide and
form a saddle-node point P+. Separatrices of the saddle points
subdivide the first quadrant into two regions, which are basins of
attraction of O and P+ respectively. When e1 = e2 = 4.5 in (d),
all solutions converge to O.

Proof. Since 1 − m1 = 1 − m2 = 0, we obtain e
(1)
1 = e

(1)
2 = 1 and O ∈ L1 ∩

L2. A direct computation shows that 1/k1 and k2 are slopes of L1 and L2 at O,
respectively. From ei > 1, we have ki > 0 and Li∩ intR2

+ 6= ∅, i = 1, 2. If 1/k1 < k2,
it follows from the convexity of L1 and L2 that they have a unique intersection point
P+ in the first quadrant. By Lemma 2.2, P+ is globally asymptotically stable. In
other situations, L1 and L2 have no intersection point in the first quadrant. Thus,
system (2.6) has no positive equilibrium, which implies that all positive solutions
of (2.6) converge to O by Lemma 2.2. �
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In the following result, we focus on the case of 1−m1 ≤ 0, 1−m2 < 0, while a
similar one can be given for the case of 1−m1 < 0, 1−m2 ≤ 0.

Theorem 3.2. Assume 1−m1 ≤ 0, 1−m2 < 0.
(i) Let ei > e

(1)
i , i = 1, 2. There exist e(2)1 and e

(2)
2 such that when e1 > e

(2)
1

or e2 > e
(2)
2 , there are two positive equilibria P− and P+ of (2.6) as shown in

Figure 2b. P− is a saddle point while P+ is asymptotically stable. When e1 = e
(2)
1

or e2 = e
(2)
2 , P− and P+ coincide and form a saddle-node point. Separatrices of

the saddle point subdivide the first quadrant into two regions, one is the basin of
attraction of O while the other is that of P+, as shown in Figure 2b-c. In other
situations, all positive solutions of (2.6) converge to O as shown in Figure 2d.

(ii) If e1 ≤ e(1)1 or e2 ≤ e(1)2 , then equilibrium O is globally asymptotically stable.

Proof. (i) When ei > e
(1)
i , we obtain Li∩ intR2

+ 6= ∅, i = 1, 2. It follows from the
convexity of L2 and lime2→+∞ x2(x1, e2) = 1 − x1 in (2.12) that there is e(2)2 > 0
such that when e2 > e

(2)
2 , L1 and L2 have two intersection points P− and P+;

when e2 = e
(2)
2 , P− and P+ coincide and the isoclines are tangent. Thus, P− and

P+ are positive equilibria of (2.6) if e1 > e
(1)
1 , e2 > e

(1)
2 and e2 > e

(2)
2 .

The local stability of P+ can be shown as follows. Let rixiFi denote the right-
hand sides of (2.6). Let k+

1 (resp. k+
2 ) denote the slope of L1 (resp. L2) at P+.

From the expression of Fi, we have
1
k+
1

= −∂F1

∂x2

/∂F1

∂x1
|P+ , k+

2 = −∂F2

∂x1

/∂F2

∂x2
|P+

where
∂F1

∂x1
|P+ = −x1[1 +

e1x2

1 + c1x2
+ d1]|P+ < 0,

∂F2

∂x2
|P+ = −x2[1 +

e2x1

1 + c2x1
+ d2]|P+ < 0.

The Jacobian matrix of (2.6) at P+ is

J(P+) =

(
r1x1

∂F1
∂x1

r1x1
∂F1
∂x2

r2x2
∂F2
∂x1

r2x2
∂F2
∂x2

)
P+

. (3.1)

Thus,

tr J(P+) = (r1x1
∂F1

∂x1
+ r2x2

∂F2

∂x2
)|P+ < 0.

Moreover, we have

det J(P+) = r1r2x1x2

[∂F1

∂x1

∂F2

∂x2
− ∂F1

∂x2

∂F2

∂x1

]
= r1r2x1x2

∂F1

∂x1

∂F2

∂x2

∣∣
P+(1− k+

2

k+
1

).

Assume k+
1 < 0 as shown in Figure 2b. Then P+ is above the vertex of L1.

Notice that L1 and the positive x2-axis form a convex area Ω1. At the point P+,
L2 intersects with L1 from the inside of Ω1 to its outside. Thus, if k+

2 < 0, then we
have k+

1 < k+
2 as shown in Figure 2b, which implies that det J(P+) > 0. If k+

2 > 0,
we can see that det J(P+) > 0.

