\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 37, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/37\hfil Existence of positive solutions] {Existence of positive solutions for $p$-Laplacian an $m$-point boundary value problem involving the derivative on time scales} \author[A. Dogan \hfil EJDE-2014/37\hfilneg] {Abdulkadir Dogan} % in alphabetical order \address{Abdulkadir Dogan \newline Department of Applied Mathematics, Faculty of Computer Sciences, Abdullah Gul University, Kayseri, 38039 Turkey} \email{abdulkadir.dogan@agu.edu.tr Tel: +90 352 224 88 00 Fax: +90 352 338 88 28} \thanks{Submitted December 3, 2013. Published January 30, 2014.} \subjclass[2000]{34B15, 34B16, 34B18, 39A10} \keywords{Time scales; boundary value problem; $p$-Laplacian; \hfill\break\indent positive solution; fixed point theorem} \begin{abstract} We are interested in the existence of positive solutions for the $p$-Laplacian dynamic equation on time scales, $$ (\phi_p(u^\Delta(t)))^\nabla+a(t)f(t,u(t),u^\Delta(t))=0,\quad t\in(0,T)_{\mathbb{T}}, $$ subject to the multipoint boundary condition, $$ u(0)=\sum_{i=1}^{m-2}\alpha_i u(\xi_i), \quad u^\Delta(T)=0, $$ where $\phi_p(s)=|s|^{p-2} s$, $p>1$, $\xi_i\in [0,T]_{\mathbb{T}}$, $ 0<\xi_1<\xi_2<\dots<\xi_{m-2}<\rho(T)$. By using fixed point theorems, we prove the existence of at least three non-negatvie solutions, two of them positive, to the above boundary value problem. The interesting point is the nonlinear term $f$ is involved with the first order derivative explicitly. An example is given to illustrate the main result. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} The theory of time scales, which has recently received a lot of attention, was introduced and developed by Aulbach and Hilger \cite{Hilger} in 1988. It has been created in order to unify continuous and discrete analysis, and it allows a simultaneous treatment of differential and difference equations, extending those theories to so-called dynamic equations. Further, the study of time scales has led to several important applications, e.g., in the study of insect population models, heat transfer, neural networks, phytoremediation of metals, wound healing, and epidemic models, see \cite{Jones,Sped,Thomas}. Recently, much attention has been paid to the existence of multipoint positive solutions of boundary value problems (BVPs) on time scales. When the nonlinear term $f$ does not depend on the first order derivative, many researchers have studied multipoint boundary conditions on time scales; see \cite{Anderson,Bohner3,Dogan,Dogan2,Dogan3,Han,Luo,Sang1,Sang2,Sun1,Zhu}. However, little work has done on the existence of positive solutions for multipoint BVP on time scales when the nonlinear term is involved in first order derivative explicitly; see \cite{Dogan4,Su1,Sun2}. There is recent work in fixed point applications using convex and concave functionals in which there is nonlinear dependence on higher order derivatives; see \cite{Anderson2,Mavr}. Motivated by