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POSITIVE SOLUTIONS TO A NONLINEAR FRACTIONAL
DIRICHLET PROBLEM ON THE HALF-LINE

HABIB MÂAGLI, ABDELWAHEB DHIFLI

Abstract. This concerns the existence of infinitely many positive solutions

to the fractional differential equation

Dαu(x) + f(x, u,Dα−1u) = 0, x > 0,

lim
x→0+

u(x) = 0,

where α ∈ (1, 2] and f is a Borel measurable function in R+ × R+ × R+

satisfying some appropriate conditions.

1. Introduction

Recently, many papers on fractional differential equations have been published.
The motivation for those works stems from the fact that fractional equations serve
as an excellent tool to describe many phenomena in various fields of science and
engineering such as control, porous media, electrochemistry, viscoelasticity, electro-
magnetic, etc (see [8, 10, 11, 19]). Therefore, the theory of fractional differential
equations has been developed very quickly and the investigation for the existence
of solutions of fractional differential equations has recently attracted a consider-
able attention (see [1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 17, 18, 20, 21, 22] and the
references therein. For instance, in [18], the first author considered the following
nonlinear fractional differential problem in the half-line R+ = (0,∞):

Dαu+ f(x, u) = 0, u > 0

lim
x→0+

u(x) = 0, (1.1)

where 1 < α ≤ 2 and f be a measurable function in R+ × R+ satisfying an appro-
priate condition. Then, he established the existence of infinitely many solutions of
(1.1).

In this paper, we extend this result to the fractional problem

Dαu+ f(x, u,Dα−1u) = 0, u > 0in R+,

lim
x→0+

u(x) = 0, (1.2)
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where f is a Borel measurable function in R+ × R+ × R+ satisfying the following
assumptions.

(H1) f is continuous with respect to the second and third variable.
(H2) There exist h1 and h2 two nonnegative measurable functions on R+×R+×

R+ such that
(i) |f(x, y, z)| ≤ h(x, y, z) := yh1(x, y, z)+zh2(x, y, z) for all x, y, z ∈ R+.
(ii) The function hj is nondecreasing with respect to the second and the

third variables and satisfying lim(y,z)→(0,0) hj(x, y, z) = 0 for j = 1, 2.
(iii) The integral

∫∞
0
h(t, ωα(t), 1)dt converges, where ωα(t) := tα−1

Γ(α) .

We recall that for a measurable function v, the Riemann-Liouville fractional integral
Iβv and the Riemann-Liouville derivative Dβv of order β > 0 are defined by

Iβv(x) =
1

Γ(β)

∫ x

0

(x− t)β−1v(t)dt

and

Dβv(x) =
1

Γ(n− β)
( d
dx

)n ∫ x

0

(x− t)n−β−1v(t)dt =
( d
dx

)n
In−βv(x),

provided that the right-hand sides are pointwise defined on R+. Here n = [β] + 1
and [β] means the integer part of the number β and Γ is the Euler Gamma function.
Moreover, we have the following well-known properties (see [11, 20]).

IβIγv(x) = Iβ+γv(x) for x ∈ R+, v ∈ L1
loc([0,∞)), β + γ ≥ 1. (1.3)

DβIβv(x) = v(x), a.e in R+, v ∈ L1
loc([0,∞)), β > 0. (1.4)

Dβv(x) = 0 if and only if v(x) =
n∑
j=1

cjx
β−j , (1.5)

where n is the smallest integer greater than or equal to β and (c1, c2, . . . , cn) ∈ Rn.

Remark 1.1. Let 1 < α ≤ 2. Then a simple calculus, gives for x ≥ 0,

Iα−1(1)(x) = ωα(x). (1.6)

Our main result is the following.

Theorem 1.2. Assume (H1) and (H2). Then problem (1.2) has infinitely many
solutions. More precisely, there exists a number b > 0 such that for each c ∈ (0, b],
problem (1.2) has a continuous solution u satisfying

u(x) = cωα(x) + ωα(x)
∫ ∞

0

(
1− ((1− t

x
)+)α−1

)
f(t, u(t), Dα−1u(t))dt.

and

lim
x→∞

u(x)
ωα(x)

= lim
x→∞

Dα−1u(x) = c.

Note that Theorem 1.2 generalizes a result established by Mâagli and Masmoudi
[16] in the case α = 2.

In the sequel, for λ ∈ R, we put λ+ = max(λ, 0) and we denote by C([0,∞])
the set of continuous functions v on R+ such that limx→0+ v(x) and limx→∞ v(x)
exist. It is easy to see that C([0,∞]) is a Banach space with the norm ‖v‖∞ =
supx≥0 |v(x)|. Let

E = {v ∈ C([0,∞)) : Dα−1(ωαv) ∈ C([0,∞])}
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endowed with the norm ‖v‖ = ‖Dα−1(ωαv)‖∞. Then the map

(E, ‖ · ‖)→ (C([0,∞]), ‖ · ‖∞)

v 7→ Dα−1(ωαv)

is an isometry. It follows that (E, ‖ · ‖) is a Banach space. Next we quote some
results in the following lemmas that will be used later.

