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EXISTENCE AND STABILITY OF ALMOST PERIODIC
SOLUTIONS FOR SICNNS WITH NEUTRAL TYPE DELAYS

QING-LONG LIU, HUI-SHENG DING

ABSTRACT. This article concerns the shunting inhibitory cellular neural net-
works with neutral type delays. Under a weaker condition than the usual
Lipschitz condition, we establish the existence and stability of almost peri-
odic solutions for SICNNs with neutral type delays. An example is given to
illustrate our main results.

1. INTRODUCTION

Since Bouzerdoum and Pinter [2] [, 4] introduced and analyzed the shunting
inhibitory cellular neural networks (SICNNs), they have been extensively applied
in psychophysics, speech, perception, robotics, adaptive pattern recognition, vision,
and image processing (cf. [I0, [I5] and references therein).

It is well known that studies on neural networks not only involve a discussion
of stability properties, but also involve many dynamic behaviors such as periodic
oscillatory behavior and almost periodic oscillatory properties. In applications, if
the various constituent components of the temporally nonuniform environment is
with incommensurable (nonintegral multiples) periods, then one has to consider
the environment to be almost periodic since there is no a priori reason to expect
the existence of periodic solutions. Therefore, if we consider the effects of the
environmental factors, almost periodicity is sometimes more realistic and more
general than periodicity. Also, as pointed out in [I4] [I1], compared with periodic
effects, almost periodic effects are more frequent in many real world applications.
In fact, this point of view is partially verified by a recent work [2I], where the
authors proved that the “amount” of almost periodic functions (not periodic) is far
more than the “amount” of continuous periodic functions in the sense of category.
Thus, studying the existence of almost periodic solutions for differential equations
is natural and necessary.

Recently, many authors have studied the existence and stability of periodic so-
lutions and almost periodic solutions for the following SICNNs:

i (t) = —agzi;(t) — Z CH flan(t — 7(8)] 2 (t) + Lij (1),

Cr1€N(1,5)
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and its variants. We refer the reader to [IL [5] 6 [7, 8 [, 12} 13| 16}, 17, I8, 19] and
reference therein for some of recent developments on this topic.

Especially, in a very recent work, the authors in [I7] investigated the existence
and stability of almost periodic solutions for the following SICNNs with neutral
type delays:

2y () = —aij(t)wi;(t) — Z ijl(t) /000 Kij(u) f (o (t — u))duz;(t)

CriEN (i)
k1€ o(o J) (1.1)
=X DHO [ Tatwteialt - w)durs () + L),
D €N, (i,5) 0
i=1,2,...,m, j=1,2,...n, where m,n are two fixed positive integers, C;; is the

cell at the (4, j) position of the lattice, the r-neighborhood N,.(i, j) of C;; is defined
as follows:

N, (i,j) = {Chi - max |k — i, [l = j| <r, 1<k <m,1<I]<n},

and N;(4,7) is defined similarly. Here x;;(¢) is the activity of cell Cs;, L;;(t) is
the external input to Cjj, the coefficient a;;(t) is the passive decay rate of the
cell activity, f,g are continuous activity functions of signal transmission, ijl (t)
represents the connection or coupling strength of postsynaptic activity of the cell
transmitted to the cell Cj;, and ijl(t) has a similar meaning.

In [I7], the activation functions f and g satisfy the global Lipschitz conditions.
In this paper, as one will see, we allow for more general activity functions, i.e., we
will discuss the existence and stability of almost periodic solutions for the SICNNs
under a weaker Lipschitz conditions on f and g.

Next, let us recall some basic notation and results about almost periodic func-
tions. For more details, we refer the reader to [11], [14] [20].

Definition 1.1. A continuous function u: R — R is called almost periodic if for
each € > 0 there exists [(¢) > 0 such that every interval I of length /(¢) contains a
number 7 with the property that

lu(t+7) —u(t)] <e.

We denote by AP(R) the set of all almost periodic functions from R to R, and
by AP!(R) the set of all continuously differentiable functions u : R — R satisfying
u,u’ € AP(R).

Lemma 1.2. Let f,g € AP(R) and k € L*(R*). Then the following assertions
hold:

(a) f+g9g€ APR) and f-g € AP(R);
(b) the function t — f(t — ) belongs to AP(R) for every T € R;
(¢) F € AP(R), where

+oo
F(t):/o k() f(t — u)du, teR.

