\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 22, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/22\hfil Existence, uniqueness and other properties] {Existence, uniqueness and other properties of the limit cycle of a generalized \\ Van der Pol equation} \author[X. Ioakim \hfil EJDE-2014/22\hfilneg] {Xenakis Ioakim} % in alphabetical order \address{Xenakis Ioakim \newline Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus} \email{xioaki01@ucy.ac.cy} \thanks{Submitted June 22, 2013. Published January 10, 2014.} \subjclass[2000]{34C07, 34C23, 34C25} \keywords{Generalized Van der Pol equation; limit cycles; existence; uniqueness} \begin{abstract} In this article, we study the bifurcation of limit cycles from the linear oscillator $\dot{x}=y$, $\dot{y}=-x$ in the class $$ \dot{x}=y,\quad \dot{y}=-x+\varepsilon y^{p+1}\big(1-x^{2q}\big), $$ where $\varepsilon$ is a small positive parameter tending to 0, $p \in \mathbb{N}_0$ is even and $q \in \mathbb {N}$. We prove that the above differential system, in the global plane where $p \in \mathbb{N}_0$ is even and $q \in \mathbb{N}$, has a unique limit cycle. More specifically, the existence of a limit cycle, which is the main result in this work, is obtained by using the Poincar\'{e}'s method, and the uniqueness can be derived from the work of Sabatini and Villari \cite{SV}. We also investigate and some other properties of this unique limit cycle for some special cases of this differential system. Such special cases have been studied by Minorsky \cite{M} and Moremedi et al.~\cite{MMG}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we study the second part of Hilbert's 16th problem for a generalized Van der Pol equation. More specifically, we consider the system \begin{equation} \begin{gathered} \dot{x}=y, \\ \dot{y}=-x+\varepsilon y^{p+1}\big(1-x^{2q}\big), \end{gathered} \label{gVdP1} \end{equation} where $p \in \mathbb{N}_0$ is even, $q \in \mathbb{N}$ and $0 < \varepsilon \ll 1$. System \eqref{gVdP1} reduces to the Van der Pol equation for $p=0$ and $q=1$. Our purpose here is to find an upper bound for the number of limit cycles for system \eqref{gVdP1}, depending only on the degree of its polynomials. System \eqref{gVdP1} is the generalized Van der Pol equation of the form \begin{equation} \ddot{x}-\varepsilon(\dot{x})^{p+1}\big(1-x^{2q}\big)+x=0, \label{gVdPeq 1} \end{equation} where $p \in \mathbb{N}_0$ is even, $q \in \mathbb{N}$ and $0 < \varepsilon \ll 1$. We search to find an upper bound for the number of limit cycles for equation \eqref{gVdPeq 1}, depending only on $p$ and $q$. We prove that the generalized Van der Pol equation \eqref{gVdPeq 1} has a unique limit cycle, and it is simple and stable. We also examine the manner in which the position and size of the limit cycle depend on $p$ and $q$. Several other generalizations of the Van der Pol equation have been considered in the literature. Minorsky \cite{M} has considered a generalized Van der Pol equation of the form \begin{equation} \ddot{x}-\varepsilon\dot{x}\big(1-x^{2q}\big)+x=0, \label{gVdPeq M} \end{equation} where $q \in \mathbb{N}$ and $0 < \varepsilon \ll 1$. For $q=1$, equation \eqref{gVdPeq M} reduces to the Van der Pol equation. For $p=0$ equations \eqref{gVdPeq 1} and \eqref{gVdPeq M} are identical. By applying a perturbation method, he showed for \eqref{gVdPeq M} that the stationary amplitude $A_0$, to first order in $\varepsilon$, is \begin{equation} A_0=\Big(\frac{\int_0^{2\pi}\sin^{2}(t)\,dt}{\int_0^{2\pi} \sin ^{2}(t)\cos^{2q}(t)\,dt}\Big)^{1/(2q)}. \label{ampl} \end{equation} For $q=1, \, 2$ and 3, Minorsky found from \eqref{ampl} that $A_0=2, \, 1.68$ and 1.53, respectively. The solution of the generalized Rayleigh equation \begin{equation} \ddot{y}-\varepsilon\dot{y}\Big(1-\frac{1}{2q+1}(\dot{y}) ^{2q}\Big) +y=0, \label{g Rayleigh eq} \end{equation} where $q \in \mathbb{N}$, is closely related to the solution of \eqref{gVdPeq M}. For, if we differentiate \eqref{g Rayleigh eq} with respect to $t$ and let $\dot{y}=x$, then $x$ satisfies \eqref{gVdPeq M}. Hence, results for \eqref{g Rayleigh eq} can be derived from the corresponding results for \eqref{gVdPeq M}. Holmes and Rand \cite{HR} have examined the qualitative behaviour of the non-linear oscillations governed by a differential equation of the form \[ \ddot{x}+\dot{x}\big(\alpha+\gamma x^{2}\big)+\beta x+\delta x^{3}=0, \] where $\alpha,\,\beta,\,\gamma$ and $\delta$ are constants; $\alpha=-1$, $\beta=1$, $\gamma=1$ and $\delta=0$ corresponds to the Van der Pol equation. They investigated the presence of local and global bifurcations and considered their physical significance. A more general class of equations, containing \eqref{gVdPeq 1} as a special case, has the form \begin{equation} \ddot{x}+\dot{x}\phi(x,\dot{x})+x=0, \label{g cl eq} \end{equation} and was studied in \cite{S} and \cite{S1}. They obtained conditions about the existence and uniqueness of limit cycles of \eqref{g cl eq}. In general, we observe that the existence and uniqueness theorem for limit cycles of \eqref{g cl eq} proved there does not apply for equation \eqref{gVdPeq 1}. The plan of this paper is as follows. In Section 2 we will make some elementary remarks about small perturbation of a Hamiltonian system. Section 3 will be devoted to study system \eqref{gVdP1}. \section{Elementary remarks about small perturbation of a Hamiltonian system} We consider the system \begin{equation} \begin{gathered} \dot{x}=y+\varepsilon f_1(x,y), \\ \dot{y}=-x+\varepsilon f_2(x,y), \end{gathered} \label{f1,f2} \end{equation} where $0 < \varepsilon \ll 1$ and $f_1, \, f_2$ are $C^{1}$ functions of $x$ and $y$, which is a perturbation of the linear harmonic oscillator \begin{align*} \dot{x}=y, \\ \dot{y}=-x, \end{align*} which has all the solutions periodic with: \[ x^{0}(t) = A\cos(t-t_0) \quad \text{and} \quad y^{0}(t) = -A\sin(t-t_0). \] In general, the phase curves of \eqref{f1,f2} are not closed and it is possible to have the form of a spiral with a small distance of order $\varepsilon$ between neighboring turns. In order to decide if the phase curve approaches the origin or recedes from it, we consider the function (mechanic