Assume k+
1 > 0. Then P+ is below the vertex of L1. When k+

2 > 0, we have
k+
1 > k+

2 , which implies that det J(P+) > 0. When k+
2 ≤ 0, we can see that
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det J(P+) > 0. It follows from convexity of L1 that k+
1 6= 0. Thus we have

det J(P+) > 0, which implies that P+ is asymptotically stable.
Similarly, let k−1 (resp. k−2 ) denote the slope of L1 (resp. L2) at P−. Then we

have k−1 < k−2 and det J(P−) < 0, which implies that P− is a saddle point. By
Lemma 2.2, the omega limit set of any interior point is an equilibrium since system
(2.6) is analytic and has no graphic here. Therefore, the stable manifold of P−

subdivide the first quadrant into two regions, one is the basin of attraction of O
while the other is that of P+.

When e2 = e
(2)
2 , P− and P+ coincide and form a saddle-node point [15]. Thus,

separatrices of the saddle point subdivide the first quadrant into two regions, one
is the basin of attraction of O while the other is that of P+. A similar discussion
can be given for L1 and e

(2)
1 .

(ii) If e1 ≤ e
(1)
1 or e2 ≤ e

(1)
2 , there is no positive equilibrium of (2.6), which

implies that all solutions of (2.6) converge to O. �

Theorems 3.1-3.2 demonstrate essential features of obligate mutualisms. First,
mutualisms between species can lead to survival of obligate species. Recall that
the mutualistic effect consists of two factors, e.g., e1 = µ1ν2, where ν2 denotes the
quantity of resources that an individual of species 2 produces for species 1, and
µ1 is the efficiency of species 1 in converting the resources into fitness. In this
section, we focus on the role of resources such as food, while we focus on the role of
efficiency in section 6. In the situation considered by Theorem 3.2, neither species
can survive in the absence of the other. Theorem 3.2(i) exhibits that they can
coexist if (a) mutualistic effects between them are above a threshold (ei > e

(1)
i ), (b)

one of the effects is sufficiently strong (e.g., e2 > e
(2)
2 ), and (c) population densities

of the species are large. The reason is that under these conditions, each species can
produce abundant food for the other, which results in persistence of both species.
Ecologically, this result can provide an explanation for the reason why obligate
bacteria can coexist by consuming products of the other. When one of the above
conditions is not satisfies, at least one of the species cannot obtain sufficient food
from the other, which eventually leads to extinction of both species. Since neither
species can survive alone, it is the mutualism that leads to their persistence. A
similar discussion can be given for Theorem 3.1.

Second, intermediate mutualism is beneficial in certain parameter ranges. In the
situation considered by Theorems 3.1-3.2, we have 1−mi ≤ 0, i = 1, 2. L1∩intR2

+ 6=
∅ if e1 > e

(1)
1 . It follows from the convexity of L1 that its vertex P̄ (x̄1, x̄2) is in

the first quadrant. For a fix e1(> e
(1)
1 ), it follows from the monotonicity of L2 that

there is ē2 > 0 such that when e2 = ē2, we have P+ = P̄ and x+
1 = x̄1. Thus,

when e2 = ē2, species 1 approaches a maximal density x̄1, as shown in Figure 2b.
An over-mutualism (e2 > ē2) or under-mutualism (e2 < ē2) means that x+

1 < x̄1,
which is not the best for species 1. The reason is as follows: (I) When e2 > ē2,
the over-mutualism leads to the increase of species 2 who will occupy more sites
and will decrease the density of species 1; (II) When e2 < ē2, the under-mutualism
leads to the decrease of species 2. Thus species 2 cannot produce abundant food for
species 1 to approach its maximum. Therefore, only the intermediate mutualistic
effect e2 = ē2 is the best for species 1. A similar discussion can be given for species
2.



EJDE-2015/02 STABILITY OF MUTUALISMS 11

Third, extremely strong mutualism will lead to extinction of both species. In-
deed, Theorem 3.2(i) exhibits that there is a stable positive equilibrium P+(x+

1 , x
+
2 )

if mutualistic effects (ei) are large. From (2.12), we obtain lime2→+∞ x2(x1, e2) =
1 − x1. Since P2 ∈ L2, it follows from the convexity of L1 and L2 that when
e2 → +∞, P+ tends to the x2-axis with x+

1 → 0. That is, lime2→+∞ x+
1 = 0.

Similarly, we have lime1→+∞ x+
2 = 0. Therefore, we conclude the following result.

Lemma 3.3. If P+(x+
1 , x

+
2 ) is a positive equilibrium of (2.6), then

lim
e2→+∞

x+
1 = 0, lim

e1→+∞
x+

2 = 0.

