\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 232, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/232\hfil Remarks on regularity] {Remarks on regularity criteria for the 3D Navier-Stokes equations} \author[R. Wei, Y. Li \hfil EJDE-2014/232\hfilneg] {Ruiying Wei, Yin Li } % in alphabetical order \address{Ruiying Wei \newline School of Mathematics and Information Science, Shaoguan University, Shaoguan, \newline Guangdong 512005, China.\newline Department of Mathematics, Sun Yat-sen University , Guangzhou, Guangdong 510275, China} \email{weiruiying521@163.com} \address{Yin Li \newline School of Mathematics and Information Science, Shaoguan University, Shaoguan, \newline Guangdong 512005, China.\newline Department of Mathematics, Sun Yat-sen University , Guangzhou, Guangdong 510275, China} \email{liyin2009521@163.com} \thanks{Submitted June 23, 2014. Published October 29, 2014.} \subjclass[2000]{35Q35, 76D05} \keywords{Regularity criteria; Triebel-Lizorkin space; Morrey-Campanato space} \begin{abstract} In this article, we study the regularity criteria for the 3D Navier-Stokes equations involving derivatives of the partial components of the velocity. It is proved that if $\nabla_{h}\widetilde{u}$ belongs to Triebel-Lizorkin space, $\nabla u_3$ or $ u_3$ belongs to Morrey-Campanato space, then the solution remains smooth on $[0,T]$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} This article is devoted to the Cauchy problem for the following incompressible 3D Navier-Stokes equation: \begin{equation} \label{e1.1} \begin{gathered} u_{t}+(u\cdot\nabla)u+\nabla p=\triangle u, \quad x\in \mathbb{R}^3,\;t>0 \\ \operatorname{div} u=0, \quad x\in \mathbb{R}^3,\;t>0 \end{gathered} \end{equation} with initial data \begin{equation} \label{e1.2} u(x, 0)=u_{0},\quad x\in \mathbb{R}^3, \end{equation} where $u=(u_1(x,t),u_2(x,t),u_3(x,t))$ and $p=p(x,t)$ denote the unknown velocity vector and the unknown scalar pressure, respectively. In the last century, Leray \cite{L} and Hopf \cite{H} proved the global existence of a weak solution $u(x,t)\in L^{\infty}(0,\infty; L^2(\mathbb{R}^3))\cap L^2(0,\infty; H^1(\mathbb{R}^3))$ to \eqref{e1.1}-\eqref{e1.3} for any given initial datum $u_{0}(x)\in L^2(\mathbb{R}^3)$. However, whether or not such a weak solution is regular and unique is still a challenging open problem. From that time on, different criteria for regularity of the weak solutions has been proposed. The classical Prodi-Serrin conditions (see \cite{TO,GP,JS}) say that if $$ u\in L^{t}(0,T; L^{s}(\mathbb{R}^3)),\quad \frac{2}{t}+\frac{3}{s}=1,\quad 3\leq s\leq\infty, $$ then the solution is smooth. Similar results is showed by Beir\~ao da Veiga \cite{HB} involving the velocity gradient growth condition: $$ \nabla u\in L^{t}(0,T; L^{s}(\mathbb{R}^3)),\quad \frac{2}{t}+\frac{3}{s}=2,\quad \frac{3}{2}\frac{10}{3}. $$ And in \cite{JZ}, Jia and Zhou proved that if a weak solution $u$ satisfies one of the following two conditions: $$ u_3\in L^{\infty}(0,T; L^{\frac{10}{3}}(\mathbb{R}^3));\quad \nabla u_3\in L^{\infty}(0,T; L^{30/19}(\mathbb{R}^3)), $$ then $u$ is regular on $[0, T]$. Dong and Zhang \cite{DZ} proved that if the horizontal derivatives of the two velocity components $$ \int_{0}^{T}\|\nabla_{h}\tilde{u}(s)\|_{\dot{B}^{0}_{\infty,\infty}}ds<\infty, $$ then the solution keeps smoothness up to time $T$, where $\tilde{u}=(u_1,u_2,0)$, and $\nabla_{h}\tilde{u}=(\partial_1\tilde{u},\partial_2\tilde{u},0)$. For other kinds of regularity criteria, see \cite{CT,FQ,FJ,JJ,ZG,ZG2,ZZ,ZA,ZYL} and the references cited therein. Throughout this paper $C$ will denote a generic positive constant which can vary from line to line. For simplicity, we shall use $\int f(x)\,dx$ to denote $\int_{R^3}f(x)\,dx$, use $\|\cdot\|_{p}$ to denote $\|\cdot\|_{L^{p}}$. The purpose of this article is to improve and extend above known regularity criterion of weak solution for the equations \eqref{e1.1}, \eqref{e1.2} to the Triebel-Lizorkin space and Morrey-Campanato spaces. The main results of this paper read: \begin{theorem}\label{thm1.1} Assume that $u_{0}\in H^1(\mathbb{R}^3)$ with $\operatorname{div}u_{0}=0$. u(x,t) is the corresponding weak solution to \eqref{e1.1} and \eqref{e1.2} on $[0,T)$. If additionally \begin{equation} \label{e1.3} \int_{0}^{T}\|\nabla_{h}\widetilde{u}(\cdot,t)\|^{p}_{\dot{F}^{0}_{q,\frac{2}{3}q}}dt <\infty, \quad \text{with } \frac{2}{p}+\frac{3}{q}=2, \;\frac{3}{2}0}R^{\frac{3}{p} -\frac{3}{q}}\|f\|_{{q}(B(x,R))}<\infty \big\}, \] For $1\leq p'\leq q'<\infty $, we define the homogeneous space \begin{align*} \dot N^{p',q'}=\Big\{&f\in L^{q'} | f=\sum_{k\in N}g_{k}, \text{ where $g_{k}\in L^{q'}_{comp}(R^3)$ and} \\ &\sum_{k\in N}d^{3(\frac{1}{p'}-\frac{1}{q'})}_{k}\|g_{k}\|_{{q'}}<\infty, \text{ where } d_{k}=\operatorname{diam}(\operatorname{supp}g_{k})<\infty \Big\}. \end{align*} For $0<\alpha<3/2$, we say that a function belongs to the multiplier spaces $M(\dot H^{\alpha}, L^2)$ if it maps, by pointwise multiplication, $\dot H^{\alpha}$ to $L^2$: \[ \dot X_{\alpha}:=M(\dot H^{\alpha}, L^2) :=\big\{f\in S'; \|f\cdot g\|_{L^2}\leq C\|g\|_{\dot H^{\alpha}} , \forall g\in \dot H^{\alpha}\big\}. \] Here, $\dot H^{\alpha}$ is the homogeneous Sobolev space of order $\alpha$, \[ \dot H^{\alpha}=\big\{f\in L^1_{\rm loc}; \|f\|_{L^2}\equiv \Big(\int _{R^3}|\xi|^{2\alpha}|\hat{u}(\xi)|^2\Big)^{1/2}<\infty\big\}. \] where $L^{p}(1\leq p\leq \infty)$ is the Lebsgue space endowed with norm $\|\cdot\|_{p}$. \begin{lemma}[\cite{ SD, PG1}] \label{lem2.2} Let $1\leq p'\leq q'<\infty $, and $p, q$ such that $\frac{1}{p}+\frac{1}{p'}=1, \frac{1}{q}+\frac{1}{q'}=1$. Then $\dot M^{p,q}$ is the dual space of $\dot N^{p',q'}$. \end{lemma} \begin{lemma}[\cite{SD,FJ,PG1}] \label{lem2.3} Let $10$, such that for any $u\in L^{m}(\mathbb{R}^{n}), v\in \dot{H}^{\alpha}(\mathbb{R}^{n})$, \[ \|u\cdot v\|_{\dot N^{p',q'}}\leq C\|u\|_{L^{m}}\| v\|_{\dot H^{\alpha}}. \] \end{lemma} \begin{lemma}[\cite{PG2}] \label{lem2.4} For $0\leq r\leq\frac{3}{2}$, let the space $\mathscr{M}(\dot{B}_2^{r,1}\to L^2)$ be the space of functions which are locally square integrable on $\mathbb{R}^3$ and such that pointwise multiplication with these functions maps boundedly the Besov space $\dot{B}_2^{r,1}(\mathbb{R}^3)$ to $L^2(\mathbb{R}^3)$. The norm in $\mathscr{M}(\dot{B}_2^{r,1}\to L^2)$ is given by the operator norm of pointwise multiplication: $$ \|f\|_{\mathscr{M}(\dot{B}_2^{r,1}\to L^2)} =\sup\{\|fg\|_{{2}}:\|g\|_{\dot{B}_2^{r,1}}\leq1\}. $$ Then, $f$ belongs to $\mathscr{M}(\dot{B}_2^{r,1}\to L^2)$ if and only if $f$ belongs to $\dot M^{2,\frac{3}{r}}$ (with equivalence of norms). \end{lemma} \section{The proof of main results} \begin{proof}[Proof of Theorem \ref{thm1.1}] Multiplying \eqref{e1.1}$_1$ by $-\triangle u$, integrating by parts, noting that $\nabla\cdot u=0$, we have \begin{equation} \label{e3.1} \frac{1}{2}\frac{d}{dt}\int|\nabla u|^2\,dx+\int|\triangle u|^2\,dx =\int[(u\cdot\bigtriangledown)u]\cdot\triangle u\,dx=:I. \end{equation} Next we estimate the right-hand side of \eqref{e3.1}, with the help of integration by parts and $-\partial_3u_3=\partial_1u_1+\partial_2u_2$, one shows that \begin{align*} I&=-\sum^3_{i,j,k=1}\int\partial_{k}u_{i}\partial_{i}u_{j}\partial_{k}u_{j}\,dx\\ & =-\sum^2_{i,j=1}\sum^3_{k=1}\int\partial_{k}u_{i}\partial_{i}u_{j} \partial_{k}u_{j}\,dx -\sum^2_{i,k=1}\int\partial_{k}u_{i}\partial_{i}u_3\partial_{k}u_3\,dx\\ &\quad -\sum^2_{j,k=1}\int\partial_{k}u_3\partial_3u_{j}\partial_{k}u_{j}\,dx -\sum^3_{k=1}\int\partial_{k}u_3\partial_3u_3\partial_{k}u_3\,dx\\ &\quad -\sum^2_{i=1}\int\partial_3u_{i}\partial_{i}u_3\partial_3u_3\,dx -\sum^2_{j=1}\int\partial_3u_3\partial_3u_{j}\partial_3u_{j}\,dx\\ &\leq C\int|\nabla_{h}\widetilde{u}||\nabla u|^2\,dx. \end{align*} Thus, the above inequality implies \begin{equation} \label{e3.2} \frac{1}{2}\frac{d}{dt}\|\nabla u\|_2^2+\|\triangle u\|_2^2 \leq C\int|\nabla_{h}\widetilde{u}||\nabla u|^2\,dx. \end{equation} Using the Littlewood-Paley decomposition \eqref{e2.1}, $\nabla_{h}\widetilde{u}$ can be written as \[ \nabla_{h}\widetilde{u}=\sum_{j<-N}\triangle_{j}(\nabla_{h}\widetilde{u}) +\sum_{j=-N}^{N}\triangle_{j}(\nabla_{h}\widetilde{u}) +\sum_{j>N}\triangle_{j}(\nabla_{h}\widetilde{u}). \] where $N$ is a positive integer to be chosen later. Substituting this into \eqref{e3.2}, one obtains \begin{equation} \label{e3.3} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\|\nabla