(d) AP(R) is a Banach space under the norm || f|| = sup;cg | f(t)].
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2. EXISTENCE OF ALMOST PERIODIC SOLUTION
For the rest of this article, we denote
J=A{11,...,1n,,...,ml,...,mn},
z(t) = {xi; (1)} = (x11(8), .. ., 21 (), s Tm1 (£), - - o, Tinn (2)),
X ={¢:0={piy} v, ¢i; € AP(R)}.
For every ¢ S )(7 we denote
il = supmax{ e ()1},

lellx = max{[[o], [l¢|} = max{sup max[;;(t)|, sup max |7, (¢)]}-
teR tJEJ

teR 19T
It is not difficult to verify that X is a Banach space under the norm || - ||x. For
every 1j € J, we denote
+ . . - .— 3 . + . g .
A = igﬂg aij(t), A = i&g aij(t), Ly = igﬂg | Lij (t)],

CH = sup|CH(t)|, DX :=sup|Df/(t).
teR teR

We will use the following assumptions:

(H1) For every ij € J, aij, C’i’“jl7
and a;; > 0.

(H2) There exist four functions fi, f2, 91,92 : R — R and four positive constants

Ly¢ ,L¢,, Lg,, Ly, such that f = fif2, g = g192 and for all u,v € R, there
holds

[fi(u) = fi(0)l < Ly, lu— o, |gi(u) = gi(v)] < Lg,Ju—v], i=1,2.
(H3) There exists a constant Ag > 0 such that

ijl and L;; are both almost periodic functions,

/0 | K (u)]e?"du < +o0, /0 |Jij(u)|e* du < +oo, ij € J.

(H4) There exists a constant d > 0 such that

ma { max {7% }’%‘?3({7@;. (af; +a)}} <d.
max { max {w},max{ Bijfo) (a;; + a;)}} <1,

ijeJ a”. ijedJ aij

where My, = sup|y<q [ fi(2)], My, = supjg<qlgi(2)|, i = 1,2,

Ay= Y CHamy,My,) / Ky (w)|du
Cri€NL (i) 0

- S DH(dM,, M,,) / T35 (w)|du,

Dy1€N(4,5)
and

Bij(0)= > Q@[(Mflez)/ooolKij(U)ldu

Cri€NL(i,5)
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My Ly, + ML) [ )l
- 0o
Y DH[0 M) [ 1w
Dy €N (i,5) 0
My Ly + ML) [ 1735w,

Theorem 2.1. Under assumptions H1)—(H4), there exists a unique continuously
differentiable almost periodic solution of (L.1)) in the region Q@ ={p € X : |lp|lx <
d}.

Proof. For w € (0, \g], we denote

B = > C[unr) [ 10k

Cri€N,(i,5)

FAMp Ly, +MpLy) [ 1K)l d
0

s 3 D[ M) [ 1w
DN, (i) 0

My Ly + ML) [ 150 au].

For each ¢ € X, we consider the almost periodic differential equations

23 (t) = —aij(t)wi(t) — CHlt / Kij(u) f(ri(t — u))dug;; (t)
CkleNr ,7)
=Y DE® [ Jswaleialt - u)dups(t) + L), i<
Dri€N(i,5) 0

(2.1)
Combining (H1) and Lemma. we know that the inhomogeneous part of equation
is an almost periodic function. Noting that a;; >0, by [14, Theorem 7.7], w
conclude that ( - ) has a unique almost periodic bOluthIl x% satisfying

t
x#’(t) = { / e~ fst aij(u)du |: _ C’kl / Kz; gpkl(s — u))d’UA,O”(S)

CszN (4,5)

- Y DHO) [ Hitwaleials - wdugs(s) + Ly(o)]ds)
Dy €N (i,7) =
Now, define a mapping 7" on Q@ = {p € X : ||¢||x < d} by
(Te)(t) = z#(t), Ve

It is easy to show that T(Q) C X.
Next, let us check that T'(Q2) C Q. It suffices to prove that || T¢||x < d for all
v € Q. By (H2) and (H3), we have