When the mutualistic effect of species 1 on 2 is extremely strong (e2 → +∞),
Lemma 3.3 shows that species 1 goes to extinction, which implies the extinction
of species 2 who cannot survive alone. The reason is that the extremely strong
mutualism leads to an explosive growth of species 2 who will occupy most of the
sites and drive species 1 into extinction. Thus, both species will go to extinction
since neither species can survive alone. Therefore, extremely strong mutualism will
lead to extinction of both species.

Finally, extremely weak mutualism will result in extinction of both species. In-
deed, when the mutualism is extremely weak (e.g., e2 → 0), Theorems 3.1-3.2
demonstrate that both species go to extinction. This is because one of the species
will get little food from the other and will go to extinction, which implies extinc-
tion of both species since neither one can survive alone. Thus, extremely weak
mutualism will result in extinction of both species.

4. Obligate-facultative mutualisms

In this section, we consider the situation where one species can persist in the
absence of the other but the other cannot survive alone. We focus on the case of
1 − m1 > 0, 1 − m2 ≤ 0, while a similar discussion can be given for 1 − m1 ≤
0, 1−m2 > 0.

When m1 6= 1,m2 6= 1, we denote

e
(3)
1 = (c1 +

1 + d2

1−m2
)(
m1 + d2m1

d2 +m2
− 1),

e
(3)
2 = (c2 +

1 + d1

1−m1
)(
m2 + d1m2

d1 +m1
− 1).

(4.1)

It follows from (2.8) and (2.11) that if e1 > e
(3)
1 , P2 is at the right of L1; if e2 > e

(3)
2 ,

P1 is below L2.

Theorem 4.1. Assume 1 −m1 > 0, 1 −m2 = 0. If e2 > e
(3)
2 , system (2.6) has a

unique positive equilibrium P+, which is globally asymptotically stable. Otherwise,
all positive solutions of (2.6) converge to P1.

Proof. From m2 = 1, we have O ∈ L2. If e2 > e
(3)
2 , then P1 is below L2 and is a

saddle point. It follows from the convexity of L1 and L2 that they have a unique
intersection point P+ in the first quadrant. Thus system (2.6) has a unique positive
equilibrium P+. By Lemma 2.2, P+ is globally asymptotically stable. If e2 ≤ e(3)2 ,
system (2.6) has no positive equilibrium, which implies that all positive solutions
of (2.6) converge to P1. �



12 Y. WANG, H. WU EJDE-2015/02

Assume 1 −m1 > 0, 1 −m2 < 0. When e2 > e
(3)
2 , equilibrium P1 is below L2

and is a saddle point. By a proof similar to that of Theorem 4.1, system (2.6) has
a unique positive equilibrium P+, which is globally asymptotically stable.

Suppose e2 < e
(3)
2 . Then P1 is above L2. When e1 ≤ e(3)1 , P2 is at the left of L1

and system (2.6) has no positive equilibrium. Thus P1 is globally asymptotically
stable. Let e1 > e

(3)
1 . It follows from the convexity of L2 and lime2→+∞ x2(x1, e2) =

1 − x1 in (2.12) that there is e
(4)
2 > 0 such that when e2 > e

(4)
2 , there is at

least one intersection point of L1 and L2 in the first quadrant. Thus, when e2 >

max{e(2)2 , e
(4)
2 }, L1 and L2 have two positive intersection points P− and P+. By

Lemma 2.2, phase-portrait analysis shows that equilibrium P− is a saddle point
and P+ is asymptotically stable. When e2 = e

(2)
2 > e

(4)
2 , P− and P+ coincide and

form a saddle-node point. In other situations, there is no positive equilibrium of
(2.6).

Suppose e2 = e
(3)
2 . Then P1 ∈ l2. When e1 > e

(2)
1 , there is a unique positive

equilibrium P+, which is globally asymptotically stable. Otherwise, there is no
positive equilibrium and all positive solutions of (2.6) converge to P1. Therefore,
we conclude the following result.

Theorem 4.2. Assume 1−m1 > 0, 1−m2 < 0.
(i) If e2 > e

(3)
2 , system (2.6) has a unique positive equilibrium P+, which is

globally asymptotically stable as shown in Figure 3a.
(ii) If e2 < e

(3)
2 and e1 ≤ e(3)1 , then all positive solutions of (2.6) converge to P1.

(iii) Let e2 < e
(3)
2 and e1 > e

(3)
1 .

(a) If e2 > max{e(2)2 , e
(4)
2 }, system (2.6) has two positive equilibria P− and P+.

