\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 20, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/20\hfil Lower bounds for the blowup time] {Lower bounds for the blowup time of solutions to a nonlinear parabolic problem} \author[H. Li, W. Gao, Y. Han \hfil EJDE-2014/20\hfilneg] {Haixia Li, Wenjie Gao, Yuzhu Han} % in alphabetical order \address{Haixia Li \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{lihaixia0611@126.com} \address{Wenjie Gao \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{wjgao@jlu.edu.cn} \address{Yuzhu Han \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{yzhan@jlu.edu.cn} \thanks{Submitted December 20, 2013. Published January 10, 2014.} \subjclass[2000]{35K58, 35B44} \keywords{Blow-up time; lower bounds; gradient nonlinearity} \begin{abstract} In this short article, we study the blow-up properties of solutions to a parabolic problem with a gradient nonlinearity under homogeneous Dirichlet boundary conditions. By constructing an auxiliary function and by modifying the first order differential inequality technique introduced by Payne et al., we obtain a lower bound for the blow-up time of solutions in a bounded domain $\Omega\subset \mathbb{R}^n$ for any $n\geq3$. This article generalizes a result in \cite{Payne1}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} When dealing with a parabolic problem there are several interesting features to analyze, one of which is the so called finite time blow-up. The question of blow-up of solutions to nonlinear parabolic equations and systems has received considerable attention since the elegant work of Fujita \cite{Fujita66}. We refer to the interested readers the survey papers \cite{Bandle98,Galaktionov02,Levine90} and the book \cite{Quittner07}. In practical situations, one would like to know, among other things, whether the solutions blow up, and if so, at what time $T$ blow-up occurs. However, when the solution does blow up at some finite $T$, this time can seldom be determined explicitly, and much effort has been devoted to the calculation of bounds for $T$. Most of the methods used until recently can only yield upper bounds for $T$, which are of little value in particular situations when blow-up has to be avoided. By using the first-order differential inequality technique, lower bounds for the blow-up time of solutions to semilinear heat equations under different boundary conditions and suitable constraint on the data were obtained by Payne et al. \cite{Payne3,Payne06aa,Payne2,Payne1}. Thereafter, the differential inequality technique was successfully employed to derive lower bounds for the blow-up time of solutions to other parabolic problems, see \cite{Baghaei13,Bao13,Ding13,Payne10,Payne08jpam}. In this article, we shall study a parabolic problem with a gradient nonlinearity of the following form \begin{equation}\label{1.1} \begin{gathered} u_t=\Delta u+u^p-|\nabla u|^q, \quad (x,t) \in\Omega\times(0,T),\\ u(x,t)=0, \quad (x,t)\in\partial\Omega\times(0,T),\\ u(x,0)=u_0(x)\geq0, \quad x\in\Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^n$ with smooth boundary $\partial\Omega$, $\Delta$ and $\nabla$ are the Laplace and gradient operator with respect to $x$, respectively, $T$ is the possible blow-up time and $p, q>1$ are fixed (finite) parameters. In \cite{Chipot,Kawohl}, conditions on $p$, $q$ and $u_0(x)$ were given for which the solutions to \eqref{1.1} would blow up in finite time. In fact the restrictions on p and q were $$ 1
q$ is considered. \section{A lower bound for the blow-up time} In this section we seek a lower bound for the blow-up time $T$ of solutions to \eqref{1.1} in some appropriate measure. The idea of the proof of the following theorem is inspired by that in \cite{Baghaei13}. \begin{theorem}\label{thm2.1} Let $u(x,t)$ be the nonnegative classical solution of problem \eqref{1.1} for $p>q>1$ in a smooth bounded domain $\Omega\subset \mathbb{R}^n$ with $n\geq3$. Define $$ \varphi(t)=\int_{\Omega}u^k \mathrm{d}x, $$ where $k$ is a parameter restricted by the condition \begin{equation}\label{2.1} k>\max\Big\{1,\frac{(7n-16)(p-1)}{2},(q-1)(3n-8)\Big\}. \end{equation} If $u(x,t)$ blows up in the measure $\varphi$ at the finite time $T$, then $T$ is bounded from below as \begin{equation}\label{2.2} T\geq\int_{\varphi(0)}^{+\infty}\frac{1}{C_1+C_2\xi^{\frac{3n-6}{3n-8}}}d\xi, \end{equation} where $C_1$ and $C_2$ are positive constants which will be determined in the proof. \end{theorem} \begin{proof} Applying the divergence theorem to the first equation in \eqref{1.1}, we have \begin{equation} \label{2.3} \begin{aligned} \frac{\mathrm{d}\varphi}{\mathrm{d}t} &= k\int_{\Omega}u^{k-1}u_t\mathrm{d}x \\ &= k\int_{\Omega}u^{k-1}(\triangle u+u^p-|\nabla u|^q)\mathrm{d}x \\ &= k\int_{\Omega}u^{k-1}\triangle u\mathrm{d}x+k\int_{\Omega}u^{k+p-1} \mathrm{d}x-k\int_{\Omega}u^{k-1}|\nabla u|^2\mathrm{d}x \\ &= -\frac{4(k-1)}{k}\int_{\Omega}|\nabla u^{k/2}|^2\mathrm{d}x +k\int_{\Omega}u^{k+p-1}\mathrm{d}x\\ &\quad -\frac{kq^q}{(k+q-1)^q}\int_{\Omega}|\nabla u^{\frac{k+q-1}{q}}|^q\mathrm{d}x. \end{aligned} \end{equation} Moreover, from \cite[(2.10)]{Payne3} it follows that \begin{equation} \label{2.4} \int_{\Omega}|\nabla u^{\frac{k+q-1}{q}}|^q\mathrm{d}x \geq(\frac{2\sqrt{\lambda}}{q})^q\int_{\Omega}u^{k+q-1}\mathrm{d}x, \end{equation} where the positive constant $\lambda$ is the first eigenvalue of the problem \begin{equation}\label{2.5} \begin{gathered} \triangle w+\lambda w=0 \quad\text{in }\Omega,\\ w=0 \quad\text{on } \partial\Omega. \end{gathered} \end{equation} Thus by combining \eqref{2.3} with \eqref{2.4} we obtain \begin{equation} \label{2.6} \frac{\mathrm{d}\varphi}{\mathrm{d}t} \leq-\frac{4(k-1)}{k}\int_{\Omega}|\nabla u^{k/2}|^2\mathrm{d}x +k\int_{\Omega}u^{k+p-1}\mathrm{d}x -\frac{k(2\sqrt{\lambda})^q}{(k+q-1)^q}\int_{\Omega} u^{k+q-1}\mathrm{d}x. \end{equation} Noticing \eqref{2.1}, we can apply first H\"older's inequality and then Young's