\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 263, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/263\hfil Critical exponent and blow-up rate] {Critical exponent and blow-up rate for the $\omega$-diffusion equations on graphs with Dirichlet boundary conditions} \author[W. Zhou, M. Chen, W. Liu \hfil EJDE-2014/263\hfilneg] {Weican Zhou, Miaomiao Chen, Wenjun Liu} % in alphabetical order \address{Weican Zhou \newline College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China} \email{000496@nuist.edu.cn} \address{Miaomiao Chen \newline College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China} \email{mmchennuist@163.com} \address{Wenjun Liu (corresponding author)\newline College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China} \email{wjliu@nuist.edu.cn} \thanks{Submitted July 10, 2014. Published December 22, 2014.} \subjclass[2000]{35R02, 35B44, 35B51} \keywords{$\omega$-diffusion equation; critical exponent; blow up; blow-up rate; graph} \begin{abstract} In this article, we study the $\omega$-diffusion equation on a graph with Dirichlet boundary conditions \begin{gather*} u_t(x,t)=\Delta_{\omega}u(x,t)+e^{\beta t}u^{p}(x,t), \quad (x,t)\in S\times(0,\infty), \\ u(x,t)=0, \quad (x,t)\in \partial S\times[0,\infty), \\ u(x,0)=u_0(x)\geq0, \quad x\in V, \end{gather*} where $\Delta_{\omega}$ is the discrete weighted Laplacian operator. First, we prove the existence and uniqueness of the local solution via Banach fixed point theorem. Then, by the method of supersolutions and subsolutions we prove that the $\omega$-diffusion problem has a critical exponent $p_{\beta}$: when $p>p_{\beta}$, the solution becomes global; while when $11$, $\beta>0$, $u_0(x) $ is nonnegative and nontrivial, and $V$ is the set of vertices of a graph $G(V,E,\omega)$. In general, we can split the set of vertexes $V$ into two disjoint subjects $S$ and $\partial S$ such that $V=S\cup\partial S$, which are called the interior and the boundary of $V$, respectively. We write $(x,y)\in E$ when two vertices $x, y$ are adjacent and connected by an edge. Throughout this paper, all the graphs in our concern are assumed to be simple, finite, connected, undirected and weighted. Besides, $\Delta_\omega u(x,t)$ is defined as $$ \sum_{y\in V}\omega(x,y)\big(u(y,t)-u(x,t)\big),\quad \forall x\in V, $$ where $\omega:V\times V\to \mathbb{R} $ denotes the weighted function, which has the following properties: \begin{itemize} \item[(1)] $\omega(x,x)=0$, for any $x\in V$, \item[(2)] $\omega(x,y)=\omega(y,x)$, for any $x, y\in V$, \item[(3)] $\omega(x,y)=0$, if and only if $(x,y)\notin E$. \end{itemize} A function on a graph is understood as a function defined just on the set of vertices of the graph. The integration of a function $f: V\to \mathbb{R} $ on a graph $G $ is defined by $$ \int_{V}f=\sum_{x\in V}f(x). $$ As usual, the set $C\big(V\times(0,\infty)\big) $ consists of all function $u $ defined on $V\times (0,\infty) $ which satisfies $u(x,t)\in C(0,\infty) $ for each $x\in V$. The $\omega$-diffusion equation of the form $u_t(x,t)=\Delta_{\omega}u(x,t) $ and its variations can be used to model diffusion process. Recently, more