P− is a saddle point and P+ is asymptotically stable. If e2 = e
(2)
2 > e

(4)
2 ,

P− and P+ coincide and form a saddle-node point. The separatrices of the
saddle point subdivide the first quadrant into two regions, one is the basin
of attraction of P1 while the other is that of P+, as shown in Figure 3b.

(b) In other situations, system (2.6) has no positive equilibrium and P1 is glob-
ally asymptotically stableas shown in Figure 3b.

(iv) Let e2 = e
(3)
2 . If e1 > e

(2)
1 , system (2.6) has a unique positive equilibrium

P+, which is globally asymptotically stable. Otherwise, all positive solutions of
(2.6) converge to P1.

Theorems 4.1-4.2 demonstrate essential features of obligate-facultative mutu-
alisms. First, an obligate species can survive by cooperating with a facultative one.
In the situation considered by Theorem 4.2, species 1 can persist in the absence of
species 2, while species 2 cannot survive alone. If the mutualistic effect of species
1 on 2 is strong (e2 > e

(3)
2 ), Theorem 4.2(i) exhibits that species 2 can survive.

The reason is that in this case, species 1 can provide abundant food for species 2,
which leads to its survival. Moreover, even when the mutualistic effect of species 1
on 2 is intermediate (e(4)2 < e2 < e

(3)
2 ), Theorem 4.2(iia) demonstrates that species

2 can survive if the effect of species 2 on 1 is strong (e1 > max{e(2)1 , e
(3)
1 }) and

their population densities are large (Here, e1 > e
(2)
1 is equivalent to e2 > e

(2)
2 in

guaranteeing that L1 and L2 can intersect in the first quadrant). The reason is
that in this case, species 2 can provide abundant food for species 1, which leads
to the increase of species 1. Thus, the amount of food produced by species 1 for
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Figure 3. (a) Population dynamics of (2.6). Let m1 = 0.5,m2 =
1.5, ci = 0.001, di = 0.8, ei = 8, i = 1, 2. Then system (2.6) has a
unique positive equilibrium, which is globally asymptotically sta-
ble. (b) Fix m1 = 0.95,m2 = 1.15, e2 = 5, c1 = c2 = 0.001, d1 =
d2 = 0.8 and Let e1 vary. When e1 increases from 2, 3.5 to 6.5,
isocline L1 increases monotonically while species 2 could persist
at e1 ≥ 3.5. (c) Fix m1 = 0.95,m2 = 1.15, e1 = 4.5, e2 = 5,
c1 = 0.001, d1 = 0.8, d2 = 0.02 and let c2 vary. When c2
decreases from 5.5, 2.5 to 0.02, isocline L2 increases monoton-
ically while species 2 could persist at c2 = 2.5, 0.02. (d) Fix
m1 = 0.95,m2 = 1.15, e1 = 4.5, e2 = 5, c1 = c2 = 0.001, d1 = 0.8
and let d2 vary. When d2 decreases from 5.8, 0.9 to 0.02, isocline
L2 increases monotonically while species 2 could persist at d2 =
0.9, 0.02.

2 is enhanced, which leads to the survival of species 2 in return. Hence, Theorem
4.2(iia) exhibits a strategy for obligate species when cooperating with facultative
ones: if the mutualistic effect from facultative species is intermediate, the obligate
species can survive by strengthening its mutualistic effect on the facultative species
(e.g., producing more food or providing better service for the obligate species) and
enhancing its population density. A similar discussion can be given for Theorem
4.1.

Second, intermediate mutualism is beneficial in certain parameter ranges. By
(2.12), there exists ě1 such that when e1 > ě1, the vertex P̄ (x̄1, x̄2) of L1 is in
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the first quadrant, as shown in Figure 3a. Similar to the discussion for obligate
mutualisms, there is ē2 > 0 such that when e2 = ē2, species 1 approaches a maximal
density x̄1, as shown in Figure 3a. An over-mutualism (e2 > ē2) or under-mutualism
(e2 < ē2) means that x+

1 < x̄1, which is not the best for species 1. Therefore, only
the intermediate mutualistic effect e2 = ē2 is the best for species 1. A similar
discussion can be given for species 2.

Third, extremely strong mutualism will result in extinction of one/both species.
(a) If the mutualistic effect of species 1 on 2 is extremely strong, Lemma 3.3 ex-
hibits that species 1 goes to extinction, which implies extinction of species 2 who
cannot survive alone. Thus, extremely strong mutualism from facultative species to
obligate species will result in extinction of both species. (b) If the mutualistic effect
of species 2 on 1 is extremely strong, Lemma 3.3 exhibits that species 2 goes to
extinction, while species 1 approaches its carrying capacity. Thus, extremely strong
mutualism from obligate species to facultative species will result in extinction of
the obligate species itself.