energy) \[ E(x,y)=\frac{1}{2}\big(x^{2}+y^{2}\big). \] It is easy to compute the derivative of the energy and it is proportional to $\varepsilon$: \begin{equation} \frac{d}{dt}E(x,y)=x\dot{x}+y\dot{y}=\varepsilon\big(xf_1(x,y) + yf_2(x,y)\big)=:\varepsilon\dot{E}(x,y). \label{energy} \end{equation} We want information for the sign of the quantity \begin{equation} \int_0^{T(\varepsilon)}\varepsilon\dot{E}\big(x^{\varepsilon}(t), y^{\varepsilon}(t)\big)dt=:\Delta E, \label{quantity} \end{equation} which corresponds to the change of energy of $(x^{\varepsilon}(t),y^{\varepsilon}(t))$ in one complete turn: $y^{\varepsilon}(0) = y^{\varepsilon}(T(\varepsilon)) = 0$. Using the theorem of continuous dependence on parameters in ODEs, one can prove the following lemma (see \cite{A}): \begin{lemma} \label{lem2.1} For \eqref{quantity} we have \begin{equation} \Delta E=\varepsilon\int_0^{2\pi}\dot{E}\big(A\cos(t-t_0), -A\sin(t-t_0)\big)dt+o(\varepsilon). \label{quantity 1} \end{equation} \end{lemma} Let \begin{equation} F(A):=\int_0^{2\pi}\dot{E}\big(x^{0}(t),y^{0}(t)\big)dt, \label{FA} \end{equation} and we write \eqref{quantity 1} as \[ \Delta E = \varepsilon\Big[F(A)+\frac{o(\varepsilon)}{\varepsilon}\Big]. \] Using the implicit function theorem, one can prove the following theorem, which is the Poincar\'{e}'s method (see \cite{A}): \begin{theorem} \label{thm2.1} If the function $F$ given by \eqref{FA}, has a positive simple root $A_0$, namely \[ F(A_0) = 0 \quad \text{and} \quad F'(A_0) \neq 0, \] then \eqref{f1,f2} has a periodic solution with amplitude $A_0 + O(\varepsilon)$ for $0 < \varepsilon \ll 1$. \end{theorem} \section{The non-linear equation $\ddot{x}-\varepsilon(\dot{x})^{p+1}\big(1-x^{2q}\big)+x=0$} In this section, we prove that system \eqref{gVdP1} has a unique limit cycle, and it is simple and stable. We present this main result in Theorem \ref{thm3.1}. In Proposition \ref{prop3.1} we study the system \eqref{gVdP1}, with $p \in \mathbb{N}_0$ is even, $q \in \mathbb{N}$ satisfying $p + 2 = 2q$. The system \eqref{gVdP1}, in the case where $p = 0$ and $q \to \infty$ will be studied in Proposition \ref{prop3.2} and in the case where $q = 1$ and $p \to \infty$ will be studied in Proposition \ref{prop3.3}. Our main result in this section is given in the following theorem. \begin{theorem} \label{thm3.1} System \eqref{gVdP1}, where $p \in \mathbb{N}_0$ is even, $q \in \mathbb{N}$ and $0 < \varepsilon \ll 1$ has the unique limit cycle \[ x^{2}+y^{2}=\Big[\frac{(p+2q+2)(p+2q)\ldots(2q+2)}{(p+2)p \ldots4\cdot2}\frac{2q(2q-2)\ldots4\cdot2} {(2q-1)(2q-3)\ldots3\cdot1} \Big]^{1/q}+O(\varepsilon), \] and it is simple and stable. \end{theorem} \begin{proof} From \eqref{energy} we have \begin{equation} \dot{E}(x,y)=y^{p+2}\big(1-x^{2q}\big), \label{energy 1} \end{equation} where $p \in \mathbb{N}_0$ is even and $q \in \mathbb{N}$. Substituting \eqref{energy 1} into \eqref{FA}, we obtain that \begin{equation} F(A)=\int_0^{2\pi}(y^{0}(t))^{p+2}\big(1-(x^{0}(t))^{2q}\big)dt, \label{FA 1} \end{equation} where $p \in \mathbb{N}_0$ is even and $q \in \mathbb{N}$. Substituting $x^{0}(t) = A\cos(t-t_0)$ and $y^{0}(t) = -A\sin(t-t_0)$ into \eqref{FA 1}, and using the assumption that $p \in \mathbb{N}_0$ is even we get \begin{equation} F(A)=A^{p+2}\Big[\int_0^{2\pi}\sin^{p+2}(t-t_0)dt-A^{2q} \int_0^ {2\pi}\sin^{p+2}(t-t_0)\cos^{2q}(t-t_0)dt\Big]. \label{FA 2} \end{equation} Let \begin{gather*} c_1:=\int_0^{2\pi}\sin^{p+2}(t-t_0)dt,\\ c_2:=\int_0^{2\pi}\sin^{p+2}(t-t_0)\cos^{2q}(t-t_0)dt, \end{gather*} where $p \in \mathbb{N}_0$ is even and $q \in \mathbb{N}$. Using the fact that \[ c_1=4\int_0^{\pi/2}\sin^{p+2}(t-t_0)dt, \] from Proposition \ref{prop4.2}, we obtain \[ c_1=2\frac{(p+1)(p-1)\ldots3\cdot1}{(p+2)p\ldots4\cdot2}\pi. \] Using the fact that \[ c_2=4\int_0^{\pi/2}\sin^{p+2}(t-t_0)\cos^{2q} (t-t_0)dt, \] from Proposition \ref{prop4.1}, we obtain \[ c_2=2\frac{(p+1)(p-1)\ldots5\cdot3\cdot1}{(p+2q+2)(p+2q) \ldots(2q+2)}\frac{(2q-1)(2q-3)\ldots3\cdot1}{2q(2q-2) \ldots4\cdot2}\pi. \] Substituting $c_1$ and $c_2$ given as above into \eqref{FA 2} it follows that \begin{align*} F(A)&=2\pi A^{p+2}\Big[\frac{(p+1)(p-1)\ldots3\cdot1}{(p+2)p\ldots 4\cdot2}\\ &\quad -\frac{(p+1)(p-1)\ldots5\cdot3\cdot1}{(p+2q+2)(p+2q)\ldots (2q+2)} \frac{(2q-1)\ldots3\cdot1}{2q\ldots4\cdot2}A^{2q}\Big]. \end{align*} Now, for $A > 0$ the polynomial $F$ has the root \[ A=\Big[\frac{(p+2q+2)(p+2q)\ldots(2q+2)}{(p+2)p\ldots4\cdot2} \frac{2q(2q-2)\ldots4\cdot2}{(2q-1)(2q-3)\ldots3\cdot1} \Big]^{1/(2q)}. \] Let \begin{equation} A_0=A_0(p,q):=\Big[\frac{(p+2q+2)(p+2q)\ldots(2q+2)}{(p+2)p \ldots4\cdot2}\frac{2q(2q-2)\ldots4\cdot2}{(2q-1)(2q-3)\ldots3 \cdot1}\Big] ^{1/(2q)}, \label{ampl 1} \end{equation} where $p \in \mathbb{N}_0$ is even and $q \in \mathbb{N}$. For the derivative of $F$ we have that \[ \begin{aligned} F'(A)&=2\pi A^{p+1}\Big[\frac{(p+1)(p-1)\ldots3\cdot1}{p(p-2)\ldots 4\cdot2}\\ &\quad -\frac{(p+1)(p-1)\ldots3\cdot1}{(p+2q)(p+2q-2)\ldots(2q+2)} \frac{(2q-1)\ldots3\cdot1}{2q\ldots4\cdot2}A^{2q}\Big]. \end{aligned} \] We compute the derivative of $F$ at $A_0$ and we get \[ F'(A_0)=-4\pi A_0^{p+1}\frac{(p+1)(p-1)\ldots3\cdot1} {(p+2)p\ldots4\cdot2}\cdot q \neq 0, \] using the assumptions that $p \in \mathbb{N}_0$ is even, $q \in \mathbb{N}$ and $A_0 > 0$. So, from Theorem \ref{thm2.1}, it follows that \eqref{gVdP1} has a limit cycle close to the circle $x^{2} + y^{2} = A_0^{2}$. Moreover, since $F'(A_0) < 0$, this limit cycle is simple and stable. Let now prove that the number of limit cycles for system \eqref{gVdP1}, with $\varepsilon$ small is exactly one. The proof of this can be derived from the work of Sabatini and Villari \cite{SV} using Corollary 1 proved there. We first note that the system \eqref{gVdP1} can be written and in the form \begin{gather*} \dot{x}=y-\varepsilon x^{p+1}\big(y^{2q}-1\big), \\ \dot{y}=-x, \end{gather*} where $p \in \mathbb{N}_0$ is even, $q \in \mathbb{N}$ and $0 < \varepsilon \ll 1$. As we already saw, Poincar\'{e}'s method (see Theorem \ref{thm2.1}) ensures the existence of a limit cycle for \eqref{gVdP1}. Since $a=-1, b=1, G(x)=\frac{x^2}{2}$, one has $G(a)=G(b)$, so the hypotheses of