u\|_2^2+\|\triangle u\|_2^2 \\ &\leq C\sum_{j<-N}\int|\triangle_{j}(\nabla_{h}\widetilde{u})||\nabla u|^2\,dx +C\sum_{j=-N}^{N}\int|\triangle_{j}(\nabla_{h}\widetilde{u})||\nabla u|^2\,dx\\ &\quad +C\sum_{j>N}\int|\triangle_{j}(\nabla_{h}\widetilde{u})||\nabla u|^2\,dx\\ &=:K_1+K_2+K_3. \end{aligned} \end{equation} For $K_{i}$ $(i=1,2,3)$, we now give the estimates one by one. For $K_1$, using the H\"{o}lder inequality, the Young inequality and Lemma \ref{lem2.1}, it follows that \begin{equation} \label{e3.4} \begin{aligned} K_1&\leq C\sum_{j<-N}\|\triangle_{j}(\nabla_{h}\widetilde{u}) \|_{\infty}\|\nabla u\|^2_2\\ &\leq C\sum_{j<-N}2^{3j/2}\|\triangle_{j}(\nabla_{h}\widetilde{u}) \|_2\|\nabla u\|^2_2\\ &\leq C\Big(\sum_{j<-N}2^{3j}\Big)^{1/2} \Big(\sum_{j<-N}\|\triangle_{j}(\nabla_{h}\widetilde{u})\|_2^2\Big)^{1/2} \|\nabla u\|^2_2\\ &\leq C2^{-3N/2}\|\nabla u\|^3_2. \end{aligned} \end{equation} Where in the last inequality, we use the fact that for all $s\in \mathbb{R}$, $\dot{H}^{s}=\dot{B}^{s}_{2,2}$. For $K_2$, by the H\"{o}lder inequality and the Young inequality, one has \begin{equation} \label{e3.5} \begin{aligned} K_2&=C\int\sum_{j=-N}^{N}|\triangle_{j}(\nabla_{h}\widetilde{u})||\nabla u|^2\,dx\\ &\leq CN^{\frac{2q-3}{2q}}\int\Big(\sum_{j=-N}^{N}|\triangle_{j} (\nabla_{h}\widetilde{u})|^{2q/3}\Big)^{3/(2q)}|\nabla u|^2\,dx\\ &\quad \leq CN^{\frac{2q-3}{2q}}\|\nabla_{h}\widetilde{u} \|_{\dot{F}^{0}_{q,\frac{2q}{3}}}\|\nabla u\|^2_{\frac{2q}{q-1}}\\ &\quad \leq CN^{\frac{2q-3}{2q}}\|\nabla_{h}\widetilde{u} \|_{\dot{F}^{0}_{q,\frac{2q}{3}}}\|\nabla u\|^{\frac{2q-3}{q}}_2 \|\triangle u\|_2^{3/q}\\ &\quad \leq\frac{1}{2}\|\triangle u\|_2^2+CN\|\nabla_{h}\widetilde{u} \|_{\dot{F}^{0}_{q,\frac{2q}{3}}}^{\frac{2q}{2q-3}}\|\nabla u\|^2_2. \end{aligned} \end{equation} where we used the interpolation inequality \[ \|u\|_{s}\leq C\|u\|_2^{\frac{3}{s} -\frac{1}{2}}\|u\|_{\dot{H}^1}^{\frac{3}{2}-\frac{3}{s}}, \] for $2\leq s\leq 6$. Finally, using H\"{o}lder inequality and Lemma \ref{lem2.1}, $K_3$ can be estimated as \begin{equation} \label{e3.6} \begin{aligned} K_3 &=C\sum_{j>N}\int|\triangle_{j}(\nabla_{h}\widetilde{u})||\nabla u|^2\,dx\\ &\leq C\sum_{j>N}\|\triangle_{j}(\nabla_{h}\widetilde{u})\|_3\|\nabla u\|_3^2\\ &\leq C\sum_{j>N}2^{\frac{j}{2}}\|\triangle_{j}(\nabla_{h}\widetilde{u}) \|_2\|\nabla u\|_3^2\\ &\leq C(\sum_{j>N}2^{-j})^{1/2}(\sum_{j>N}2^{2j}\|\triangle_{j}(\nabla_{h} \widetilde{u})\|_2^2)^{1/2} \|\nabla u\|_2\|\triangle u\|_2\\ &\leq C2^{-N/2} \|\nabla u\|_2\|\triangle u\|_2^2. \end{aligned} \end{equation} Substituting \eqref{e3.4}, \eqref{e3.5} and \eqref{e3.6} in \eqref{e3.3}, we obtain \begin{equation} \label{e3.7} \begin{aligned} &\frac{d}{dt}\|\nabla u\|_2^2+\|\triangle u\|_2^2\\ &\leq C2^{-\frac{3}{2}N}\|\nabla