Finally, extremely weak mutualism can result in extinction of obligate species.
(a) If the mutualistic effect of species 1 on 2 is extremely weak, Theorems 4.1-
4.2 show that species 2 goes to extinction because it depends upon the strong
mutualism of species 1 for survival. (b) If the mutualistic effect of species 2 on 1 is
extremely weak, species 2 goes to extinction when the mutualism from species 1 is
not strong. An interesting phenomenon is: when the mutualism from species 1 on 2
is intermediate, Theorem 4.2(iia) shows that species 2 can survive if its mutualism
on species 1 is strong. However, if its mutualism on species 1 is weak, species 2
goes to extinction. What a pity!

5. Facultative mutualisms

x
1

x 2

m
1
=0.2, m

2
=0.8, e

1
=5

e
2
=0.8

e
2
=5

e
2
=500

Figure 4. Fix m1 = 0.2,m2 = 0.8, e1 = 5, c1 = c2 = 0.001, d1 =
d2 = 0.8 and let e2 vary. When e2 = 0.8, species 2 goes to extinc-
tion. When e2 = 5, the two species coexist and form a win-win
situation. When e2 = 500( i.e. e2 → +∞), species 1 goes to
extinction.
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In this section, we consider the situation of 1−m1 > 0, 1−m2 > 0, where either
species can survive in the absence of the other.

Theorem 5.1. Assume 1−m1 > 0, 1−m2 > 0.
(i) If e1 > e

(3)
1 and e2 > e

(3)
2 , system (2.6) has a unique positive equilibrium P+,

which is globally asymptotically stable as shown in Figure 4.
(ii) If e1 ≤ e

(3)
1 , then P2 is globally asymptotically stable. If e2 ≤ e

(3)
2 , then P1

is globally asymptotically stable as shown in Figure 4.

Proof. (i) Since e1 > e
(3)
1 , P2 is at the left of L1 and is a saddle point. Since

e2 > e
(3)
2 , P1 is below L2 and is a saddle point. Thus, L1 and L2 have intersection

points in the first quadrant. Moreover, since L1 and L2 have asymptotes x2 =
− 1+d1

e1+c1+c1d1
, x1 = − 1+d2

e2+c2+c2d2
respectively, they have an intersection point in

the third quadrant. Thus, L1 and L2 have a unique intersection point in the first
quadrant by Lemma 2.1. Thus system (2.6) has a unique positive equilibrium P+.
By Lemma 2.2, P+ is globally asymptotically stable.

(ii) Assume e2 ≤ e
(3)
2 . Then P1 is above L2 and is asymptotically stable. Thus

L1 and L2 have an intersection point in the fourth quadrant. Since they have
an intersection point in the third quadrant as shown in (i), L1 and L2 have no
intersection point in the first quadrant by Lemma 2.1. Thus system (2.6) has no
positive equilibrium. By Lemma 2.2, P1 is globally asymptotically stable. A similar
discussion can be given for the case e1 ≤ e(3)1 . �

Theorem 5.1 demonstrates essential features of facultative mutualisms. First,
mutualisms can lead to interaction outcomes (+ +), where each species can ap-
proach a density larger than its carrying capacity in the absence of the other.
Indeed, when (1−m1)/(1 + d1) + (1−m2)/(1 + d2) < 1, it follows from the mono-
tonicity of Li with ei that there is a region R12 such that when (e1, e2) ∈ R12, P+

is at the right of P1 and above P2, which implies that either species approaches
a density larger than its carrying capacity in the absence of the other. Thus the
interaction outcomes are (+ +).

Second, intermediate mutualism is beneficial in certain parameter ranges. By
(2.12), there exists ě1 such that when e1 > ě1, the vertex P̄ (x̄1, x̄2) of L1 is in the
first quadrant. Similar to the discussion for obligate mutualisms, there is ē2 > 0
such that when e2 = ē2, species 1 approaches a maximal density x̄1, as shown in
Figure 4. An over-mutualism (e2 > ē2) or under-mutualism (e2 < ē2) means that
x+

1 < x̄1, which is not the best for species 1. Therefore, only the intermediate
mutualistic effect e2 = ē2 is the best for species 1. A similar discussion can be
given for species 2.

Third, extremely strong mutualism will result in extinction of species. If the
mutualistic effect of species 1 on 2 is extremely strong (e2 → +∞), Lemma 3.3 ex-
hibits that species 1 goes to extinction while species 2 persists. A similar discussion
can be given for e1 → +∞.