Corollary 1 hold (see \cite{SV}), and the system \eqref{gVdP1} has exactly one limit cycle. This completes the proof that \eqref{gVdP1} has exactly one limit cycle. So, we prove that \eqref{gVdP1} has a unique limit cycle, and it is simple and stable. \end{proof} \begin{remark} \rm The expression \eqref{ampl} obtained by Minorsky, is a special case of the expression \eqref{ampl 1} which we found. Indeed, for $p=0$ it can be verified that \eqref{ampl 1} equals \eqref{ampl}. This may be done by evaluating the integral in the denominator of \eqref{ampl}, using the Proposition \ref{prop4.1} from the appendix. \end{remark} \begin{proposition} \label{prop3.1} System \eqref{gVdP1}, with $p \in \mathbb{N}_0$ is even, $q \in \mathbb{N}$ satisfying $p + 2 = 2q$, and $0 < \varepsilon \ll 1$ has the unique limit cycle $x^{2} + y^{2} = 4 + O(\varepsilon)$, and it is simple and stable. \end{proposition} \begin{proof} From Theorem \ref{thm3.1} it follows that system \eqref{gVdP1}, with $p \in \mathbb{N}_0$ is even, $q \in \mathbb{N}$ and $0 < \varepsilon \ll 1$ has a unique limit cycle, and it is simple and stable. It remains to prove that \begin{equation} \Big[\frac{(p+2q+2)(p+2q)\ldots(2q+2)}{(p+2)p\ldots4\cdot2} \frac{2q(2q-2)\ldots4\cdot2}{(2q-1)(2q-3)\ldots3\cdot1}\Big]^{1/q}=4, \label{remains} \end{equation} when $p + 2 = 2q$. By the assumption that $p + 2 = 2q$ the left-hand side of \eqref{remains} gives \[ \Big[\frac{2^{q}(2q)(2q-1)(2q-2)\ldots(q+2)(q+1)} {(2q-1)(2q-3)(2q-5)\ldots5\cdot3\cdot1}\Big]^{1/q} =2\Big[\frac{2q(2q-1)\ldots(q+2)(q+1)} {(2q-1)(2q-3)\ldots5\cdot3\cdot1}\Big]^{1/q}. \] Hence it suffices to show that \[ \Big[\frac{2q(2q-1)(2q-2)\ldots(q+2)(q+1)} {(2q-1)(2q-3)(2q-5) \ldots5\cdot3\cdot1}\Big]^{1/q}=2. \] \noindent\textbf{Claim.} It is valid that \[ \frac{2q(2q-1)(2q-2)\ldots(q+2)(q+1)}{(2q-1)(2q-3)(2q-5) \ldots 5\cdot3\cdot1}=2^{q}, \quad \forall q \in \mathbb{N}. \] \begin{proof} It will be proved by induction on $q$. For $q = 1$, we have $\frac{2}{1} = 2^{1}$, therefore the claim is valid for $q = 1$. Supposing that the claim is valid for $q$, we will prove that it is true and for $q+1$, namely \begin{equation} \frac{\big[2(q+1)\big](2q+1)(2q)(2q-1)\ldots(q+3)(q+2)} {(2q+1)(2q-1)(2q-3)(2q-5)\ldots5\cdot3\cdot1}=2^{q+1}. \label{claim} \end{equation} The left-hand side of \eqref{claim} is equal to \[ 2(q+1)\frac{2q(2q-1)(2q-2)\ldots(q+2)}{(2q-1)(2q-3)\ldots5\cdot 3\cdot1} =2\cdot2^{q}=2^{q+1}, \] which is the right-hand side of \eqref{claim}. Therefore, the claim is valid for every $q \in \mathbb{N}$. \end{proof} This completes the proof of the proposition. \end{proof} \begin{remark} \rm It is well known that the Van der Pol equation with $0 < \varepsilon \ll 1$ has the unique limit cycle $x^{2} + y^{2} = 4 + O(\varepsilon)$, and it is simple and stable. This arises and from Proposition \ref{prop3.1} with $p = 0$ and $q = 1$. \end{remark} In the next proposition, we give a different proof, much more elementary than the proof has been given by Moremedi et al.