inequality to the second term on the right hand side of \eqref{2.3} to obtain \begin{equation} \label{2.7} \begin{aligned} \int_{\Omega}u^{k+p-1}\mathrm{d}x &\leq |\Omega|^{m_1}\Big(\int_{\Omega}u^{\frac{k(7n-14)}{7n-16}} \mathrm{d}x\Big)^{m_2} \\ &\leq m_1|\Omega|+m_2\int_{\Omega}u^{\frac{k(7n-14)}{7n-16}}\mathrm{d}x, \end{aligned} \end{equation} where $$ m_1=1-\frac{(k+p-1)(7n-16)}{k(7n-14)}\in(0,1),\quad m_2=\frac{(k+p-1)(7n-16)}{k(7n-14)}\in(0,1). $$ Combining \eqref{2.7} and \eqref{2.6} yields \begin{equation} \label{2.8} \begin{aligned} \frac{\mathrm{d}\varphi}{\mathrm{d}t} &\leq-\frac{4(k-1)}{k}\int_{\Omega}|\nabla u^{k/2}|^2\mathrm{d}x +km_1|\Omega|+km_2\int_{\Omega}u^{\frac{k(7n-14)}{7n-16}}\mathrm{d}x \\ &\quad -\frac{k(2\sqrt{\lambda})^q}{(k+q-1)^q}\int_{\Omega} u^{k+p-1}\mathrm{d}x. \end{aligned} \end{equation} We now use H\"{o}lder's inequality in the third term on the right hand side of \eqref{2.8}: \begin{equation}\label{2.9} \int_{\Omega}u^{\frac{k(7n-14)}{7n-16}}\mathrm{d}x \leq\Big(\int_{\Omega}u^k\mathrm{d}x\Big)^{\alpha} \Big(\int_{\Omega}u^{\frac{k}{2}\frac{2n}{n-2}}\mathrm{d}x\Big)^{1-\alpha}, \end{equation} where $0<\alpha=\frac{2(3n-7)}{7n-16}<1$. Next, using the Sobolev inequality for $W_0^{1,2}\hookrightarrow L^{\frac{2n}{n-2}}$ ($n\geq3$) \cite{Talenti}), we obtain \begin{equation}\label{2.10} \|u^{k/2}\|_{L^{\frac{2n}{n-2}}}^{\frac{2n(1-\alpha)}{n-2}} \leq C_s^{\frac{2n(1-\alpha)}{n-2}}\|\nabla u^{k/2} \|_{L^2}^{\frac{2n(1-\alpha)}{n-2}}, \end{equation} where $C_s=\big(\frac{1}{n(n-2)\pi}\big)^{1/2} \big(\frac{n!}{2\Gamma(\frac{n}{2}+1)}\big)^{1/n}$ is the best imbedding constant (see \cite[Chap. 7]{Gilbarg}). By substituting \eqref{2.10} into \eqref{2.9}, we arrive at \begin{equation} \label{2.11} \int_{\Omega}u^{\frac{k(7n-14)}{7n-16}}\mathrm{d}x \leq C_s^{\frac{2n(1-\alpha)}{n-2}}\Big(\int_{\Omega}u^k\mathrm{d}x\Big)^{\alpha} \Big(\int_{\Omega}|\nabla u^{k/2}|^2\mathrm{d}x\Big)^{\frac{n(1-\alpha)}{n-2}}, \end{equation} which, with the help of Young's inequality, gives \begin{equation} \label{2.12} \int_{\Omega}u^{\frac{k(7n-14)}{7n-16}}\mathrm{d}x \leq\frac{C_s^{\frac{n}{3n-8}}(6n-16)}{(7n-16)\varepsilon_1^{\frac{n}{2(3n-8)}}} \Big(\int_{\Omega}u^k\mathrm{d}x\Big)^\frac{3n-7}{3n-8} +\frac{n(1-\alpha)\varepsilon_1}{n-2}\int_{\Omega}|\nabla u^{k/2}|^2\mathrm{d}x. \end{equation} Here $\varepsilon_1$ is a positive constant to be determined later. By H\"older's inequality, we have \begin{eqnarray}\label{2.13} \int_{\Omega}u^{q+k-1}\mathrm{d}x \geq |\Omega|^{-\frac{q-1}{k}}\Big(\int_{\Omega}u^k\mathrm{d}x \Big)^{1+\frac{q-1}{k}}. \end{eqnarray} Combining \eqref{2.12} and \eqref{2.13} with \eqref{2.8} gives \begin{equation} \label{2.14} \begin{aligned} \frac{\mathrm{d}\varphi}{\mathrm{d}t} &\leq km_1|\Omega|+\big[\frac{n(1-\alpha)\varepsilon_1km_2}{n-2} -\frac{4(k-1)}{k}\big]\int_{\Omega}|\nabla u^{k/2}|^2\mathrm{d}x \\ &\quad +\frac{km_2C_s^{\frac{n}{3n-8}}(6n-16)}{(7n-16) \varepsilon_1^{\frac{n}{2(3n-8)}}}\varphi^{\frac{3n-7}{3n-8}} -\frac{k(2\sqrt{\lambda})^q}{(k+q-1)^q}|\Omega|^{-\frac{q-1}{k}} \varphi^{1+\frac{q-1}{k}}. \end{aligned} \end{equation} Next, we apply Young's inequality to the third term on the right-hand side of \eqref{2.14} to conclude that \begin{eqnarray}\label{2.15} \varphi^{\frac{3n-7}{3n-8}} \leq\frac{\varepsilon_2}{m_3}\varphi^{1+\frac{q-1}{k}} +\frac{1}{m_4}\varepsilon_2^{-\frac{m_4}{m_3}}\varphi^{\frac{3n-6}{3n-8}}, \end{eqnarray} where $$ m_3=\frac{2k-(q-1)(3n-8)}{k},\quad m_4=\frac{2k-(q-1)(3n-8)}{k-(q-1)(3n-8)}, $$ and $\varepsilon_2$ is a positive constant to be fixed. Combining \eqref{2.15} and \eqref{2.14}, we obtain \begin{equation} \label{2.16} \begin{aligned} \frac{\mathrm{d}\varphi}{\mathrm{d}t} &\leq C_1+\big[\frac{n(1-\alpha)\varepsilon_1km_2}{n-2} -\frac{4(k-1)}{k}\big]\int_{\Omega}|\nabla u^{k/2}|^2\mathrm{d}x +C_2\varphi^{\frac{3n-6}{3n-8}} \\ &\quad +\big[\frac{\varepsilon_2km_2C_s^{\frac{n}{3n-8}}(6n-16)}{(7n-16) \varepsilon_1^{\frac{n}{2(3n-8)}}m_3} -\frac{k(2\sqrt{\lambda})^q|\Omega|^{-\frac{q-1}{k}}}{(k+q-1)^q}\big] \varphi^{1+\frac{q-1}{k}}, \end{aligned} \end{equation} where $$ C_1=km_1|\Omega|,\quad C_2=\frac{km_2C_s^{\frac{n}{3n-8}}(6n-16) \varepsilon_2^{-\frac{m_4}{m_3}}}{(7n-16)\varepsilon_1^{\frac{n}{2(3n-8)}}m_4}. $$ Therefore, by choosing $$ \varepsilon_1=\frac{4(k-1)(n-2)}{nk^2m_2(1-\alpha)} $$ first and $$ \varepsilon_2=\frac{(7n-16)m_3k(2\sqrt{\lambda})^q |\Omega|^{-\frac{q-1}{k}}\varepsilon_1^\frac{n}{2(3n-8)}} {km_2(6n-16)C_s^{\frac{n}{3n-8}}(k+q-1)^q} $$ next, we obtain the differential inequality \begin{equation} \label{2.17} \frac{\mathrm{d}\varphi}{\mathrm{d}t}\leq C_1+C_2\varphi^{\frac{3n-6}{3n-8}}, \end{equation} or equivalently \begin{equation} \label{2.18} \frac{\mathrm{d}\varphi}{C_1+C_2\varphi^{\frac{3n-6}{3n-8}}}\leq \mathrm{d}t. \end{equation} Integrating of the differential inequality \eqref{2.18} from 0 to $t$ leads to \begin{eqnarray}\label{2.19} \int_{\varphi(0)}^{\varphi(t)}\frac{1}{C_1+C_2\xi^{\frac{3n-6}{3n-8}}}d\xi\leq t. \end{eqnarray} Passing to the limit as $t\rightarrow T^-$, we obtain \begin{eqnarray}\label{2.20} \int_{\varphi(0)}^{+\infty}\frac{1}{C_1+C_2\xi^{\frac{3n-6}{3n-8}}}d\xi\leq T. \end{eqnarray} Thus, the proof is complete. \end{proof} \begin{remark} \rm It is easy to see that when $n=3$, the lower bound for the blow-up time derived here is consistent with the one obtained by Payne et al. \cite{Payne1}. \end{remark} \subsection*{Acknowledgments} This research was supported by NSFC (11271154), by Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Education and by the 985 program of Jilin University. The authors would like to thank the anonymous referees for their valuable comments and suggestions which improve the original manuscript. \begin{thebibliography}{00} \bibitem{Baghaei13} K.~Baghaei, M.~Hesaaraki; \emph{Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations}, C.~R.~Acad.~Sci.~Paris, Ser.