Finally, extremely weak mutualism can result in extinction of species. If the
mutualistic effect of species 1 on 2 is extremely weak, Theorem 5.1(ii) exhibits that
species 2 goes to extinction while species 1 persists. The reason is that species 2
obtains little food from species 1, which leads to its failure in spatial competition
with species 1. A similar discussion can be given for species 1.
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6. Discussion

In this article, we extend a lattice gas model of mutualisms in [9] by considering
saturated response and self-competition. Global dynamics of the extended model
demonstrate some basic properties of mutualisms.

First, mutualisms (i.e. ei) can lead to survival of mutualists. As discussed in
Section 2, the mutualistic effect ei consists of two factors: one is the quantity of
resources provided by collaborators, while the other is the efficiency of the species
in converting the resources into fitness. While we focus on resources (food) in
Sections 3-5, we consider the efficiency in this section. In the situation considered
by Theorem 4.2, species 1 can persist in the absence of species 2 while species 2
cannot survive alone. Theorem 4.2 demonstrate that species 2 can survive if its
efficiency in converting the food (provided by species 1) into fitness is high. Even
when the efficiency is intermediate, species 2 can survive if it has a large population
density and the efficiency of species 1 is high. In numerical simulations of Figure
3b, we fix other parameters and let e1 vary. Here, the mutualistic effect of species
1 on 2 is intermediate. When e1 increases from 2 to 6.5, isocline L1 increases
monotonically and species 2 with large initial density can survive if e1 ≥ 3.5, which
confirms that species 2 with large population density can survive if the efficiency of
species 1 is high. A similar discussion can be given for Theorems 4.1, 7.1, 7.2, 8.1.

Second, intermediate mutualisms are favorable under certain parameter condi-
tions, while extremely weak/strong mutualisms will lead to extinction of species.
For example, when the mutualistic effect of species 2 on 1 is strong such that
x̄2 > 0, there exists an interval of e2 (intermediate mutualisms), in which species 1
can approach a density larger than its carrying capacity in the absence of species 2.
On the other hand, as discussed in section 6, extremely weak mutualisms lead to
little benefit to mutualists, while extremely strong mutualisms results in dramatic
growth of one species, which implies extinction of the other. Therefore, extremely
weak/strong mutualisms will lead to extinction of species. A similar discussion can
be given for Theorems 7.1,7.2,8.1.

Third, parameters ci and di play an important role in survival of species. By
(2.6), ei/ci represents the saturation level while 1/ci is the half-saturation den-
sity. Thus, the decrease of ci promotes persistence of species i by enlarging the
functional response eixj/(1 + cixj) in (2.6). Similarly, di represents the degree of
intraspecific competition in species i. The decrease of di promotes the growth of
species i by enlarging the function xi = xi(xj , di) in (2.7). In Figure 3c, we fix
other parameters but let c2 vary. When c2 decreases from 5.5 to 0.02, isocline L2

increases monotonically while species 2 could persist at c2 = 0.02. In Figure 3d,
we fix m1 = 0.95, m2 = 1.15, e1 = 4.5, e2 = 5, c1 = c2 = 0.001, d1 = 0.8 and let
d2 vary. When d2 decreases from 5.8 to 0.02, isocline L2 increases monotonically
while species 2 could persist at d2 = 0.02. Therefore, the decrease of ci and/or di

promotes persistence of the species.
Finally, population densities are crucial to survival of species. When neither

species can survive in the absence of the other and the mutualistic effects are strong,
Theorem 3.2 exhibits that the species can persist only if their initial densities are
large. Otherwise, both species go to extinction. Therefore, Theorem 3.2 predicts
the Allee effect in obligate mutualisms of two species. Similar discussions can be
given for cases considered by Theorems 3.1,4.1-4.2.
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Iwata et al [9] displayed seven typical types of dynamics of a lattice gas model
in their Figure 4 and section 5.2. However, they did not obviously exhibit the type
of coexistence in Theorems 4.2(i) as shown in Figure 3a. Indeed, if ci = di = 0,
i = 1, 2, then system (2.6) becomes the model in [9]. Let ci = di = 0, i = 1, 2,
m1 = 0.5, m2 = 1.5, e1 = e2 = 8. Numerical simulations could show that species
2 could survive by the mutualism of species 1. Thus Theorem 4.2(i) extends the
result by Iwata et al [9].

Although there is no real data to verify dynamics of the model, the model demon-
strates mechanisms which seems to be consistent with ecological situations. For
example, as shown in Theorems 4.1-4.2 and Figure 3, different mutualistic effects
(or exclusive competitions) can lead to different components of syntrophic colonies,
which is crucial to the development of colony architectures. Thus, this model may
be useful in the study of cooperative association like bacterial species. Although
the model is simple, its global dynamics demonstrate some essential features of
mutualisms, which may be helpful for understanding complexity of mutualisms in
real situations.