diffusion equations are taken into account to graphs \cite{cck2007,pkc2009,t2003}. In \cite{clc2011,lc2012,xml20114}, the extinction and positivity of the solution of the $\omega$-diffusion equation with absorption and its variations was considered. In \cite{pmd2013}, the decay rates for evolution equations of the averaging operator $\partial t-\Delta_{F} $ were studied. In \cite{f2011}, the quenching phenomena for a non-local diffusion equation with a singular absorption was discussed. Meanwhile, Xin et al \cite{xxm2013} considered the blow-up for the $\omega$-heat equation with Dirichlet boundary conditions and a reaction term $u^{p}(x,t) $ on graphs \begin{equation} \begin{gathered} u_t(x,t)=\Delta_{\omega}u(x,t)+u^{p}(x,t), \quad (x,t)\in S\times(0,\infty), \\ u(x,t)=0, \quad (x,t)\in \partial S\times(0,\infty), \\ u(x,0)=u_0(x), \quad x\in V. \end{gathered}\label{1.4} \end{equation} They proved that when $p>1$, the solution of problem \eqref{1.4} blows up in finite time under some suitable conditions and when $p\leq1$, every solution is global. Blow-up phenomenon has been widely studied in various evolution equations \cite{cb2005,fl2012,kwz2012,l1973,lr2009,t2013,w2011,wcz2013,w2013,z2012,zmmz2013}. Meier \cite{m1990} considered the problem \begin{equation} \begin{gathered} u_t=\Delta u(x,t)+e^{\beta t}u^{p}(x,t), \quad (x,t)\in \Omega\times(0,\infty), \\ u(x,t)=0, \quad (x,t)\in \partial \Omega\times[0,\infty), \\ u(x,0)=u_0(x), \quad x\in \Omega, \end{gathered} \label{1.2} \end{equation} and proved that the critical exponent is $p_{\beta}=1+\frac{\beta}{\lambda_1}$, where $\lambda_1 $ is the first Dirichlet eigenvalue of the Laplacian in $\Omega$. Zhang and Wang \cite{zw2011} studied the nonlocal diffusion equations with Dirichlet boundary condition \begin{equation} \begin{gathered} u_t=\int_{\mathbb{R}^{N}}J(x-y)\left(u(y,t)-u(x,t)\right)\,\mathrm{d}y +e^{\beta t}u^{p}(x,t), \quad (x,t)\in \Omega\times(0,\infty), \\ u(x,t)=0, \quad (x,t)\notin \Omega\times[0,\infty), \\ u(x,0)=u_0(x)\geq0, \quad x\in \Omega, \end{gathered}\label{1.3} \end{equation} where $p>1,\beta>0 $ and the kernel $J\in C^{1}(\mathbb{R}^{N}) $ satisfies $J\geq0 $ in $B_1$ (the unit ball); $J=0 $ in $\mathbb{R}^{N}\setminus B_1 $ with $\int_{B_1}J(z)\,\mathrm{d}z=1$. They showed that the critical exponent is coincident with that of \cite{m1990}. Motivated by above research, we consider the critical exponent for problem \eqref{1.1}. We first study the local existence of the solution via Banach fixed point theorem. Then, we deal with the existence of the critical exponent of problem \eqref{1.1} by the method of supersolutions and subsolutions. Meanwhile, we prove that the nonnegative and nontrivial solution blows up in finite time and give the blow-up rate on $L^{\infty}$-norm. Finally, we take two examples to support our results. This paper is organized as follows. In Section \ref{s2}, we consider the local existence of the solution. In Section \ref{s3}, we share many important properties of problem \eqref{1.1}, such as critical exponent or blow-up rate. In the end, we take two examples to check our results theoretically in