u\|^3_2+CN\|\nabla_{h}\widetilde{u} \|_{\dot{F}^{0}_{q,\frac{2q}{3}}}^{\frac{2q}{2q-3}}\|\nabla u\|^2_2 +C2^{-N/2}\|\nabla u\|_2\|\triangle u\|_2^2. \end{aligned} \end{equation} Now we choose $N$ such that $C2^{-N/2}\|\nabla u\|_2\leq \frac{1}{2}$; that is $$ N\geq\frac{\ln(\|\nabla u\|_2^2+e)+\ln C}{\ln 2}+2. $$ Thus \eqref{e3.7} implies \begin{align*} \frac{d}{dt}\|\nabla u\|_2^2 \leq C+C\|\nabla_{h}\widetilde{u}\|_{\dot{F}^{0}_{q,\frac{2q}{3}}}^{p} \ln(\|\nabla u\|_2^2+e)\|\nabla u\|^2_2. \end{align*} Taking the Gronwall inequality into consideration, we obtain \begin{align*} \ln(\|\nabla u\|_2^2+e) \leq C\Big[1+\int^{T}_{0}\|\nabla_{h}\widetilde{u} \|_{\dot{F}^{0}_{q,\frac{2q}{3}}}^{p}(\tau)d\tau \cdot e^{\int^{T}_{0}\|\nabla_{h}\widetilde{u}\|_{\dot{F}^{0}_{q,\frac{2q}{3}}}^{p} (\tau)d\tau}\Big]. \end{align*} The proof of Theorem \ref{thm1.1} is complete under the condition \eqref{e1.3}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] Multiplying \eqref{e1.1}$_1$ by $-\triangle_{h} u$, integrating by parts, noting that $\nabla\cdot u=0$, we have \begin{equation} \label{e3.8} \frac{1}{2}\frac{d}{dt}\int|\nabla_{h} u|^2\,dx+\int|\nabla\nabla_{h} u|^2\,dx =\int[(u\cdot\bigtriangledown)u]\cdot\triangle_{h} u\,dx=:J.\ \end{equation} Next we estimate the right-hand side of \eqref{e3.8}, with the help of integration by parts and $-\partial_3u_3=\partial_1u_1+\partial_2u_2$, one shows that \begin{equation} \label{e3.9} \begin{aligned} J&=-\sum^3_{i,j=1}\sum^2_{k=1}\int\partial_{k}u_{i}\partial_{i}u_{j} \partial_{k}u_{j}\,dx\\ &=-\sum^2_{i,j,k=1}\int\partial_{k}u_{i}\partial_{i}u_{j}\partial_{k}u_{j}\,dx -\sum^2_{i,k=1}\int\partial_{k}u_{i}\partial_{i}u_3\partial_{k}u_3\,dx\\ &\quad -\sum^3_{j=1}\sum^2_{k=1}\int\partial_{k}u_3\partial_3u_{j}\partial_{k}u_{j}\,dx\\ &=:J_1+J_2+J_3. \end{aligned} \end{equation} For $J_2$ and $J_3$, we obtain \begin{equation} \label{e3.10} |J_2+J_3|\leq C\int|\nabla u_3||\nabla_{h}{u}||\nabla u|\,dx. \end{equation} $J_1$ is a sum of eight terms, using the fact $-\partial_3u_3=\partial_1u_1+\partial_2u_2$, we can estimate it as \begin{equation} \label{e3.11} \begin{aligned} J_1&=-\int(\partial_1u_1+\partial_2u_2)[(\partial_1u_1)^2 -\partial_1u_1\partial_2u_2+(\partial_2u_2)^2]\,dx\\ &\quad -\int(\partial_1u_1+\partial_2u_2)[(\partial_2u_1)^2 +\partial_1u_2\partial_2u_1+(\partial_1u_2)^2]\,dx\\ &=\int\partial_3u_3[(\partial_1u_1)^2-\partial_1u_1\partial_2u_2+(\partial_2u_2)^2+ (\partial_2u_1)^2+\partial_1u_2\partial_2u_1+(\partial_1u_2)^2]\,dx\\ &\leq C\int|\nabla u_3||\nabla_{h}{u}||\nabla u|\,dx. \end{aligned} \end{equation} Substituting the estimates \eqref{e3.9}-\eqref{e3.11} in \eqref{e3.8}, we obtain \begin{equation} \label{e3.12} \frac{1}{2}\frac{d}{dt}\|\nabla_{h} u\|_2^2+\|\nabla\nabla_{h} u\|_2^2 \leq C\int|\nabla u_3||\nabla_{h}{u}||\nabla u|\,dx=:L. \end{equation} when $2