7. Appendix: The case of r1 > 0, r2 = 0

In this case, species 1 can reproduce alone but species 2 cannot, while a similar
discussion can be given for the case r1 = 0, r2 > 0, as shown by Iwata et al [9].
Denote

m1 :=
m1

r1
, e1 :=

e1
r1
, d1 :=

d1

r1
then model (2.4) can be rewritten as

dx1

dt
= r1x1

[
−m1 + (1 +

e1x2

1 + c1x2
)(1− x1 − x2)− d1x1

]
,

dx2

dt
= x2

[
−m2 +

e2x1

1 + c2x1
(1− x1 − x2)− d2x2

]
.

(7.1)

The isoclines L2 of (7.1) can be rewritten as

(ᾱ1 − x1 − x2)(d2 + e2x1) = γ̄1

where

ᾱ1 =
e2 + d2 −m2c2

e2
, γ̄1 = m1 +

d2(e2 + d2 −m2c2)
e2

.

Thus, L2 is a parabola with asymptotes

L21 : ᾱ1 − x1 − x2 = 0, L22 : x1 = −d2

e2
.

Denote
ē
(1)
1 = e

(1)
1 , ē

(1)
2 = c2m2 + 2m2 + 2

√
m2(1 + c2).

When ei > ē
(1)
i , we have Li ∩ intR2

+ 6= ∅, i = 1, 2.
The equilibria of (7.1) are as follows, while their local stability is determined by

eigenvalues of Jacobian matrix of (7.1) at these equilibria.
(a) Equilibrium O(0, 0) always exists and has eigenvalues r1(1−m1),−m2.
(b) Equilibrium P1((1 −m1)/(1 + d1), 0) exists if 1 −m1 > 0. The eigenvalues

of P1 are −r1(1−m1),−D̄2 with

D̄2 = m2 −
e2(1−m1)(d1 +m1)

(1 + d1)[1 + d1 + c2(1−m1)]
.
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(c) There are at most two positive equilibria P− and P+ of (7.1) by a proof
similar to that in section 2. When they exist, P− is a saddle point and P+ is
asymptotically stable.

Assume 1 − m1 ≤ 0 and ei > ē
(1)
i , i = 1, 2. Then Li∩ intR2

+ 6= ∅, i = 1, 2. It
follows from the convexity of L2 that there is ē(2)2 > 0 such that when e2 > ē

(2)
2 ,

L1 and L2 have two intersection points P− and P+; when e2 = ē
(2)
2 , P− and P+

coincide and the isoclines are tangent. Thus, P− and P+ are positive equilibria
of (2.6) if e1 > ē

(1)
1 , e2 > ē

(1)
2 and e2 ≥ ē

(2)
2 . A similar discussion can be given

for L1 and ē
(2)
1 . If e1 < ē

(2)
1 or e2 < ē

(2)
2 , there is no positive equilibrium of (7.1),

which implies that all solutions of (7.1) converge to O. Therefore, we conclude the
following result.

Theorem 7.1. Assume 1−m1 ≤ 0.
(i) Let ei > ē

(1)
i , i = 1, 2. If e1 > ē

(2)
1 or e2 > ē

(2)
2 , there are two positive

equilibria P− and P+ of (7.1). P− is a saddle point while P+ is asymptotically
stable. If e1 = ē

(2)
1 or e2 = ē

(2)
2 , P− and P+ coincide and form a saddle-node point.

Separatrices of the saddle point subdivide the first quadrant into two regions, one is
the basin of attraction of O while the other is that of P+. In other situations, all
positive solutions of (7.1) converge to O.

(ii) If e1 ≤ ē(1)1 or e2 ≤ ē(1)2 , then equilibrium O is globally asymptotically stable.

Assume 1−m1 > 0. Denote

ē
(3)
1 = (c1 −

d2

m2
)(

m1d2

m2 + d2
− 1), ē

(3)
2 =

m2(1 + d1)[1 + d1 + c2(1−m1)]
(1−m1)(d1 +m1)

.

When e2 > ē
(3)
2 , P1 is below L2 and D̄2 < 0; when e1 > ē

(3)
1 , P2(0,−m2/d2) is at

the right of L1. It follows from the convexity of L2 that there is ē(4)2 > 0 such that
when e2 > ē

(4)
2 , there is at least one positive intersection point of L1 and L2. Thus,

when e1 > ē
(3)
1 and e2 > max{ē(2)2 , ē

(4)
2 }, L1 and L2 have two intersection points.