Section \ref{s4}. \section{Local existence of solution}\label{s2} In this section we prove the existence of local a solution for problem \eqref{1.1} via Banach fixed point theorem. We first define the following Banach space: $$ X_{t_0}=\{u(x,t): u(x,t)\in C\left(V\times[0,t_0]\right); u(x,t)\equiv 0, \forall x\in \partial S\}, $$ with the norm $$ \|u\|_{X_{t_0}}=\max_{t\in [0,t_0]}\max_{x\in S}|u(x,t)|, $$ where $t_0>0 $ is a fixed constant. And then, we consider the operator $D:X_{t_0}\to X_{t_0}$ for the fixed $v_0(x) $ which is defined on $V$ \[ D_{v_0}[v](x,t)=\begin{cases} v_0(x)+\int_0^{t}\Delta_\omega v(x,\tau)\,\mathrm{d}\tau +\int_0^{t}e^{\beta t}v^{p}(x,\tau)\,\mathrm{d}\tau, & x\in S, \\ 0, & x\in \partial S. \end{cases} \] In the following lemmas, we prove that the operator $D_{v_0}:X_{t_0}\to X_{t_0}$ is well defined and strictly contractive under some suitable conditions. \begin{lemma}\label{lem1} The operator $D_{v_0}$ is well defined, mapping $X_{t_0}$ to $X_{t_0}$. Moreover, let $u_0$, $v_0$ be defined on $V$ and $u, v\in X_{t_0}$, then, there exists a positive constant $C=C(p, \omega(x,y),\|u\|_{X_{t_0}},\|v\|_{X_{t_0}}$, $\beta,|V|)$ such that \begin{equation} \|D_{u_0}[u]-D_{v_0}[v]\|_{X_{t_0}} \leq \max_{x\in V}|u_0(x)-v_0(x)|+Ct\|u-v\|_{X_{t_0}}, \label{2.1} \end{equation} where $|V| $ denotes the number of the nodes of the graph G. \end{lemma} \begin{proof} We first show that the operator $D_{v_0}$ maps $X_{t_0}$ to $X_{t_0}$. On the one hand, for any $(x,t)\in S\times [0,t_0]$, we have \begin{equation} \begin{aligned} |D_{v_0}[v](x,t)-D_{v_0}[v](x,0)| &= \big|\int_0^{t}\Delta_{\omega}v(x,\tau)\,\mathrm{d}\tau +\int_0^{t}e^{\beta \tau}v^{p}(x,\tau)\,\mathrm{d}\tau\big| \\ &\leq \Big(2\max_{(x,y)\in E}|\omega(x,t)||V|\|v\|_{X_{t_0}} +e^{\beta t_0}\|v\|_{X_{t_0}}^{p}\Big)t. \end{aligned}\label{2.2} \end{equation} From this inequality, we know that the operator $D_{v_0}$ is continuous at $t=0$. Similarly, for any $(x,t_1)$, $(x,t_2)\in S\times[0,t_0]$, we have \begin{equation} \begin{aligned} &|D_{v_0}[v](x,t_1)-D_{v_0}[v](x,t_2)|\\ &= \big|\int_{t_1}^{t_2}\Delta_{\omega}v(x,\tau)\,\mathrm{d}\tau +\int_{t_1}^{t_2}e^{\beta \tau}v^{p}(x,\tau)\,\mathrm{d}\tau\big| \\ &\leq \Big(2\max_{(x,y)\in E}|\omega(x,t)||V|\|v\|_{X_{t_0}} +e^{\beta t_0}\|v\|_{X_{t_0}}^{p}\Big)|t_2-t_1|, \end{aligned}\label{2.3} \end{equation} which shows that $D_{u_0} $ is continuous in time for any $t\in [0,t_0]$. On the other hand, the convolution $\sum_{y\in V}\omega(x,y)\left(u(y,t)-u(x,t)\right) $ is uniformly continuous. So it is easy to see that the operator $D_{v_0}$ is continuous as the function of $x$. Hence, the operator $D_{v_0}$ maps $X_{t_0}$ to $X_{t_0}$. Next, we prove \eqref{2.1}. For any $(x,t)\in S\times[0,t_0]$, we have \begin{equation} \begin{aligned} & |D_{u_0}[u](x,t)-D_{v_0}[v](x,t)| \\ &\leq \max_{x\in S}|u_0(x)-v_0(x)| +\int_0^{t}|\Delta_{\omega}(u(x,\tau)-v(x,\tau))|\,\mathrm{d}\tau\\ &\quad +\int_0^{t}e^{\beta \tau}|u^{p}(x,\tau)-v^{p}(x,\tau)|\,\mathrm{d}\tau \\ &\leq \max_{x\in S}|u_0(x)-v_0(x)|+2\max_{(x,y)\in E}|\omega(x,t)|\, |V|\|u-v\|_{X_{t_0}}t\\ &\quad +e^{\beta t_0}p\xi^{p-1}\|u-v\|_{X_{t_0}}t \\ &= \max_{x\in S}|u_0(x)-v_0(x)|+C\|u-v\|_{X_{t_0}}t, \end{aligned}\label{2.4} \end{equation} where $\xi=\max \{\|u\|_{X_{t_0}},\|v\|_{X_{t_0}}\} $ and \[ C=2\max_{\left(x,y\right)\in E}|\omega(x,t)||V|\|u-v\|_{X_{t_0}} +e^{\beta t_0}p\xi^{p-1}. \] The arbitrariness of $(x,t)\in S\times[0,t_0] $ gives the desired estimate \eqref{2.1}. \end{proof} \begin{lemma}\label{lem2} Suppose $t_0$ to be small enough, then $D_{v_0}$ is strictly contractive in the ball $B(u_0$, $2\|u_0\|_{L^{\infty}{\left(V\right)}})$. \end{lemma} \begin{proof} Let $u_0=v_0$, \eqref{2.1} ensures that $D_{v_0}$ is a strict contraction in the ball $B\left(u_0, 2\|u_0\|_{L^{\infty}{(V)}}\right) $ provided that $t_0 $ is small enough. In fact, for any $u$, $v\in B\left(u_0, 2\|u_0\|_{L^{\infty}{(V)}}\right)$, we have $$ \|u\|_{X_{t_0}}\leq 3\|u_0\|_{L^{\infty}{(V)}},\quad \|v\|_{X_{t_0}}\leq 3\|u_0\|_{L^{\infty}{(V)}}, $$ and thus, we obtain $$ \|D_{u_0}[u](x,t)-D_{u_0}[v](x,t)\|_{X_{t_0}}\leq C_1t_0\|u-v\|_{X_{t_0}}, $$ where $$ C_1=e^{\beta t_0}p\left(1+3\|u_0\|_{L^{\infty}{(V)}}^{p-1}\right) +2\max_{\left(x,y\right)\in E}|\omega(x,t)||V|. $$ Therefore, if $t_0$ is small enough such that $C_1t_0<\frac{1}{2}$, we obtain that $D_{v_0}$ is a strict contraction in the ball $B\left(u_0, 2\|u_0\|_{L^{\infty}{\left(V\right)}}\right)$. We complete the proof. \end{proof} \begin{theorem}\label{thm20} If $p>1$, then problem \eqref{1.1} has a unique solution in $[0,T)$ for some $T>0 $ to be sufficiently small. \end{theorem} \begin{proof} By the Banach fixed point theorem, Lemma \ref{lem1} and Lemma \ref{lem2}, we can easily obtain the existence and the uniqueness of solution to \eqref{1.1} in the time interval $[0, t_0]$. Thus, if $\|u\|_{X_{t_0}}<\infty $ and initial data is taken as $u(x, t_0)$, then, the solution can be extended to some interval $[0, t_1)$, where $t_1>t_0$. Therefore, there exists a $T>0$, which is sufficiently small, such that problem \eqref{1.1} has a unique solution in $[0,T)$. \end{proof} \section{Global existence and blow-up phenomenon}\label{s3} To study the global existence and blow-up properties, we have the following statements. \begin{definition} \label{def3.1} \rm A nonnegative function $\overline{u}(x,t)\in C^{1}\left(V\times[0,T)\right) $ is a supersolution of problem \eqref{1.1} if it satisfies \begin{equation} \begin{gathered} \overline{u}(x,t)\geq \sum_{y\in V}\omega(x,y)\left(\overline{u}(y,t) -\overline{u}(x,t)\right)+e^{\beta t}\overline{u}^{p}(x,t),\quad (x,t)\in S\times[0,T), \\ \overline{u}(x,t)\geq0,\quad (x,t)\in \partial S\times[0,T), \\ \overline{u}(x,0)\geq u_0(x),\quad x\in V. \end{gathered} \label{3} \end{equation} Similarly, we can define the subsolution $\underline u(x,t)$ by reversing the inequalities. \end{definition} Now, we introduce the comparison principle for the nonnegative solutions of \eqref{1.1} which plays an important role in the proof of the existence of the critical exponent. \begin{theorem}\label{thm4} Let $\overline{u}(x,t), \underline{u}(x,t)$, be supersolution and subsolution of \eqref{1.1}, respectively. Meanwhile, there exists a point $y\in S $ such that $\omega(x,y)\neq0 $ for any $x\in S$. Then, for any $(x,t)\in V\times[0,T)$, we have $\overline{u}(x,t)\geq\underline{u}(x,t)$. \end{theorem} \begin{proof} Denote $v=\underline{u}-\overline{u}$, and choose $T_1\overline u\}$. A direct use of definition of $\Delta_{w}u(x,t) $ yields \begin{equation} \begin{aligned} \int_{V}\Delta_{\omega}v(x,t)v_{+}(x,t) &= \int_{I(t)}\Delta_{\omega}v(x,t)v_{+}(x,t) \\ &= \sum_{x\in I(t)}\sum_{y\in V}\omega(x,y)\left(v(y,t)-v(x,t)\right)v_{+}(x,t) \\ &= \sum_{x\in I(t)}\sum_{y\in I(t)}\omega(x,y)\left(v(y,t)-v(x,t)\right)v_{+}(x,t) \\ &\quad +\sum_{x\in I(t)}\sum_{y\in V\setminus I(t)}\omega(x,y) \left(v(y,t)-v(x,t)\right)v_{+}(x,t). \end{aligned} \label{3.3} \end{equation} We first note that \begin{equation} \begin{aligned} &\sum_{x\in I(t)}\sum_{y\in I(t)}\omega(x,y)\left(v(y,t)-v(x,t)\right)v_{+}(x,t) \\ &=\frac{1}{2}\sum_{x\in I(t)}\sum_{y\in I(t)}\omega(x,y)\left(v(y,t)-v(x,t)\right)v(x,t) \\ &\quad +\frac{1}{2}\sum_{x\in I(t)}\sum_{y\in I(t)}\omega(x,y)\left(v(x,t)-v(y,t)\right)v(y,t) \\ &=-\frac{1}{2}\sum_{x\in I(t)}\sum_{y\in I(t)}\omega(x,y) \left(v(y,t)-v(x,t)\right)^2 \leq 0. \end{aligned}\label{3.4} \end{equation} Then, notice that if $x\in I(t)=\{x\in V:\underline u> \overline u\}$ and $y\in V\setminus I(t)=\{y\in V:\overline u\geq\underline u\}$, then $$ \underline u(x,t)>\overline u(x,t),\quad \overline u(y,t)\geq\underline u(y,t), $$ so we have $$ \underline u(y,t)-\underline u(x,t)\leq\overline u(y,t)-\overline u(x,t).$$ Then \begin{equation} \sum_{x\in I(t)}\sum_{y\in V\setminus I(t)} \omega(x,y)\left(v(y,t)-v(x,t)\right)v_{+}(x,t)\leq0\,. \end{equation} Therefore, \begin{equation} \int_{V}\Delta_{\omega}v(x,t)v_{+}(x,t)\leq0 \label{20.2} \end{equation} and \begin{equation} \begin{aligned} \int_{V}pe^{\beta t}\xi^{p-1}v^2_{+}(x,t) &=\sum_{x\in V}pe^{\beta t}\xi^{p-1}v^2_{+}(x,t) \\ &\leq pe^{\beta T_1}\xi^{p-1}\sum_{x\in V}v^2_{+}(x,t) =C\sum_{x\in V}v^2_{+}(x,t), \end{aligned}\label{3.5} \end{equation} where $C=pe^{\beta T_1}\xi^{p-1}$. From \eqref{20.1}, \eqref{20.2} and \eqref{3.5}, we have $$ \Big(\int_{V}v^2_{+}(x,t)\Big)_t\leq 2C\int_{V}v^2_{+}(x,t). $$ Since $v_{+}( \cdot, 0)=0$, we arrive at $v_{+}( x, t)=0$ in $V\times [0,T_1]$. Due to the arbitrariness of $T_1$, we obtain $$ \overline u(x,t)\geq\underline u(x,t),\quad \forall (x,t)\in V\times [0,T). $$ The proof is complete. \end{proof} Then, we study the existence of the critical exponent for problem \eqref{1.1}. \begin{definition} \rm $p_{\beta} $ is called the critical exponent of problem \eqref{1.1}, if it satisfies: \begin{itemize} \item[(1)] when $p>p_{\beta}$, there is a nonnegative and nontrivial global solution $u$ of equation \eqref{1.1}; \item[(2)] when $11$, problem \eqref{1.1} admits a critical exponent $p_{\beta}=1+\frac{\beta}{\lambda_1}$, where $\lambda_1$ is the principle eigenvalue of the eigenvalue problem \begin{equation} \begin{gathered} -\Delta_{\omega}\varphi(x)=\lambda_1\varphi(x),\quad x\in S, \\ \varphi(x)=0, \quad x\in \partial S. \end{gathered} \end{equation} \begin{theorem}\label{thm7} Suppose $p>p_{\beta}=1+\frac{\beta}{\lambda_1}$ and the initial value $u_0\leq z_0\phi_1(x)$, then