1T

t
= sup max ’/ e~ Ji ais(w)du
— 00

teR GE€J
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% {_ CH(s / Kij(u) f(pri(s — u))dugpij(s)
Cri€NL(i,5)

- D) [ Slateials ~ whdupis(s) + Lis (o)}
DleN i,5)

< supmax{/ - J7 aij(w)du
teR ijedJ )

<[ X [ s uls - w)ldulei o)

Cri€Ny(1,5)

b D [ s llateits - )ldules o)) + 1ol as)

D1 €Ns(i,5)

t - e3¢}
<spma{ [ o] S ) [l

teR ti€J o
€ CkleNT('L)])

+ Y Déz-l(dMgquZ)/Om J(wldu-+ L5]ds)

Dy €N (i,9)

<m{[ ¥ CH@Mug) [l

ijeJ o
Cri€N,(i,7)

+ Y Fg(dMglMg2)/O [T (w)ldu + LF a5 }

D1 €N (4,5)

+

Aij + Lij

=max{ —— ¢,
ijeJ a;

and

t
H( ) H = Supmax{‘ — alj(t)/ e ft az‘j(u)du

teR JEJ

X [— Ckl / Kij(u) f(ori(s — u))dupi;(s)

Cri€Ny(i,5)

S DO [ s ats — 0)dup(o) + Liy(s)]ds

Dy €N (i,5)
B kl —u))dup;;
+ [ ckleN (2.9) C / Hasl)Flonle Diueitt)
- Y Db ()/ J’j(U)g(wkz(t—u))d“%(“+L”J’(t)H}
Dy €N (i,5)

Aij +
< supmax {a*- H + A+ L;';}

ter iged U ag
+
Aij + Lij I _
=max{ ——(a): +a;;) .
ijed a.. v v
ij
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Then, from (H4) it follows that

A+ LT Aij + L
29 20 a {29 g +ap)}}<d

Tg)l|x < max {
I(T)llx < max | max { A A e G

which implies that T'(Q) C Q.
Let o, € Q, and for ij € J denote

a;j(s) = C’kl / Kij(u) f(pri(s — u))dup;;(s)
CMGN (’L j)

= [ K £ (s = w)duss o)
and

so)= X DHO( [ Sutualeiats - w)dupiis)

Dy €Ns(4,5)
~ [ Bstwntals - w)duss s))
By (H2), for each ij € J, we obtain
|evij(s)]

S Ckl ‘/ QOkl S_U))duwz_]( )
CklEN (4.9)

- [ Ko ouls — u)dus ()
+’/ Kij(u)f(pri(s — u))duti;(s / Kij(u) f(¥ra(s — u))dutpij (s )‘}

< x> ol

Cri€Ny(i,5)

= [ K outs = ) alonts - )ty (9)]

ij () f1(pri(s — u) f2(pri(s — u))dupi;(s)

[ [ Kot - 0)faleuts - 0)dusis (o)

- [ KAl - ) alvuls ~ )dutis ()]

[ K outs = ) falu(s - w)duis (o)

= [ K il — ) s = )dus(5)]
< % CHMuMy Ay Ly + ML) [ Ky (wldulle — vls.

Cri€Ny(1,5)

Similarly, for each ij € J, we have

R oo
1B (s)] < Z Dz]‘cjl [Mg, Mg, +d(Mg, Ly, + Mg, Lg, )] /0 | Jij(u)|dulle — [ x.
Dy €N (4,5)
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Thus,

lvij (s)] +18i5(s)] < Bij(0)[le — || x-
It follows that

o= Tol = spmax{| [ e O a5 + 10

}

R 1J€J

< supmax/ — i aii(w) (o (8)] + |Bi5(s)])ds

teR tJEJ

teR tJEJ

t
< sup max { / e J: aif(“)d“ds}Bij(0)||<P —Ylx

< max{;ﬂfj)}|go ~dllx,

ijeJ
and
(T —T¥)|
t
- a0 [0 800t 5,0
< ig}g rzglg,)J( {at n e b a”(u)du(aij(s) + ﬂ”(s))ds‘ + (Jag; ()] + |ﬁ2](t)‘)}
B;; (0

< supma o ( Bi© o~ yllx + By 0) e - llx )