~\cite{MMG}, concerning the decreases of the amplitude of the limit cycle of system \eqref{gVdP1} with $p = 0$ and $0 < \varepsilon \ll 1$, as $q$ increases. \begin{proposition} \label{prop3.2} System \eqref{gVdP1}, with $p = 0, \, q \in \mathbb{N}$ and $0 < \varepsilon \ll 1$ has a unique limit cycle which is simple, stable and its amplitude decreases monotonically from $2$ to $1$ as $q$ increases from $q=1$. Therefore, the unique limit cycle of the system \eqref{gVdP1}, with $p = 0$ has the equation $x^{2} + y^{2} = 1 + O(\varepsilon)$ as $q \to \infty$. \end{proposition} \begin{proof} From Theorem \ref{thm3.1} it follows that system \eqref{gVdP1}, with $p = 0, \, q \in \mathbb{N}$ and $0 < \varepsilon \ll 1$ has a unique limit cycle, and it is simple and stable. From \eqref{ampl 1} when $p = 0$ it follows that \[ A_0=\Big[\frac{2q+2}{2}\frac{2q(2q-2)\ldots4\cdot2} {(2q-1)(2q-3) \ldots3\cdot1}\Big]^{1/(2q)}. \] Let \begin{equation} A_0(q):=\Big[\frac{2q+2}{2}\frac{2q(2q-2)\ldots4\cdot2} {(2q-1)(2q-3)\ldots3\cdot1}\Big]^{1/(2q)}, \quad q\in \mathbb{N}. \label{ampl p0} \end{equation} Clearly, $A_0(1) = 2$. In order to prove that the sequence $A_0(q), \, q\in \mathbb{N}$ given by \eqref{ampl p0} is strictly decreasing we must show that $A_0(q+1) < A_0(q)$ for all $q \in \mathbb{N}$. We have that \begin{align*} A_0(q+1) &=\big[\frac{2q+4}{2}\frac{(2q+2)(2q)\ldots4\cdot 2}{(2q+1)(2q-1)\ldots3\cdot1} \big]^{\frac{1}{2(q+1)}} \\ &=\big[\frac{2q+4}{2q+1}\big]^{\frac{1}{2(q+1)}} \big[\frac{2q+2}{2}\frac{2q(2q-2)\ldots4\cdot2}{(2q-1)(2q-3)\ldots 3\cdot1} \big]^{\frac{1}{2q}-\frac{1}{2q(q+1)}} \\ &=\big[s(q)\big]^{\frac{1}{2(q+1)}}A_0(q), \end{align*} where \[ s(q)=\frac{2q+4}{2q+1}\big[\frac{1}{q+1}\frac{(2q-1)(2q-3)\ldots3 \cdot1}{2q(2q-2)\ldots4\cdot 2}\big]^{1/q}, \quad q\in \mathbb{N}. \] Now, in order to show that $A_0(q+1) < A_0(q)$, it suffices to show that $s(q) < 1$ for all $ q \in \mathbb{N}$. We have that \[ s(q)<\frac{2q+4}{2q+1}\frac{1}{(q+1)^{1/q}}. \] \noindent\textbf{Claim I.} It is valid that \begin{equation} \frac{2q+4}{2q+1}\le(q+1)^{1/q}, \quad \forall \, q \in \mathbb{N}. \label{claim I} \end{equation} \begin{proof} The inequality \eqref{claim I} is valid for $q=1,\ldots,5$, as it can easily be checked. In order to prove \eqref{claim I} for $q \in \mathbb{N}, \, q \geq 6$ we will show that \begin{equation} 1+\frac{2}{q} < q^{1/q} \Longleftrightarrow \big(1+\frac{2}{q}\big)^{q}\frac{q}{(q+1)(q+2)}, \] the proof that the sequence $\big(1+\frac{2}{q}\big)^{q}$, $q \in \mathbb{N}$ is strictly increasing is complete. So, we have proved the inequality \eqref{claim I} for every $q \in \mathbb{N}$. Therefore, \[ s(q) < 1, \quad \forall q \in \mathbb{N}, \] which proves that the sequence $A_0(q)$, $q \in \mathbb{N}$ is strictly decreasing. Now, note that \eqref{ampl p0} gives \begin{equation} A_0(q)=[(q+1)^{1/q}]^{1/2} [(2q+1)^{1/(2q)}]^{1/2} \Big[\frac{1}{2q+1}\Big(\frac{2q(2q-2)\ldots4\cdot2} {(2q-1)(2q-3)\ldots3\cdot1} \Big)^{2}\Big]^{1/(4q)}. \label{ampl p0 1} \end{equation} \end{proof} \noindent\textbf{Claim II.