the solution of \eqref{1.1} is global and positive. Here $\phi_1(x)$ which corresponds to $\lambda_1 $ is the positive eigenfunction with $\|\phi_1(x)\|_{L^{\infty}}=1$ and $z_0$ is a constant satisfying $00, \end{gathered}\label{3.7} \end{equation} where $z_0 $ is a constant satisfying $z_0<\left(\lambda_1-\frac{\beta}{p-1}\right)^{\frac{1}{p-1}}$. Solve the ODE problem of \eqref{3.7} with $\|v(\cdot,t)\|_{L^{\infty}}^{p-1}=e^{-\lambda_1 (p-1)t}$, then we have $$ z(t)=\Big(z_0^{1-p}-\frac{p-1}{(p-1)\lambda_1-\beta} \big(1-e^{(\beta-(p-1)\lambda_1)t}\big)\Big)^{\frac{1}{1-p}}, $$ which is bounded uniformly for $t\in [0,\infty)$. Now, let $\overline u(x,t)=z(t)v(x,t) $ for $(x,t)\in S\times (0,\infty)$, then \begin{equation} \begin{aligned} \frac{\partial \overline u(x,t)}{\partial t} &= \frac{\,\mathrm{d}z(t)}{\,\mathrm{d}t}v(x,t)+z(t)\frac{\partial v}{\partial t} \\ &= e^{\beta t}\|v(\cdot,t)\|_{L^{\infty}}^{p-1}z^{p}(t)v(x,t)+z(t)\Delta_{\omega}v(x,t) \\ &\geq \Delta_{\omega}\overline u(x,t)+e^{\beta t}v^{p}z^{p}(t) \\ &= \Delta_{\omega}\overline u(x,t)+e^{\beta t}\overline u^{p}(x,t), \end{aligned}\label{3.8} \end{equation} and \begin{equation} \overline u(x,t)=0,\quad \forall(x,t)\in \partial S\times [0,\infty), \label{20.8} \end{equation} furthermore, \begin{equation} \overline u(x,0)=z_0\phi_1(x)\geq u_0(x). \label{3.9} \end{equation} From \eqref{3.8}, \eqref{20.8} and \eqref{3.9}, we obtain that $\overline u(x,t)$ is a supersolution of problem \eqref{1.1}. By Theorem \ref{thm4}, we conclude that \eqref{1.1} admits a global positive solution provided that the initial value $u_0$ is small. \end{proof} \begin{theorem}\label{thm10} Suppose that $u_0(x) $ is nonnegative and nontrivial. If $10$. Thus, $G(t)=\sum_{x\in S}u(x,t)\varphi(x) $ cannot be global. From the right side of \eqref{10.25}, we have the blow-up time is $$ T^{*}=\frac{\ln \big(1-\frac{\beta-(p-1)\lambda_1}{1-p}G^{1-p}_0\big)} {\beta-(p-1)\lambda_1}. $$ \end{proof} Next we have a blow-up rate in the $L^{\infty}$-norm. \begin{theorem}\label{thm9} Let $10, \\ u(x_2,0)=u_0>0, \end{gathered}\label{4.1} \end{equation} where $\omega$, $\beta>0 $ and $p>1 $ are real constants. \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig1} % G1.eps \caption{Graph $G_1$} \label{fig1} \end{center} \end{figure} Equation \eqref{4.1} is the well-known Bernoulli equation. The explicit solution of \eqref{4.1} is \begin{equation} u(x_2,t) =\Big(e^{\omega (p-1)t}\Big(u_0^{1-p}-\frac{1-p}{\beta-(p-1)\omega} +\frac{1-p}{\beta-(p-1)\omega}e^{\left(\beta-\omega(p-1)\right)t}\Big) \Big)^{\frac{1}{1-p}}. \label{4.2} \end{equation} Consider $10 $ and $\frac{1-p}{\beta-(p-1)\omega}<0$, then the solution $u(t) $ will blow up in finite time. The blow-up time on $L^{\infty}$-norm to problem \eqref{4.1} is $$ T=\frac{\ln \big(1-\frac{\left(\beta-\omega(p-1)\right)u_0^{1-p}}{1-p}\big)} {\beta-\omega(p-1)}. $$ Then we have the limit, $$ \lim_{t\to T^{-}}(T-t)^{\frac{1}{p-1}}u(x_2,t) =\left(\frac{e^{-\beta T}}{p-1}\right)^{\frac{1}{p-1}}. $$ We remark that if $\frac{1-p}{\beta-(p-1)\omega}>0 $ and $u_0^{1-p}-\frac{1-p}{\beta-(p-1)\omega}>0$, then the only solution \eqref{4.2} to