~I, (2013), http://dx.doi.org/10.1016/j.crma.2013.09.024 \bibitem{Bandle98} C.~Bandle, H.~Brunner; \emph{Blow-up in diffusion equations}. A survey, J.~Comput.~Appl.~Math., 97(1998), 3-22. \bibitem{Bao13} A.~G.~Bao, X.~F.~Song; \emph{Bounds for the blowup time of the solutions to quasi-linear parabolic problems}, Z.~Angew.~Math.~Phys., (2013), DOI 10.1007/s00033-013-0325-1. \bibitem{Chipot} M.~Chipot, F.~B.~Weissler; \emph{Some blow up results for a nonlinear parabolic problem with a gradient term}, SIAM~J.~Math.~Anal., 20(1989), 886-907. \bibitem{Ding13} J.~T.~Ding; \emph{Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions}, Computers Math.~Appl., 65(2013), 1806-1822. \bibitem{Fujita66} H.~Fujita; \emph{On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$}, J.~Fac.~Sci.~Univ.~Tokyo.~Sect., 13(1966), 109-124. \bibitem{Galaktionov02} V.~A.~Galaktionov, J.~L.~V\'azquez; \emph{The problem of blow-up in nonlinear parabolic equations}, Discrete Continuous Dyn.~Syst., 8(2002), 399-433. \bibitem{Gilbarg} D.~Gilbarg, N.~S.~Trudinger; \emph{Elliptic partial differential equations of second order}, Springer, 2001. \bibitem{Kawohl} B.~Kawohl, L.~A.~Peletier; \emph{Observations on blow up and dead cores for nonlinear parabolic equations}, Math.~Z., 202(1989), 207-217. \bibitem{Levine90} H.~A.~Levine; \emph{The role of critical exponents in blow-up theorem}, SIAM Rev., 32(1990), 268-288. \bibitem{Payne10} L.~E.~Payne, G.~A.~Philippin; \emph{Blow-up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions}, Proceedings of the American Mathematical Society, 141(2013), 2309-2318. \bibitem{Payne3} L.~E.~Payne, G.~A.~Philippin, P.~W.~Schaefer; \emph{Blow-up phenomena for some nonlinear parabolic problems}, Nonlinear Anal., 69(2008), 3495-3502. \bibitem{Payne06aa} L.~E.~Payne, P.~W.~Schaefer; \emph{Lower bounds for blow-up time in parabolic problems under Neumann conditions}, Applicable Analysis, 85(2006), 1301-1311. \bibitem{Payne2} L.~E.~Payne, P.~W.~Schaefer; \emph{Lower bounds for blow-up time in parabolic problems under Dirichlet conditions}, J.~Math.~Anal.~Appl., 328(2007), 1196-1205. \bibitem{Payne08jpam} L.~E.~Payne, P.~W.~Schaefer; \emph{Blow-up phenomena for some nonlinear parabolic systems}, Int.~J.~Pure~Appl.~Math., 48(2008),\ 193-202. \bibitem{Payne1} L.~E.~Payne, J.~C.~Song; \emph{Lower bounds for blow-up time in a nonlinear parabolic problem}, J.~Math.~Anal.~Appl., 354(2009), 394-396. \bibitem{Quittner07} R.~Quittner, P.~Souplet; \emph{Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States}, Birkhauser Advanced Texts, Basel, 2007. \bibitem{Souplet} P.~Souplet; \emph{Recent results and open problems on parabolic equations with gradient nonlinearities}, Electron.~J.~Differential Equations., 2001(2001), 1-19. \bibitem{Straughan} B.~Straughan; \emph{Explosive Instabilities in Mechanics}, Springer, Berlin, 1998. \bibitem{Talenti} G.~Talenti; \emph{Best constants in sobolev inequality}, Ann.~Math.~Pura.~Appl., 110(1976), 353-372. \end{thebibliography} \end{document}