all the above works, we are interested in the existence of at least three non-negative solutions, two of them positive, for $p$-Laplacian dynamic equation on time scales, \begin{equation} (\phi_p(u^\Delta(t)))^\nabla+a(t)f(t,u(t),u^\Delta(t))=0,\quad t\in(0,T)_{\mathbb{T}}, \label{e1.1} \end{equation} subject to boundary condition \begin{equation} u(0)=\sum_{i=1}^{m-2}\alpha_i u(\xi_i), \quad u^\Delta(T)=0, \label{e1.2} \end{equation} where $\phi_p(u)$ is $p$-Laplacian operator; i.e., $\phi_p(s)=|s|^{p-2} s$, for $p>1$, with $(\phi_p)^{-1}=\phi_q$ and $\frac{1}{p}+ \frac{1}{q}=1$. The usual notation and terminology for time scales as can be found in \cite{Bohner,Bohner2}, will be used here. The interesting point is that the nonlinear term $f$ is involved with the first order derivative explicitly. Our main results will depend on an application of a generalization of the Leggett-Williams fixed point theorem due to Bai and Ge. An example is also given to illustrate the main results. The results are even new for the special cases of difference equations and differential equations, as well as in the general time scale setting. We shall prove that the BVP \eqref{e1.1} and \eqref{e1.2} has at least three non-negative solutions. Throughout the paper, we will suppose that the following conditions are satisfied: \begin{enumerate} \item[(H1)] $0,T \in \mathbb{T}$, $0<\xi_1<\xi_2<\dots<\xi_{m-2}<\rho(T)$, $\xi_i \in \mathbb{T}$, $\alpha_i \in[0,\infty) $ for $i=1,\dots,m-2$, and $1-\sum_{i=1}^{m-2}\alpha_i>0$; \item[(H2)] $\eta=\min\{t\in \mathbb{T} : \frac{T}{2} \leq t a \},\\ \bar{P} (\alpha,r;\beta,l;\psi,a)=\{u\in P : \alpha(u)\leq r, \beta(u)\leq l, \psi(u)\geq a \}. \end{gather*} To prove our main results, we need the following fixed point theorem, which comes from Bai and Ge in \cite{Bai}. \begin{lemma}[\cite{Bai}] \label{lem2.1} Let $P$ be a cone in a real Banach space $E$. Assume that constants $r_1,b,d,r_2,l_1$ and $l_2$ satisfy $00$ such that $\|u \| \leq M \max\{\alpha(u),\beta(u) \}$ for all $u\in P$; \item[(A2)] $P(\alpha,r;\beta,l)\ne \emptyset$ for any $r>0$ and $l>0$; \item[(A3)] $\psi(u)\leq \alpha(u)$ for all $u\in \bar{P}(\alpha, r_2; \beta,l_2)$; \end{itemize} and if $F: \bar{P}(\alpha, r_2; \beta,l_2)\to(\alpha, r_2; \beta,l_2)$ is completely continuous operator, which satisfies \begin{itemize} \item[(B1)] $\{u \in \bar{P}(\alpha, d;\beta,l_2;\psi,b) :\psi(u)>b\}\ne \emptyset$, $\psi(Fu)>b$ for \\ $u \in \bar{P}(\alpha, d;\beta,l_2;\psi,b)$; \item[(B2)] $\alpha(Fu)b $ for $u \in \bar{P}(\alpha, r_2;\beta,l_2;\psi,b) $ with $\alpha(Fu)>d$. \end{itemize} Then $F$ has at least three different fixed points $u_1,u_2$ and $u_3$ in $\bar{P}( \alpha,r_2;\beta,l_2)$ with \begin{gather*} u_1\in P(\alpha,r_1;\beta,l_1),\quad u_2 \in\{\bar{P}(\alpha,r_2;\beta,l_2;\psi,b):\psi(u)>b\},\\ u_3\in \bar{P}(\alpha,r_2;\beta,l_2) \setminus \big ( \bar{P}(\alpha,r_2;\beta,l_2;\psi,b) \cup \bar{P}(\alpha,r_1;\beta,l_1)\big). \end{gather*} \end{lemma} Let the Banach space \[ E= \{ u : [0,T]_{\mathbb{T}}\to\mathbb{R} : \text{$u$ is $\Delta$-differentiable and $u^{\Delta}$ is ld-continuous on } [0,T]_{\mathbb{T}} \} \] be endowed with norm $$ \| u\|= \max \Big \{ \sup_{t\in [0,T]_{\mathbb{T}}} | u(t)|, \sup_{t\in [0,T]_{\mathbb{T}}} | u^{\Delta}(t)| \Big \}. $$ Define $$ P=\{u\in E : u(t)\geq 0, u^{\Delta}(t)\geq 0, \text{ and $u(t)$ is concave on } [0,T]_{\mathbb{T}}\}. $$ Clearly, $P$ is a cone. \begin{lemma} \label{lem2.2} If $\sum_{i=1}^{m-2}\alpha_i \ne 1$, then for $h\in C_{ld}[0,T]_{\mathbb{T}}$ and $h \geq 0$, \begin{gather} (\phi_p(u^\Delta(t)))^\nabla+h(t)=0,\quad t\in(0,T)_{\mathbb{T}}, \label{e2.1} \\ u(0)=\sum_{i=1}^{m-2}\alpha_i u(\xi_i), \quad u^\Delta(T)=0 \label{e2.2} \end{gather} has the unique solution \begin{equation} u(t)=\int_0^t\phi_q \Big( \int_s^T h(\tau) \nabla \tau \Big) \Delta s +\frac{ 1} {1-\sum_{i=1}^{m-2} \alpha_i} \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \phi_q \Big(\int_s^T h(\tau) \nabla \tau \Big)\Delta s. \label{e2.3} \end{equation} Moreover, if $ h(t) \geq 0 $ on $ [0,T]_{\mathbb{T}} $ and {\rm (H1)} is satisfied, then $ u(t) \geq 0 $ on $ [0,T]_{\mathbb{T}}$. \end{lemma} \begin{proof} Let $u$ be as in \eqref{e2.3}, taking the delta derivative of \eqref{e2.3}, we have $$ u^\Delta(t)=\phi_q \Big(\int_t^T h(\tau) \nabla \tau \Big), $$ moreover, we obtain $$ \phi _p (u^\Delta(t))= \int_t^T h(\tau) \nabla \tau, $$ taking the nabla derivative of this expression yields $(\phi_p(u^\Delta(t)))^\nabla=-h(t)$. Routine calculations verify that $u$ satisfies the boundary value conditions in \eqref{e2.2}, so that $u$ given in \eqref{e2.3} is a solution of \eqref{e2.1} and \eqref{e2.2}. It is easy to see that BVP $(\phi_p(u^\Delta))^\nabla =0 $, $u(0)=\sum_{i=1}^{m-2}\alpha_i u(\xi_i)$, $u^\Delta(T)=0$ has only the trivial solution. Thus $u$ in \eqref{e2.3} is the unique solution of \eqref{e2.1} and \eqref{e2.2}. The proof is complete. \end{proof} \begin{lemma} \label{lem2.3} The solution of BVP \eqref{e2.1} and \eqref{e2.2} satisfies $u(t)\geq 0$, for $t\in[0,T]_{\mathbb{T}}$. \end{lemma} \begin{proof} Let $$ \varphi(s)=\phi_q \Big( \int_s^T h(\tau) \nabla \tau \Big). $$ Since $\int_s^T h(\tau) \nabla \tau \geq 0$, it follows that $\varphi(s)\geq 0$. According to Lemma \ref{lem2.2}, we obtain \begin{gather*} u(0)=\frac {1}{1-\sum_{i=1}^{m-2} \alpha_i} \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \varphi(s)\Delta s \geq 0 , \\ u(T)=\int_0^T \varphi(s) \Delta s+ \frac {1 }{1-\sum_{i=1}^{m-2} \alpha_i} \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \varphi(s)\Delta s \geq 0. \end{gather*} If $t\in (0,T)$, we have $$ u(t)=\int_0^t \varphi(s) \Delta s+ \frac {1 }{1-\sum_{i=1}^{m-2} \alpha_i} \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \varphi(s)\Delta s \geq 0. $$ So $ u(t)\geq 0$ for $t\in [0,T]$. \end{proof} \begin{lemma} \label{lem2.4} The solution of \eqref{e1.1} and \eqref{e1.2} satisfies $$ \inf_{t\in [0,T]_{\mathbb{T}}} u(t)\geq \gamma \|u\| $$ where $$ \gamma=\frac{\sum_{i=1}^{m-2} \alpha_i \xi_i} {T-\sum_{i=1}^{m-2} \alpha_i(T- \xi_i)}. $$ \end{lemma} \begin{proof} Clearly $u^{\Delta}(t)=\varphi(t)\geq0$. This implies that $$ \min_{t\in[0,T]}u(t)=u(0),\quad \|u \|=u(T). $$ It is easy to see that $u^{\Delta}(t_2)\leq u^{\Delta}(t_1)$ for any $t_1,t_2\in [0,T]$ with $t_1\leq t_2$. Hence $u^{\Delta}(t)$ is a decreasing function on $[0,T]$. This means that graph of $u(t)$ is concave down on $(0,T)$. For each $i\in \{1,2,\dots,m-2\}$, we have $$ \frac{u(T)-u(0)}{T-0}\geq \frac{u(T)-u(\xi_i)}{T-\xi_i}, $$ i.e., $$ Tu(\xi_i)-\xi_i u(T) \geq (T-\xi_i) u(0), $$ so that $$ T\sum_{i=1}^{m-2} \alpha_i u(\xi_i)- \sum_{i=1}^{m-2} \alpha_i \xi_i u(T) \geq \sum_{i=1}^{m-2} \alpha_i (T-\xi_i)u(0). $$ With the boundary condition $u(0)=\sum_{i=1}^{m-2}\alpha_i u(\xi_i)$, we have $$ u(0) \geq \frac{\sum_{i=1}^{m-2} \alpha_i \xi_i} {T-\sum_{i=1}^{m-2} \alpha_i (T-\xi_i)}u(T). $$ This completes the proof. \end{proof} Define the operator $F:P\to E$ by \begin{align*} (Fu)(t) & = \int_0^t \phi_q \Big(\int_s^T a(\tau) f( \tau,u(\tau),u^{\Delta}(\tau) ) \nabla \tau \Big)\Delta s\\ &\quad +\frac{ 1} {1-\sum_{i=1}^{m-2} \alpha_i} \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \phi_q \Big(\int_s^T a(\tau) f(\tau,u(\tau),u^{\Delta}(\tau) ) \nabla \tau \Big)\Delta s \end{align*} for $t\in [0,T]_{\mathbb{T}}$. By the definition of $F$, the monotonicity of $\phi_q(u)$ and assumption of (H1)-(H5), it is easy to see that for each $u\in P$, $Fu \in P$ and $Fu(T)$ is the maximum value of $ Fu(t)$. Moreover, by direct calculation, we obtain that each fixed point of the operator $F$ in $P$ is a positive solution of \eqref{e1.1} and \eqref{e1.2}. It is easy to see that $F:P\to P$ is completely continuous. \section{Existence of positive solutions} For $u\in P$ we define \begin{gather*} \alpha(u)=\max_{t\in [0,T]_{\mathbb{T}}} | u(t)|=u(T),\quad \beta(u)=\sup_{t\in [0,T]_{\mathbb{T}}} | u^{\Delta}(t)|=u^{\Delta}(0),\\ \psi(u)=\min_{t\in [\eta,T]_{\mathbb{T}}} u(t)=u(\eta). \end{gather*} It is easy to see that $\alpha,\beta:P\to [0,\infty)$ are nonnegative continuous convex functionals with $\|u\|=\max\{\alpha(u),\beta(u)\}; \psi:P\to [0,\infty)$ is nonnegative concave functional. We have $\psi(u)\leq \alpha(u)$ for $u\in P$ and assumptions (A1), (A2) and (A3) in Lemma \ref{lem2.1} hold. For notational convenience, we denote \begin{gather*} M = \int_0^\eta \phi _q \Big( \int_{\eta}^T a(\tau) \nabla \tau \Big) \Delta s, \\ N = \int_0^T \phi_q \Big( \int_s^T a(\tau) \nabla \tau \Big) \Delta s +\frac { 1} {1-\sum_{i=1}^{m-2} \alpha_i}\sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \phi _q \Big( \int_s^T a(\tau) \nabla \tau \Big) \Delta s, \\ L = \phi_q \Big( \int_0^T a(\tau) \nabla \tau \Big). \end{gather*} \begin{theorem} \label{thm3.1} Assume that {\rm (H1)--(H5)} hold, and there exists $0 \phi_p(b/M) $ for $(t,w,v) \in [\eta,T]_{\mathbb{T}}\times[ b,2b]\times [-l_2,l_2]$; \item[(iii)] $f(t,w,v) <\min \{\phi_p(r_1/N),\phi_p(l_1/L) \}$ for $(t,w,v) \in [0,T]_{\mathbb{T}}\times[ 0,r_1]\times [-l_1,l_1]$; \end{itemize} then BVP \eqref{e1.1} and \eqref{e1.2} has at least three three non-negative solutions, two of them positive, $u_1,u_2,u_3$, which satisfy \begin{gather*} \max_{t\in [0,T]_{\mathbb{T}} } \{ u_1(t) \} b$, and consequently $$ \{ u\in \bar{P}(\alpha,2b;\beta,l_2;\psi,b):\psi(u) >b \}\neq \emptyset. $$ So, for $u\in \bar{P}(\alpha,2b;\beta,l_2;\psi,b)$, there are $b\leq u(t)\leq 2b$ and $| u^\Delta(t)|\leq l_2$ for $ t\in[\eta,T]_{\mathbb{T}}$. Thus from the assumption (ii) we have $$ f(t,u(t),u^\Delta(t)) > \phi_p(b/M) \quad \text{for }t\in[\eta,T]_{\mathbb{T}}. $$ From the definition of the functional $\psi$ we see that \begin{align*} \psi(Fu) &= \min_{t\in[\eta,T]_{\mathbb{T}}} Fu (t)=Fu (\eta)\\ &= \int_0^{\eta} \phi_q \Big(\int_s^T a(\tau) f(\tau,u(\tau ),u^{\Delta}(\tau ) ) \nabla \tau \Big)\Delta s\\ & \quad +\frac{1} {1-\sum_{i=1}^{m-2} \alpha_i} \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \phi_q \Big( \int_s^T a(\tau) f(\tau,u(\tau ) ,u^{\Delta}(\tau ) ) \nabla \tau \Big)\Delta s \\ & \geq \int_0^{\eta} \phi_q \Big(\int_ {\eta}^T a(\tau) f(\tau,u(\tau ),u^{\Delta}(\tau ) ) \nabla \tau \Big)\Delta s\\ & > \int_0^{\eta} \phi_q \Big(\int_ {\eta}^T a(\tau) \phi_p(b/M) \nabla \tau \Big)\Delta s\\ & = \frac{b}{M} \int_0^{\eta} \phi_q \Big(\int_ {\eta}^T a(\tau) \nabla \tau \Big)\Delta s=b. \end{align*} So, we obtain $\psi(Fu)>b$ for $u\in \bar{P}(\alpha,2b;\beta,l_2;\psi,b)$, and condition (B1) of Lemma \ref{lem2.1} holds. Finally, we prove that condition (B3) of Lemma \ref{lem2.1} holds. If $u\in \bar{P}(\alpha,r_2;\beta,l_2;\psi,b)$ and $\alpha(Fu)> 2b$, we have $$ \psi(Fu)=\min_{t\in[\eta,T]_{\mathbb{T}}} Fu(t) =Fu(\eta)\geq \frac{\eta}{T}\max_{t\in [0,T]_{\mathbb{T}}} Fu(t)\geq \frac{1}{2}\alpha(Fu)>b. $$ Hence, condition (B3) of Lemma \ref{lem2.1} is satisfied. Then using Lemma \ref{lem2.1} and the assumption that $f(t,0,0)\not\equiv 0$ on $[0,T]_{\mathbb{T}}$, we find that there exist at least three non-negative solutions of \eqref{e1.1} and \eqref{e1.2} such that \begin{gather*} u_1\in P (\alpha,r_1;\beta,l_1), \quad u_2\in \{ P(\alpha,r_2;\beta,l_2;\psi,b) | \psi(u) >b \}, \\ u_3\in \bar{P} (\alpha,r_2;\beta,l_2)\setminus \Big( \bar{P}(\alpha,r_2;\beta,l_2;\psi,b) \cup\bar{P}(\alpha,r_1;\beta,l_1)\Big ). \end{gather*} Otherwise, as $u_3$ satisfies $\alpha(u_3) \leq 2\psi(u_3)$, we have $\max_{ t \in[0,T]_{\mathbb{T}}} u_3(t) <2b$. \end{proof} In the following section, we now give an example to illustrate our results. \section{An example} Let $\mathbb{T}=\{1-(\frac{1}{2})^{\mathbb{N}_0} \}\cup[1,2]$, and let $\mathbb{N}_0$ denote the set of nonnegative integers. Take $\alpha_1=1/2$, $\alpha_2=1/6$, $\xi_1=1/4$, $\xi_2=3/4$, $T=2$, $p=q=2$, and $a(t)\equiv 1$ for $t\in[0,T]_{\mathbb{T}}$. Consider the BVP \begin{gather} \Big( u^{\Delta}(t) \Big )^{\nabla }+ f(t,u(t),u^{\Delta}(t))=0, \quad t\in[0,2]_{\mathbb{T}}, \label{e4.1} \\ u(0)=\frac{1}{2}u\Big(\frac{1}{4} \Big)+\frac{1}{6}u \Big(\frac{3}{4}\Big),\quad