problem \eqref{4.1} is global. \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig2} % G2.eps \caption{Graph $G_2$} \label{fig2} \end{center} \end{figure} Now, we consider a complicated graph $G_2 $ which has six nodes, where $x_1, x_{4} $ and $x_{6} $ are boundary and $x_2, x_3 $ and $x_5 $ are interior. Moreover, we only consider the weight function $\omega$=1. Thus, the problem can be rewritten as \begin{equation} \begin{gathered} u_t(x_2,t)=u(x_3,t)+u(x_5,t)-3u(x_2,t)+e^{\beta t}u^{p}(x_2,t), \\ u_t(x_3,t)=u(x_2,t)+u(x_5,t)-3u(x_3,t)+e^{\beta t}u^{p}(x_3,t), \\ u_t(x_5,t)=u(x_2,t)+u(x_3,t)-3u(x_5,t)+e^{\beta t}u^{p}(x_5,t), \\ u(x_2,0)=\alpha>0, \\ u(x_3,0)=\zeta>0, \\ u(x_5,0)=\gamma>0. \end{gathered} \label{4.3} \end{equation} Let $U=\left(u(x_2,t),u(x_3,t), u(x_5,t)\right)^{\rm T}$, and the coefficient matrix is \[ A=\begin{pmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & -3 \end{pmatrix}. \] Thus, \eqref{4.3} can be rewritten as \begin{equation} \begin{gathered} U_t=A\ast U+e^{\beta t}U^{p}, \\ U_0=(\alpha, \zeta, \gamma )^{\rm T}. \end{gathered} \label{4.4} \end{equation} Because of nonlinearity, it is hard to handle system \eqref{4.4} by exact analysis technique. Instead, we calculate the solution by difference method. Then the explicit scheme is \begin{equation} \begin{gathered} \frac{U^{n+1}-U^{n}}{\Delta t}=A\ast U^{n}+(U^{n})^{p}, \\ U^{0}=(\alpha, \zeta, \gamma )^{\rm T}, \end{gathered}\label{4.5} \end{equation} where $U^{n}=\left(u(x_2,n\Delta t),u(x_3,n\Delta t),u(x_5,n\Delta t)\right)^{\rm T}$ and $\Delta t$ is the time step. Moreover, we set $\alpha=0.4, \zeta=0.6, \gamma=0.7, \beta=3 $ and $p=2$, respectively. The numerical experiment result is shown in Figure \ref{fig3}. We observe that the solution blows up in finite time. \begin{figure}[htb] \begin{center} \includegraphics[width=0.6\textwidth]{fig3} % G3.eps \caption{Blow-up phenomenon for the equation \eqref{4.3}} \label{fig3} \end{center} \end{figure} \subsection*{Acknowledgments} This work was partly supported by the National Natural Science Foundation of China (Grant No. 11301277, 41475091) and the Qing Lan Project of Jiangsu Province. \begin{thebibliography}{99} \bibitem{cb2005} S.-Y. Chung, C. A. Berenstein; \emph{$\omega$-harmonic functions and inverse conductivity problems on networks}, SIAM J. Appl. Math. \textbf{65} (2005), no.~4, 1200--1226. \bibitem{cck2007} S.-Y. Chung, Y.-S. Chung, J.-H. Kim; \emph{Diffusion and elastic equations on networks}, Publ. Res. Inst. Math. Sci. \textbf{43} (2007), no.~3, 699--726. \bibitem{clc2011} Y.-S. Chung, Y.-S. Lee, S.-Y. Chung; \emph{Extinction and positivity of the solutions of the heat equations with absorption on networks}, J. Math. Anal. Appl. \textbf{380} (2011), no.~2, 642--652. \bibitem{pmd2013} L. M. Del Pezzo, C. A. Mosquera, J. D. Rossi; \emph{Existence, uniqueness and decay rates for evolution equations on trees}, Port. Math. \textbf{71} (2014), no.~1, 63--77. \bibitem{f2011} R. Ferreira; \emph{Quenching phenomena for a non-local diffusion equation with a singular absorption}, Israel J. Math. \textbf{184} (2011), 387--402. \bibitem{fl2012} R. Ferreira, M. P\'erez-Llanos; \emph{Blow-up for the non-local $p$-Laplacian equation with a reaction term}, Nonlinear Anal. \textbf{75} (2012), no.