Lemma 1.3 ([6]). Let f be a function in C([0,∞)) such that f(0) = 0 and Dα−1f
belongs to C([0,∞)). Then for x ≥ 0,

Iα−1Dα−1f(x) = f(x).

Lemma 1.4. Let m1, m2 ∈ R such that m1 ≤ m2 and let v ∈ C([0,∞)) such that
Dα−1(ωαv) ∈ C([0,∞)) and m1 ≤ Dα−1(ωαv)(t) ≤ m2 for all t ≥ 0. Then for
each t ≥ 0,

m1 ≤ v(t) ≤ m2.

In particular, ‖v‖∞ ≤ ‖Dα−1(ωαv)‖∞ and E ⊂ C([0,∞]).

Proof. Let v ∈ C([0,∞)) such that Dα−1(ωαv) ∈ C([0,∞)) and

m1 ≤ Dα−1(ωαv) ≤ m2. (1.7)

Using Lemma 1.3 and (1.6), we obtain

m1ωα ≤ Iα−1Dα−1(ωαv) = ωαv ≤ m1ωα.

This implies that for each t ≥ 0,

m1 ≤ v(t) ≤ m2.

�

Let F = {v ∈ E : 0 ≤ Dα−1(ωαv) ≤ 1}. Then we have the following result.

Lemma 1.5. Assume (H2). Then the family of functions{
x 7→

∫ x

0

(1− t

x
)α−1f(t, ωα(t)v(t), Dα−1(ωαv)(t))dt, v ∈ F

}
is relatively compact in C([0,∞]).

Proof. For v ∈ F and x > 0, put

Sv(x) =
∫ x

0

(1− t

x
)α−1f(t, ωα(t)v(t), Dα−1(ωαv)(t))dt.

By (H2) and Lemma 1.4, we have for v ∈ F and x > 0,

|Sv(x)| ≤
∫ ∞

0

|f(t, ωα(t)v(t), Dα−1(ωαv)(t))|dt

≤
∫ ∞

0

h(t, ωα(t)v(t), Dα−1(ωαv)(t))dt

≤
∫ ∞

0

h(t, ωα(t), 1)dt <∞.

Thus the family S(F) is uniformly bounded.
Now, we prove the equicontinuity of S(F) in [0,∞]. Let x, x′ ∈ R+ and v ∈ F ,

then we have

|Sv(x)− Sv(x′)| ≤
∫ ∞

0

|((1− t

x
)+)α−1 − ((1− t

x′
)+)α−1|h(t, ωα(t), 1)dt,
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|Sv(x)| ≤
∫ x

0

h(t, ωα(t), 1)dt,

∣∣Sv(x)−
∫ ∞

0

f(t, ωα(t)v(t), Dα−1(ωαv)(t))dt
∣∣

≤
∫ ∞

0

(
1− ((1− t

x
)+)α−1

)
h(t, ωα(t), 1)dt.

Using Lebesgue’s theorem, we deduce from the above inequalities that S(F) is
equicontinuous in [0,∞]. Hence, by Ascoli’s theorem, we conclude that S(F) is
relatively compact in C([0,∞]). �

2. Proof of Theorem 1.2

In the sequel, we denote

g(x, y, z) = ωα(x)h1(x, y, z) + h2(x, y, z), for x, y, z ∈ R+.

By (H2) and Lebesgue’s theorem,

lim
β→0

∫ ∞
0

g(t, βωα(t), β)dt = 0.

Hence we can fix a number 0 < β < 1 such that∫ ∞
0

g(t, βωα(t), β)dt ≤ 1
3
.

Let b = 2β/3 and c ∈ (0, b]. To apply a fixed point argument, set

Λ = {v ∈ E :
c

2
≤ Dα−1(ωαv) ≤ 3c

2
}.

Then Λ is a nonempty closed bounded and convex set in E. Now, we define the
operator T on Λ by

Tv(x) = c+
∫ ∞

0

(
1− ((1− t

x
)+)α−1

)
f(t, ωα(t)v(t), Dα−1(ωαv)(t))dt, x > 0.

First, we shall prove that the operator T maps Λ into itself. Let v ∈ Λ. Using
Lemma 1.5, we deduce that the function Tv is in C([0,∞]). On the other hand,
for x ≥ 0 we have

ωα(x)Tv(x) = ωα(x)
(
c+

∫ ∞
0

f(t, ωα(t)v(t), Dα−1(ωαv)(t))dt
)

− Iα
(
f(., ωαv,Dα−1(ωαv))

)
(x).

Hence, applying Dα−1 on both sides of this equality, we conclude by (1.6) and (1.4)
that for each x ≥ 0,

Dα−1(ωαTv)(x) = c+
∫ ∞
x

f(t, ωα(t)v(t), Dα−1(ωαv)(t))dt.