< ma {250 e 1 a5y Vg — il

ijeJ aij

Combining the above two inequalities, we obtain

Bi; (0) Bi; (0)
T~ Tl < mas {mar (250 e Bt o)
ITe = T9llx < max | max {—2=} max{ o (ai; +ai)} plle =¥l x.
Noticing that
0 B;;(0 _
maw{max{i()},max{]if)(ajj —&—aij)}} <1,
ijedJ Qi ijeJ a’ij

By the Banach contraction principle, T has a unique fixed point x in €2, which is
just a continuously differentiable almost periodic solution of Equation (|1.1)). O

3. STABILITY OF ALMOST PERIODIC SOLUTIONS

In this section, we will establish some results about the locally exponential sta-
bility of the almost periodic solution for Equation (|L.1).

Theorem 3.1. Assume (H1)—(H4) hold. Let x(t) = {x;;(t)} be the unique contin-
uously differentiable almost periodic solution of in Q, and y(t) = {y;;(t)} be
an arbitrary continuously differentiable solution of Equation in the region 2.
Then, there exist two constants A, M > 0 such that

lz(t) —y(t)s < Me™™, VteR,

where

() =y ()]l == max{g.lg |45 (t) — yi; (1)1, max |23 (t) — yi; ()]}
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Proof. For w € [0, Ag], we denote

Tij(w) = a; —w-— Bij(w), Sij(w)= a; —w— (ajj + a;j)Bij(w).

By (H4), we have T;;(0) > 0 and S;;(0) > 0 for all i € J. Then, due to the

continuity of T;;(w) and S;;(w), there exists a sufficiently small positive constant
A < min { minijej{a;j}, )\0} such that

T;;(A) >0, S;;(A\) >0, ijed,

which means that

— <1, Biy (V)
a.:— A -—)\

)

(af; +a;) <1, ije . (3.1)

for all ¢j € J. Setting My = max;;cs {%}7 the following three inequalities hold:

1 Bi;(\) a};
My>1, — — 2220 <0, Bj(\)(—2
0 My aj; -\~ VG2

) v]

+1) <1, e (3.2)
Now, we denote
{Zw p2ig(t) = wi(t) — yis (1)},

Rij(s) = M (s / Ky () f (a5 — 0) gy (5)
Ck:leN'r' ,7)

/ K;j(u xkl(s—u))duxij(s)},
@)= X DHO[ [ sl — u)dus (o

Dy €N (4,5)
~ [ s wgtatals — )iy (s)].

Since z(t) and y(t) are both solutions to equation (1.1)), we have

2;(8) + aij(s)2ij(s) = Rij(s) + Qij(s). (3.3)
Multiplying by efo i (4% and integrating on [0, ], we obtain
t
2ilt) = 2y (O oo [ R ) £ Qs (34)
0
Let
M := M - max{supmax|x”( ) — i (1)1, supmax|x — (0]}
t<0 WEJ

Without loss for generality, we can assume that M > 0. Then, for all ¢ < 0, noting
that My > 1, we have

0l = max {max 5 (8) = yiy ()], mas lal 6) — iy )]} < Me™
Next, we prove the inequality
2(H)|li < Me™, ¢ >0,
by contradiction. If the above inequality is not true, then
Vi={t>0:]z(t)]1 > Me M} #£0.
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Letting ¢t; = inf V', then t; > 0 and
lz(t)|ly < Me™™, VYt e (—oo,t1), |z(t1)]1 = Me M1, (3.5)
For s € [0,1] and ij € J, by the assumptions and -, we have
| Rij (s )\

- CH ] [ K)ol — u)duys ()
CklEN (i,9)

/ Kij(uw)f(zp (s — u))dux”(s)‘

< it 1 / Koy ) (s — ) (5
CkIEN
/ Kij(u) f(yri(s —u))dux”(s)‘

’/ Kij(uw) f(yri(s — u))duz;;(s / K;;(u

<y o

CriENL(i,5)

f@ri(s — u))dux;; (s)’}
i (w) fr(yri (s — w)) f2(yri (s — u))duy;;(s)

— /0 Kij(u)fl(ykl(s - u))f2(ykl(5 - U))duxij( )‘
] [ K0 ilanals = ) alona(s — ) durs 9
0
~ [ R (s =) ol (s = ) 5
4] [ K0 ileuls = ) falyuls — u))dusiy ()
0
= [ K@ hnts = ) olons = )dusy(5)]
< Y a{on [ IRl