Similar to the discussion in section 2, we conclude the following result.

Theorem 7.2. Assume 1−m1 > 0.
(i) If e2 > ē

(3)
2 , system (7.1) has a unique positive equilibrium P+, which is

globally asymptotically stable.
(ii) If e2 < ē

(3)
2 and e1 ≤ ē(3)1 , then all positive solutions of (7.1) converge to P1.

(iii) Let e2 < ē
(3)
2 and e1 > ē

(3)
1 .

(a) If e2 > max{ē(2)2 , ē
(4)
2 }, system (7.1) has two positive equilibria P− and P+.

P− is a saddle point and P+ is asymptotically stable. If e2 = ē
(2)
2 > ē

(4)
2 ,

P− and P+ coincide and form a saddle-node point. The separatrices of the
saddle point subdivide the first quadrant into two regions, one is the basin
of attraction of P1 while the other is that of P+.

(b) In other situations, system (7.1) has no positive equilibrium and P1 is glob-
ally asymptotically stable.

(iv) Let e2 = ē
(3)
2 . If e1 > ē

(2)
1 , system (7.1) has a unique positive equilibrium

P+, which is globally asymptotically stable. Otherwise, all positive solutions of
(7.1) converge to P1.
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8. Appendix: The case of r1 = r2 = 0

In this case, neither species can reproduce alone, which is the same as reactions
in a male-female system as shown by Iwata et al [9]. Let r1 = r2 = 0. Model (2.4)
becomes

dx1

dt
= x1[−m1 +

e1x2

1 + c1x2
(1− x1 − x2)− d1x1]

dx2

dt
= x2[−m2 +

e2x1

1 + c2x1
(1− x1 − x2)− d2x2].

(8.1)

The isoclines Li of (8.1) can be rewritten as

L1 : (α̂1 − x1 − x2)(d1 + e1x2) = γ̂1,

L2 : (α̂2 − x1 − x2)(d2 + e2x1) = γ̂2

where

α̂i =
ei + di −mici

ei
, γ̂i = mi +

di(ei + di −mici)
ei

, i = 1, 2.

Thus, Li is a parabola with asymptotes

Li1 : α̂i − x1 − x2 = 0, Li2 : xj = −di

ei
, i 6= j, i, j = 1, 2.

Denote

ê
(1)
1 = c1m1 + 2m1 + 2

√
m1(1 + c1), ê

(1)
2 = c2m2 + 2m2 + 2

√
m2(1 + c2).

When ei > ê
(1)
i , we have Li ∩ intR2

+ 6= ∅, i = 1, 2.
The equilibria of (8.1) are as follows, while their local stability is determined by

eigenvalues of Jacobian matrix of (8.1) at these equilibria.
(a) Equilibrium O(0, 0) always exists and has eigenvalues −m1,−m2.
(b) There are at most two positive equilibria P− and P+ of (8.1) by a proof

similar to that in section 2. When they exist, P− is a saddle point and P+ is
asymptotically stable.

Assume ei > ê
(1)
i , i = 1, 2. Then Li ∩ intR2

+ 6= ∅, i = 1, 2. It follows from
the convexity of L2 that there is ê(2)2 > 0 such that when e2 > ê

(2)
2 , L1 and L2

have two intersection points P− and P+; when e2 = ê
(2)
2 , P− and P+ coincide

and the isoclines are tangent. Thus, P− and P+ are positive equilibria of (8.1) if
e1 > ê

(1)
1 , e2 > ê

(1)
2 and e2 ≥ ê(2)2 . A similar discussion can be given for L1 and ê(2)1 .

If e1 < ê
(2)
1 or e2 < ê

(2)
2 , there is no positive equilibrium of (8.1), which implies

that all solutions of (8.1) converge to O.
Therefore, we conclude the following result.

Theorem 8.1. (i) Let ei > ê
(1)
i , i = 1, 2. If e1 > ê

(2)
1 or e2 > ê

(2)
2 , there are

two positive equilibria P− and P+ of (8.1). P− is a saddle point while P+ is
asymptotically stable. If e1 = ê

(2)
1 or e2 = ê

(2)
2 , P− and P+ coincide and form a

saddle-node point. Separatrices of the saddle point subdivide the first quadrant into
two regions, one is the basin of attraction of O while the other is that of P+. In
other situations, all positive solutions of (8.1) converge to O.

(ii) If e1 ≤ ê(1)1 or e2 ≤ ê(1)2 , then equilibrium O is globally asymptotically stable.
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