This implies that Dα−1(ωαTv) is in C([0,∞]) and TΛ ⊂ E. Furthermore, we have
for v ∈ Λ and x ≥ 0,

|Dα−1(ωαTv)(x)− c| ≤
∫ ∞

0

|f(t, ωα(t)v(t), Dα−1(ωαv)(t))|dt

≤
∫ ∞

0

h(t, ωα(t)v(t), Dα−1(ωαv)(t))dt
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≤
∫ ∞

0

h(t,
3c
2
ωα(t),

3c
2

)dt

=
3c
2

∫ ∞
0

g(t,
3c
2
ωα(t),

3c
2

)dt

≤ 3c
2

∫ ∞
0

g(t, βωα(t), β)dt ≤ c

2
.

It follows that for each x ≥ 0,

c

2
≤ Dα−1(ωαTv)(x) ≤ 3c

2
.

So, we conclude that Λ is invariant under T .
Next, we prove that TΛ is relatively compact in (E, ‖ · ‖). For any v ∈ Λ and

x > 0,

d

dx
Dα−1(ωαTv)(x) = −f(x, ωα(x)v(x), Dα−1(ωαv)(x)) a.e. in R+.

Since

| d
dx
Dα−1(ωαTv)(x)| ≤ h(x, ωα(x)v(x), Dα−1(ωαv)(x)) ≤ h(x, ωα(x), 1)

and
∫∞

0
h(x, ωα(x), 1)dx < ∞, it follows that the family {Dα−1(ωαTv), v ∈ Λ} is

equicontinuous on [0,∞]. Moreover, {Dα−1(ωαTv), v ∈ Λ} is uniformly bounded.
Then from Ascoli’s theorem, {Dα−1(ωαv), v ∈ Λ} is relatively compact in the space
(C([0,∞]), ‖ · ‖∞). This implies that TΛ is relatively compact in (E, ‖ · ‖).

Now, we prove the continuity of T in Λ. Let (vk) be a sequence in Λ such that

‖vk − v‖ = ‖Dα−1(ωαvk)−Dα−1(ωαv)‖∞ → 0 as k →∞.

Then by Lemma 1.4, ‖vk − v‖∞ → 0 as k →∞ and for any x ∈ [0,∞], we have

|Dα−1(ωαTvk)(x)−Dα−1(ωαTv)(x)|

= |
∫ ∞
x

[
f(t, ωα(t)vk(t), Dα−1(ωαvk)(t))− f(t, ωα(t)v(t), Dα−1(ωαv)(t))

]
dt|

≤
∫ ∞

0

∣∣f(t, ωα(t)vk(t), Dα−1(ωαvk)(t))− f(t, ωα(t)v(t), Dα−1(ωαv)(t))
∣∣dt

and

|f(t, ωα(t)vk(t), Dα−1(ωαvk)(t))− f(t, ωα(t)v(t), Dα−1(ωαv)(t))| ≤ 2h(t, ωα(t), 1).

So, by (H1) and Lebesgue’s theorem,

‖Tvk − Tv‖ = ‖Dα−1(ωαTvk)−Dα−1(ωαTv)‖∞ → 0 as k →∞.

It follows by the Schauder fixed point theorem that there exists v ∈ Λ such that
Tv = v. That is,

v(x) = c+
∫ ∞

0

(1− ((1− t

x
)+)α−1)f(t, ωα(t)v(t), Dα−1(ωαv)(t))dt, for x > 0.

We put u(x) = ωα(x)v(x). Then for any x > 0, we have

u(x) = cωα(x) + ωα(x)
∫ ∞

0

(1− ((1− t

x
)+)α−1)f(t, ωα(t)v(t), Dα−1(ωαv)(t))dt.
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Moreover, for x > 0, we have
c

2
ωα(x) ≤ u(x) ≤ 3c

2
ωα(x),

lim
x→∞

u(x)
ωα(x)

= lim
x→∞

Dα−1u(x) = c.
(2.1)

It remains to show that u is a solution of problem (1.2). Indeed, applying Dα on
both sides of (2.1) we obtain by (1.5) and (1.4), that

Dαu(x) = −f(x, u,Dα−1u), a.e. in R+.

This completes the proof.

Example 2.1. Let p, q ≥ 0 such that max(p, q) > 1 and let k be a measurable
function satisfying ∫ ∞

0

t(α−1)p|k(t)|dt <∞.

Then there exists a constant b > 0 such that for each c ∈ (0, b], the problem

Dαu+ k(x)up(Dα−1u)q = 0, u > 0 in R+,

lim
x→0+

u(x) = 0,

has a continuous solution u in R+ satisfying limx→0+
u(x)
ωα(x) = limx→∞Dα−1u(x) =

c .

Example 2.2. Let p > 1 and q > 1. Let k1 and k2 be two measurable functions
such that ∫ ∞

0

|k1(t)|tp(α−1)dt <∞,
∫ ∞

0

|k2(t)|dt <∞.

Then there exists a constant b > 0 such that for each c ∈ (0, b], the problem

Dαu+ k1(x)up + k2(x)(Dα−1u)q = 0, u > 0 in R+,

lim
x→0+

u(x) = 0

has a continuous solution u in R+ satisfying

lim
x→0+

u(x)
ωα(x)

= lim
x→∞

Dα−1u(x) = c.
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