Cri€N-(1,5)

(oo}
Ay Ly + My L) [ )l =)l

< ¥ af{onmg [kl

CriENL(i,5)

+d(My Ly, + My, Ly,) / |Kij(u)|6)‘“du}Mef)‘s.
0

Similarly, for s € [0,¢1] and ij € J, we have

@l s Y DE{ M) [ dulzg (o)

Dy €N (,9)

oo
My Ly Myu ) [ 175 (0)ha(s = )
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< ¥ oE{nm) [ i

Dy €Ng(,5)
My, Loy + ML) [ (@l du} e,
0

Then we have
|Ri]‘(8)| + |Q”(S)| < Me_’\sBij()\)7 S € [O,tlL ’Lj e J. (36)
Combining (3.4) and (3.6)), we have
t tl t
|24 (t1)] = |2i5(0)e™ Jo* ass(wydu / e JotaiWdu (R, (s) + Qij(s))ds|

0

M _ - o
< et 4 / el =Nt g M B (M)
My 0

M ooy (€M =T By (V)
— o Yy M
7 a, — A (3.7)
< Mef,\tl{e(/\ia"’_j)t1 " [1-— e(/\fa”_j)tl]Bz‘j()\))}
o My a; — A
= Me (L _ By )emeiin 4 B 3
Mo a;; — A ag; —A
Then, by (3.1) and (3.2, we deduce that
|2ij(t)| < Me™ 1, ij € J. (3.8)

Recalling that
25 (t) = —ag;(t)2i5(t) + Riz(t) + Qiz (1),
by (3.6) and (3.7)), we have
|25 ()] = | = aij(t1)zi5(t1) + Rij(t1) + Qi (1))
< afilzig(t)] + |Rij(t)] +1Qij (1)

1 Bii( A - B;i(A _
<a;"jMe*)‘t1{( Bi;(M) ))6()‘ aiﬂ')t1+7j( )}+Me MIB ()

ﬁo B a; — A a; — A
e (g - 2w 0 )
Then, from it follows that
|20, (t)] < Me™ ij e J. (3.9)
Combining and , we obtain
l2(t0)ll < Me™*,
which contradicts with . Thus, we obtain
l2(t) ]l < Me™™,
for all ¢ € R. This completes the proof. O

Remark 3.2. Compared with the results in [I7], our Lipschitz conditions are
weaker, and thus our results may have a wider range of applications.
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Next, we give an example to illustrate our main results.

Example 3.3. Consider the following SICNNs with neutral delays:

(1) = —ai (1) (1) — CH0) [ Kyl (e~ u)dursy ()
CklENl(Zj (3 10)
S Y DO [ et - o) + L0,
Dy €N1(1,5)
where i =1,2,3, j =1,2,3. Fori,j =1,2,3 and t € R, let
1 1, 1 . .
f(t) = =|t|cost, g(t) = T: —(t*—=1), L) = §|sm V2t + sint|,
Kij(t) =€ 6t, Jlj(t) = 6_4t
Moreover,
an(t) aw(t) as(t) 54 [sint] 54 [sinv2t 9+ [sin V3|
az(t) az(t) axa(t)| = |64 |cost| 6+ M 7+ |cosV2t | >
azi(t) asa(t)  ass(t) 8+ |sint|  8+|sinv2t| 5+ |sin /3t
Ci1(t) Cra(t) Ci3(t) 0.1]sint| 0.3]sinv/2t| 0.5]sin /3t
Co1(t) Caa(t) Coz(t) | = [0.2|cost| 0.1]cosv/2t| 0.2|cos /3t
Cs1(t) Csa(t) Css(t) 0.1|sint| 0.2]sinv/2t| 0.1|cos+/3t
Di1(t)  Dia(t) Dis(?) 0.1]cost| 0.3]cosv/2t| 0.5]cos/3t|
Doi(t) Daa(t) Das(t) | = [ 0.2]sint| 0.1]sinv/2t| 0.2]sin/3t
D31 (t) Dsa(t) Das(t) 0.1/ cost| 0.2|cosv/2t| 0.1]|cos+/3t
Let d =1, Ao =1, f1(t) = §t], fo(z) = § cost, g1(t) = $(t—1), g2(t) = T(t+1).
By a direct calculation, we obtain Ly = Ly, = %, Ly =Ly, = i, My, = Mf2 %,
Mgy, = Mgy, = %, L. = 1. Then, it is easy to see that (H1)-(H3) hold.