~14, 5499--5522. \bibitem{kwz2012} L. H. Kong, J. H. Wang, S. L. Zheng; \emph{Uniform blow-up profiles for heat equations with coupling nonlocal sources of asymmetric mixed type nonlinearities}, Acta Math. Sci. Ser. B Engl. Ed. \textbf{32} (2012), no.~3, 1126--1140 \bibitem{lc2012} Y.-S. Lee, S.-Y. Chung; \emph{Extinction and positivity of solutions of the $p$-Laplacian evolution equation on networks}, J. Math. Anal. Appl. \textbf{386} (2012), no.~2, 581--592. \bibitem{l1973} H. A. Levine; \emph{Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$}, Arch. Rational Mech. Anal. \textbf{51} (1973), 371--386. \bibitem{m1990} P. Meier; \emph{On the critical exponent for reaction-diffusion equations}, Arch. Rational Mech. Anal. \textbf{109} (1990), no.~1, 63--71. \bibitem{pkc2009} J.-H. Park, J.-H. Kim, S.-Y. Chung; \emph{The $p$-Schr\"odinger equations on finite networks}, Publ. Res. Inst. Math. Sci. \textbf{45} (2009), no.~2, 363--381. \bibitem{lr2009} M. P\'erez-Llanos, J. D. Rossi; \emph{Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term}, Nonlinear Anal. \textbf{70} (2009), no.~4, 1629--1640. \bibitem{t2013} F. Tahamtani, M. Shahrouzi; \emph{Asymptotic stability and blow up of solutions for a Petrovsky inverse source problem with dissipative boundary condition}, Math. Methods Appl. Sci. \textbf{36} (2013), no.~7, 829--839. \bibitem{t2003} H. Takeuchi; \emph{The spectrum of the $p$-Laplacian and $p$-harmonic morphisms on graphs}, Illinois J. Math. \textbf{47} (2003), no.~3, 939--955. \bibitem{w2011} M. X. Wang; \emph{Blow-up rate estimates for semilinear parabolic systems}, J. Differential Equations \textbf{170} (2001), no.~2, 317--324. \bibitem{wcz2013} Y. Wang, J. Chen, B. Zhou; \emph{Blowup analysis for a nonlocal reaction diffusion equation with potential}, WSEAS Trans. Math. \textbf{12} (2013), no.~7, 2224--2880. \bibitem{w2013} S.-T. Wu; \emph{Blow-up of solutions for a system of nonlinear parabolic equations}, Electron. J. Differential Equations \textbf{2013}, No. 216, 9 pp. \bibitem{xml20114} Q. Xin, C. Mu, D. Liu; \emph{Extinction and positivity of the solutions for a $p$-Laplacian equation with absorption on graphs}, J. Appl. Math. \textbf{2011}, Art. ID 937079, 12 pp. \bibitem{xxm2013} Q. Xin, L. Xu, C. Mu; \emph{Blow-up for the $\omega$-heat equation with Dirichlet boundary conditions and a reaction term on graphs}, Appl. Anal. \textbf{93} (2014), no.~8, 1691--1701. \bibitem{zw2011} G. Zhang, Y. Wang; \emph{Critical exponent for nonlocal diffusion equations with Dirichlet boundary condition}, Math. Comput. Modelling \textbf{54} (2011), no.~1-2, 203--209. \bibitem{z2012} J. P. Zhao; \emph{Blow-up of solutions for a class of reaction-diffusion equations with a gradient term under nonlinear boundary condition}, Z. Naturforsch. 67a (2012), 479--482. \bibitem{zmmz2013} S. Zhou, C. Mu, Y. Mi, F. Zhang, Fuchen; \emph{Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition}, Commun. Pure Appl. Anal. \textbf{12} (2013), no.~6, 2935--2946. \end{thebibliography} \end{document}