} It is valid that \begin{equation} \lim_{q\to\infty}\Big[\frac{1}{2q+1} \Big(\frac{2q(2q-2)\ldots4\cdot2}{(2q-1)(2q-3)\ldots3\cdot1} \Big)^{2} \Big]^{1/(4q)}=1. \label{claim II} \end{equation} \begin{proof} From the inequality $0 < \sin t < 1$, $t \in (0,\pi/2)$ (with induction) we have that $\sin^{2q+1}t < \sin^{2q}t < \sin^{2q-1}t$, for every $t \in (0,\pi/2)$ and $q \in \mathbb{N}$. So, we have that \begin{equation} \int_0^{\pi/2}\sin^{2q+1}t\,dt<\int_0^{\pi/2}\sin^{2q}t\,dt <\int_0^{\pi/2}\sin^{2q-1}t\,dt. \label{int} \end{equation} Using Proposition \ref{prop4.2} from the appendix, \eqref{int} leads to \begin{equation} \frac{1\cdot3\ldots(2q-1)}{2\cdot4\ldots(2q-2)} <\frac{2\cdot4\ldots (2q-2)2q}{1\cdot3\ldots(2q-3)(2q-1)}\frac{2}{\pi} <\frac{1\cdot3 \ldots(2q+1)}{2\cdot4\ldots2q}. \label{leads to} \end{equation} Multiplying \eqref{leads to} by \[ \frac{2\cdot4\ldots(2q-2)2q}{1\cdot3\ldots(2q-1)(2q+1)}\frac{\pi }{2}, \] we get \begin{equation} \frac{2q}{2q+1}\frac{\pi}{2}<\frac{1}{2q+1} \big[\frac{2\cdot 4\ldots(2q-2)2q}{1\cdot3\ldots(2q-3)(2q-1)}\big]^{2} <\frac{\pi }{2}, \label{we get} \end{equation} and then the inequality \[ \Big(\frac{2q}{2q+1}\Big)^{1/(4q)}\Big(\frac{\pi}{2} \Big)^{1/(4q)} <\Big[\frac{1}{2q+1}\Big(\frac{2\cdot 4\ldots(2q-2)2q}{1\cdot3\ldots(2q-3)(2q-1)} \Big)^{2}\Big]^{1/(4q)}<\Big(\frac{\pi}{2}\Big)^{1/(4q)}, \] implies \eqref{claim II}. \end{proof} Using \eqref{claim II}, from \eqref{ampl p0 1}, we easily obtain $\lim_{q\to\infty}A_0(q) = 1$. The proof of Proposition \ref{prop3.2} is complete. \end{proof} \begin{remark} \rm The uniqueness of the limit cycle for the system \eqref{gVdP1}, with $p = 0, \, q \in \mathbb{N}$ studied in Proposition \ref{prop3.2} follows and from the fact that the function $\phi(x,y)=-\varepsilon (1-x^{2q})$ is strictly star-shaped (see \cite{S},\cite{S1}). \end{remark} \begin{remark} \rm From \eqref{we get} it follows that \[ \lim_{q\to\infty}\frac{1}{2q+1} \Big[\frac{2\cdot4\ldots(2q-2)2q}{1\cdot3\ldots(2q-3)(2q-1)} \Big]^{2} = \frac{\pi}{2}, \] which is the Wallis's product. It is exciting and unexpected how this limit of Wallis appears in the proof of Proposition \ref{prop3.2}. \end{remark} \begin{proposition} \label{prop3.3} System \eqref{gVdP1}, with $p \in \mathbb{N}_0$ is even, $q = 1$ and $0 < \varepsilon \ll 1$ has a unique limit cycle which is simple, stable and its amplitude increases monotonically from $2$ to infinity as $p$ increases from $p=0$. \end{proposition} \begin{proof} From Theorem \ref{thm3.1} it follows that system \eqref{gVdP1}, with $p \in \mathbb{N}_0$ is even, $q = 1$ and $0 < \varepsilon \ll 1$ has a unique limit cycle, and it is simple and stable. From \eqref{ampl 1} when $q = 1$ it follows that \[ A_0=\Big[\frac{(p+4)(p+2)p\ldots6\cdot4}{(p+2)p\ldots4\cdot2} \cdot \frac{2}{1}\Big]^{1/2}=(p+4)^{1/2}. \] Let $A_0(p):=(p+4)^{1/2}$, $p\in \mathbb{N}_0$ is even. Clearly, $A_0(0) = 2$. Obviously $A_0(p) < A_0(p+1)$, for all $p\in \mathbb{N}_0$ is even and $A_0(p) \to \infty$ as $p \to \infty$ and so the proof is complete. \end{proof} \begin{remark} \rm We make now an observation on the type of the bifurcation phenomenon of limit cycles encountered in Proposition \ref{prop3.3}. Not the ``large amplitude limit cycle" is encountered in Proposition \ref{prop3.3} but the ``medium amplitude limit cycle". For given $p$ the limit cycle of \eqref{gVdP1}, with $q = 1$, has a finite limiting radius and therefore is called ``medium amplitude limit cycle". When increasing $p$ also the radius of the limiting circle increases; in particular when $p \to \infty$ then the limiting radius also tends to $\infty$. The ``large amplitude limit cycle" would disappear at $\infty$ when the bifurcation parameter $\varepsilon$ tends to $0$. \end{remark} \section{Appendix} Here we list some important formulas used in Section 3 (see \cite{NGG}). \begin{proposition} \label{prop4.1} For each $m, \, n \in \mathbb{N}$ and even, \[ \int_0^{\pi/2}\sin^{m}(t)\cos^{n}(t)\,dt =\frac{(m-1)(m-3)\ldots5\cdot3\cdot1}{(m+n)(m+n-2)\ldots(n+2)} \frac{(n-1)(n-3)\ldots3\cdot1}{n(n-2)\ldots4\cdot2}\frac{\pi}{2}. \] \end{proposition} \begin{proposition} \label{prop4.2} For each $n \in \mathbb{N}$ \begin{gather*} \int_0^{\pi/2}\sin^{2n-1}(t)\,dt =\frac{2\cdot4\ldots (2n-2)}{1\cdot3\ldots(2n-1)},\\ \int_0^{\pi/2}\sin^{2n}(t)\,dt =\frac{1\cdot3\ldots (2n-1)}{2\cdot4\ldots2n}\frac{\pi}{2}. \end{gather*} \end{proposition} \subsection*{Acknowledgements} The author wishes to thank Nikolaos Alikakos for considering the generalized Van der Pol equation \eqref{gVdPeq 1}. I am grateful to Charalambos Evripidou for several helpful and stimulating discussions and comments. The author would also like to thank Yiorgos-Sokratis Smyrlis for his assistance in technical matters in the preparation of this paper and Dimitris Ioakim for improving the use of the English language. I would also like to express my sincere gratitude to the anonymous referees for their useful comments and suggestions. \begin{thebibliography}{10} \bibitem{A} V. I. Arnol'd; \emph{Ordinary Differential Equations}, {Springer-Verlag}, {1992}. \bibitem{HR} P. Holmes, D. Rand; \emph{Phase portraits and bifurcations of the non-linear oscillator: $\ddot{x}+\big(\alpha+\gamma x^{2}\big)\dot{x}+\beta x+\delta x^{3}=0$}, Int. J. Non-Linear Mechanics \textbf{15} (1980), 449--458. \bibitem{M} N. Minorsky; \emph{Non-Linear Oscillations}, {van Nostrand}, {Princeton}, {1962}. \bibitem{MMG} G. M. Moremedi, D. P. Mason, V. M. Gorringe; \emph{On the limit cycle of a generalized Van der Pol equation}, Int. J. Non-Linear Mechanics \textbf{28} (1993), 237--250. \bibitem{NGG} S. Negrepontis, S. Giotopoulos, E. Giannakoulias; \emph{Infinitesimal Calculus II a}, (in Greek), {Symmetria}, {Athens}, {1993}. \bibitem{SV} M. Sabatini, G. Villari; \emph{Limit cycle uniqueness for a class of planar dynamical systems}, Appl. Math. Lett. \textbf{19} (2006), 1180--1184. \bibitem{S} M. Sabatini; \emph{Existence and uniqueness of limit cycles in a class of second order ODE's with inseparable mixed terms}, Chaos Solitons Fractals \textbf{43} (2010), 25--30. \bibitem{S1} M. Sabatini; \emph{Existence and uniqueness of limit cycles in a class of second order ODE's}, {2010}, arXiv:1003.0803v1 [math.DS]. \end{thebibliography} \end{document}