u^{\Delta}(2)=0, \quad \label{e4.2} \end{gather} where \[ f(t,w,v)= \begin{cases} \frac{t}{1000}+ \frac{2w^3}{3}+( \frac{v}{100})^3, & w \leq 3,\\ \frac{t}{1000}+18+(\frac{v}{100})^3, & w>3. \end{cases} \] Clearly, assumptions (H1)--(H5) hold and $f(t,0,0)\not\equiv 0$ on $[0,2]_{\mathbb{T}}$. We choose $r_1=1/2$, $r_2=140$, $b=2$, and $l_1=1/4$, $l_2=80$. So $0 < r_1 < b < 2b < r_2$ and $0 \phi_p \big (\frac{b}{M}\big )=2, $$ for $1\leq t \leq 2$, $2\leq w \leq 4$, $| v| \leq 80$; $$ f(t,w,v) < \min \big \{ \phi_p \Big(\frac{r_1}{\tilde{N}}\Big),\phi_p \Big(\frac{l_1}{L} \Big )\big \} \approx 0.1053 < \min \big \{ \phi_p \Big(\frac{r_1}{N}\Big), \phi_p \Big(\frac{l_1}{L} \Big )\big \}, $$ for $0\leq t \leq 2$, $0\leq w \leq \frac{1}{2}$, $| v| \leq 1/4$. Hence, by Theorem \ref{thm3.1}, BVP \eqref{e4.1} and \eqref{e4.2} has at least three non-negative solutions, two of them positive, $u_1, u_2, u_3$ such that \begin{gather*} \max_{t\in [0,2]_{\mathbb{T}} } \{ u_1(t) \} < \frac{1}{2}, \quad \sup_{t\in [0,2]_{\mathbb{T}} } | u_1^{\Delta}(t) | < \frac{1}{4}; \\ 2 <\min_{t\in [1,2]_{\mathbb{T}} } \{ u_2(t) \} \leq \max_{t\in [0,2]_{\mathbb{T}} } \{ u_2(t) \} \leq 140, \quad \sup_{t\in [0,2]_{\mathbb{T}} } | u_2^{\Delta}(t) | \leq 80; \\ \min_{t\in [1,2]_{\mathbb{T}} } \{ u_3(t) \} < 2, \quad \frac{1}{2}< \max_{t\in [0,2]_{\mathbb{T}} } \{ u_3(t) \} < 4, \quad \frac{1}{4} < \sup_{t\in [0,2]_{\mathbb{T}} } | u_3^{\Delta}(t) | \leq 80. \end{gather*} \subsection*{Acknowledgments} The author would like to thank the anonymous referees and the editor for their helpful comments and suggestions. The project is supported by Abdullah Gul University Foundation of Turkey (Project No. 5). \begin{thebibliography}{99} \bibitem{Anderson} D. R. Anderson; \emph{Existence of solutions for nonlinear multi-point problems on time scales}, Dynam. Syst. Appl. 15 (2006) 21-34. \bibitem{Anderson2} D. R. Anderson, R. I. Avery, J. Henderson, X. Liu; \emph{Operator type expansion-compression fixed point theorem}, Electron. J. Differential Equations 2011 (42) (2011) 1-11. \bibitem{Bai} Z. B. Bai, W. G. Ge; \emph{Existence of three positive solutions for some second-order boundary value problems}, Comput. Math. Appl. 48 (2004) 699-707. \bibitem{Bohner} M. Bohner, A. Peterson; \emph{Dynamic Equations on Time Scales: An Introduction with Applications}, Birkhauser, Boston, Cambridge, MA 2001. \bibitem{Bohner2} M. Bohner, A. Peterson; \emph{Advances in Dynamic Equations on Time Scales}, Birkhauser, Boston, Cambridge, MA 2003. \bibitem{Bohner3} M. Bohner, H. Luo; \emph{Singular second-order multipoint dynamic boundary value problems with mixed derivatives}, Adv. Differ. Equ. Volume (2006) Article ID 54989, Pages 1-15. \bibitem{Deim} K. Deimling; \emph{Nonlinear Functional Analysis}, Springer-Verlag, New York, 1985. \bibitem{Dogan} A. Dogan, J. R. Graef, L. Kong; \emph{Higher order semipositone multi-point boundary value problems on time scales}, Comput. Math. Appl. 60 (2010) 