Next, let us verify (H4). We have

a1 G2 Qg3
Qo1 Qoo  Ggg
a3zp Gzp agg

ZCkleNl(l,l) Cﬁ
chleNl(m) Cﬁ
Lewem Cil
ZDkleNl(l,l) %
ZDkzeNl(l,l) D7§i
ZDMeNl(l,l) D]:ﬁ

|
0 o o
w0 o ot

kl
ZCMENl(Ll) G
kl
chzeNl(l,l) 022

kl
ZCMENl(l,l) C32

kl
ZDMGNl(l,l) ‘D12
kl
ZDkZGNl(l,l) D22
kl
ZDMGNl(l,l) ‘D32

9
aE
5

+ + +
a}i} CL£}2 a}g
a%rl a%r2 a%rg)
az; Gzp Ggg

Kl
chleNl(l,l) Crs
kl
chleNl(l,l) 33
Kl
chleNl(l,l) Cs3

kl
ZDleNl(l,l) ‘D13
kl
ZDklENl(l,l) D23

Kl
ZDkleNl(l,l) D3y

6
=17
9

—

0
8|,
6

NolEN i ep}

07 14 1.1
18 141,

06 0.9 0.6

07 14 1.1
18 141,

06 0.9 0.6
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Aj= Y T M) [ 1wl
Cri€N1(i,5) 0

- S DH(dM,,M,,) / T 00
Dt €N (i,5) 0

5 -
-5 2 G

Cri€N1(4,5)

By0) = 3 CHn M) [ 1w

Cri€N1(i,5)

A0y Ly + My L) [ 1Kl

vy DR M) [ 1)
Dii€N:(i,) 0

A0y Ly + Mo L) [ 1750

1 -
=7 > Ck

Cri€N1(i,5)

Then, we obtain

A Az A % % %
Ao Az Agz | = A
Az1 Az Ass s 15 is
B11(0)  Bi2(0) Bi3(0) % 4 L1
Bar(0) Bu(0) Bu(0)| = | 1 i 1a
Bs1(0) Bs2(0) Bss(0) g5 09 06
It follows that
Ay + L, Ay + L
1, 1 + —
maX{{.g.lg;;{%}»g.lg{%(aiﬁaij)}}
Aij+ij + -
= Eleg)J({ a;j (aij + al-j)}
a;+a
< (max A, + max L) max { L—1}
ijed ijed 97 Gjeq a;;
1yaj; +a
— (Agy + 2) 31T 0
(22 4) a1y
9 1, 11
— 2y Mooy
(48 4) ) ’

and

max { maX{Bij(())},maX{Bl;ii())(a;; + a;)}}

Ges " ay; ijed

_ Bi;(0), ., _
- ey (2054 5)
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+ -
a'.+a;.
< B;: i i
< et By O max (==
+ —
a1 +a
2322(0) 11 7 11
ag
1.8 11
= — < 1.
4 5

Thus, condition (H4) holds. By Theorem and Theorem Equation ([3.10)
admits a unique differentiable almost periodic solution z*(t) in the region Q = {¢ €
X i |lellx <1}, and x*(¢) is locally exponentially stable in €.

Remark 3.4. In Example let the iterative sequences x,,(t) = {xn,, (t)} be
o, () =0, WtER, i=1,23 j=123

and
t
T, (t) = / e fst aij (u)du
(= X e [ K- o)z,
Cri€N1(i,5) 0
= Y DO [ gl s - ) s, () + Ly ()] ds,
Dy €N1(i,5)

forallt e R, i=1,2,3,j=1,2,3,and n=1,2,3,.... From the proof of Theorem
it follows

||(En—(E*HX _>01 n — oo,
where x* is the unique almost periodic solution of in the region Q = {p €
X : |lgllx < 1}. So one can use this method to compute numerically the almost
periodic solution z*.

Remark 3.5. In the above example, f and g do not satisfy the global Lipschitz
condition. So the results in [I7] can not be applied to this example.
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