23-35. \bibitem{Dogan2} A. Dogan, J. R. Graef, L. Kong; \emph{Higher order singular multi-point boundary value problems on time scales}, Proc. Edinb. Math. Soc. 54 (2011) 345-361. \bibitem{Dogan3} A. Dogan; \emph{Existence of three positive solutions for an m-point boundary-value problem on time scales}, Electron. J. Differential Equations 2013 (149) (2013) 1-10. \bibitem{Dogan4} A. Dogan; \emph{Existence of multiple positive solutions for $p$-Laplacian multipoint boundary value problems on time scales}, Adv. Differ. Equ. 2013 238 (2013). \bibitem{Guo} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press, Inc, 1988. \bibitem{Han} W. Han, Z. Jin, S. Kang; \emph{Existence of positive solutions of nonlinear $m$-point BVP for an increasing homeomorphism and positive homomorphism on time scales}, J. Comput. Appl. Math. 233 (2009) 188-196. \bibitem{Hilger} S. Hilger; \emph{Analysis on measure chains-a unified approach to continuous and discrete calculus}, Results Math. 18 (1990) 18-56. \bibitem{Jones} M. A. Jones, B. Song, D. M. Thomas; \emph{Controlling wound healing through debridement}, Math. Comput. Modelling 40 (2004) 1057-1064. \bibitem{Luo} H. Luo; \emph{Positive solutions to singular multi-point dynamic eigenvalue problems with mixed derivatives}, Nonlinear Anal. 70 (2009) 1679-1691. \bibitem{Mavr} K. G. Mavridis; \emph{Two modifications of the Leggett-Williams fixed point theorem and their applications}, Electron. J. Differential Equations 2010 (53) (2010) 1-11. \bibitem{Sang1} Y. Sang, H. Su; \emph{Several existence theorems of nonlinear $m$-point boundary value problem for $p$-Laplacian dynamic equations on time scales}, J. Math. Anal. Appl. 340 (2008) 1012-1026. \bibitem{Sang2} Y. Sang, H. Su, F. Xu; \emph{Positive solutions of nonlinear $m$-point BVP for an increasing homeomorphism and homomorphism with sign changing nonlinearity on time scales}, Comput. Math. Appl. 58 (2009) 216-226. \bibitem{Sped} V. Spedding; \emph{Taming nature's numbers}, New Scientist: The Global Science and Technology Weekly 2404 (2003) 28-31. \bibitem{Su1} Y. H. Su; \emph{Arbitrary positive solutions to a multi-point $p$-Laplacian boundary value problem involving the derivative on time scales}, Math. Comput. Modelling 53 (2011) 1742-1747. \bibitem{Sun1} H. R. Sun, W. T. Li; \emph{Multiple positive solutions for $p$-Laplacian $m$-point boundary value problems on time scales}, Appl. Math. Comput. 182 (2006) 478-491. \bibitem{Sun2} H. R. Sun; \emph{Triple positive solutions for $p$-Laplacian $m$-point boundary value problem on time scales}, Comput. Math. Appl. 58 (2009) 1736-1741. \bibitem{Thomas} D. M. Thomas, L. Vandemuelebroeke, K. Yamaguchi; \emph{A mathematical evolution model for phytoremediation of metals}, Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 411-422. \bibitem{Zhu} Y. Zhu, J. Zhu; \emph{The multiple positive solutions for $p$-Laplacian multipoint BVP with sign changing nonlinearity on time scales}, J. Math. Anal. Appl. 344 (2008) 616-626. \end{thebibliography} \end{document}