\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 14, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/14\hfil A boundary problem ] {A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative} \author[E. T. Karimov, J. S. Akhatov \hfil EJDE-2014/14\hfilneg] {Erkinjon T. Karimov, Jasurjon S. Akhatov} % in alphabetical order \address{Erkinjon T. Karimov \newline Institute of Mathematics, National University of Uzbekistan, Mirzo Ulugbek, Tashkent, Uzbekistan} \email{erkinjon@gmail.com} \address{Jasurjon S. Akhatov \newline Physical-Technical Institute, SPA ``Physics-Sun'', Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan} \email{jahatov@gmail.com} \thanks{Submitted November 14, 2013. Published January 8, 2014.} \subjclass[2000]{35M10} \keywords{ Parabolic-hyperbolic equation; Tricomi problem; \hfill\break\indent Caputo fractional derivative; Green's function} \begin{abstract} In the present work we investigate the Tricomi problem with an integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional differential operator. Using the method of energy integrals, we prove the uniqueness of the solution for the considered problem. The existence of the solution have been proved applying methods of ordinary differential equations and Fredholm integral equations. The solution is represented in an explicit form. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \allowdisplaybreaks \section{Formulation of the problem} Fractional analogs of main ODEs and PDEs one motivated by their appearance in real-life processes \cite{a1,k4}. They are as well interesting for mathematicians as natural generalizations of integer order ODEs and PDEs. Specialists in the theory of boundary problems for PDEs began to develop it in this direction. There are many works \cite{k3,l1,p2,p3} devoted to the investigation of various boundary problems for PDEs. A distinctive side of this work is the usage of gluing condition of the integral form, containing regular continuous gluing condition as a particular case. We note that for the first time boundary problem with integral gluing condition for a parabolic-hyperbolic type equation was used in the work \cite{k1}. Then some generalizations of this work were published in \cite{e1,k2}. Special gluing condition of the integral form for parabolic-hyperbolic equation with the Riemann-Liouville fractional differential operator was discussed in \cite{b1}. In the present work we use an integral gluing condition with a kernel, which has a more general form than the kernel used in \cite{b2}. The uniqueness of the solution requires restrictions on the kernel (see Theorem 1), however, the existence of the solution does not need the conditions required for uniqueness (see Theorem 2). Consider the equation \begin{equation} \label{e1} 0=\begin{cases} u_{xx}-{}_{C}D_{0y}^{\alpha }u,& y>0, \\ u_{xx}-u_{yy},& y<0 \\ \end{cases} \end{equation} in the domain $\Omega =\Omega^+\cup\Omega^-\cup AB$, where $0<\alpha <1$, $AB=\{ (x,y ): 00$ for $0<\alpha<1$, then if $\gamma_2\ge 0$, $Q(x,x )>0$ from \eqref{e14} we easily get $\tau_1(x)=0$ for any $x\in [ 0,1]$. Based on the solution of the first boundary problem for \eqref{e1} in the domain $\Omega^+$ we obtain $u(x,y)\equiv 0$ in $\overline{\Omega^+}$. Since $u(x,y) \in C(\overline{\Omega})$, we obtain that $u(x,y)\equiv 0$ in $\overline{\Omega}$. Hence, we proved the following result. \begin{theorem} \label{thm1} Let $\gamma_2\ge 0$, $\frac{\partial }{\partial t}Q(x,t )=-Q_1(x )Q_1(t )$ and $Q(x,x )>0$. If there exists a solution to problem, then it is unique. \end{theorem} An example of a function satisfying the conditions of theorem is $$ Q(x,t )=e^{-x}(1+e^{-t} ). $$ \section{Existence of the solution} From \eqref{e7}, \eqref{e8} and \eqref{e10}, we have \begin{equation} {\tau''}_1(x)-A\tau_1(x)=F_1(x), \label{e15} \end{equation} where $A=\Gamma(\alpha)\gamma_1$, \begin{equation} F_1(x)=\gamma_2\Gamma(\alpha)\int_0^x{{\tau'}_1(t)Q(x,t)dt} -\Gamma(\alpha)\Big[\gamma_1\psi(\frac{x}{2}) +\gamma_2\int_0^x{\psi'(\frac{t}{2})Q(x,t)dt}\Big].\label{e16} \end{equation} The solution of the equation \eqref{e15} together with the conditions \begin{equation} \tau_1(0)=\psi(0),\quad \tau_1(1)=\varphi_2(0) \label{e17} \end{equation} has the form \begin{equation} \tau_1(x)=\frac{1}{1-e^A}[\varphi_2(0) (1-e^{Ax})+\psi(0)(e^{Ax}-e^A)]+\int_0^1{G_0(x,\xi)F_1(\xi)d\xi}, \label{e18} \end{equation} where \begin{equation} G_0(x,\xi)=\frac{1}{A[e^{Ax}-e^{A(x-1)}]} \begin{cases} (1-e^{A\xi}) (1-e^{A(x-1)}), & 0\leq \xi \leq x,\\ (1-e^{A(\xi-1)}) (1-e^{Ax}), & x\leq \xi \leq 1 \end{cases} \label{e19} \end{equation} is the Green's function of the problem \eqref{e15}, \eqref{e17}. Considering \eqref{e16} and integrating by parts, we obtain \begin{equation} \tau_1(x)-\int_0^1{\tau_1(\xi)K(x,\xi)d\xi=F_2(x)}, \label{e20} \end{equation} where \begin{gather} K(x,\xi)=\gamma_2\Gamma(\alpha)\Big[G_0(x,\xi)Q(\xi,\xi) +\int_{\xi}^1{G_0(\xi,t)\frac{\partial}{\partial \xi}Q(t,\xi)dt}\Big], \label{e21} \\ \begin{aligned} F_2(x)&=\frac{1}{1-e^A}\big[\varphi_2(0)(1-e^{Ax})+\psi(0)(e^{Ax}-e^A)\big]\\ &\quad -\Gamma(\alpha)\int_0^1{G_0(x,\xi)\Big[\gamma_1\psi\big(\frac{\xi}{2}\big) +\gamma_2\int_0^{\xi}{\psi'\big(\frac{t}{2}\big)Q(\xi,t)dt}\Big]d\xi}. \end{aligned} \label{e22} \end{gather} Since the kernel $K(x,\xi)$ is continuous and $F_2(x)$ is continuously differentiable, the solution of integral equation \eqref{e20} can be written via the resolvent-kernel: \begin{equation} \tau_1(x)=F_2(x)-\int_0^1{F_2(\xi)R(x,\xi)d\xi},\label{e23} \end{equation} where $R(x,\xi)$ is the resolvent-kernel of $K(x,\xi)$. The unknown functions $\nu_1(x)$ and $\nu_2(x)$ will be expressed as \begin{gather*} \nu_1(x)=\frac{1}{\Gamma(\alpha)} \Big[F_2''(x)-\int_0^1{F_2(\xi)\frac{\partial^2}{\partial x^2}R(x,\xi)d\xi}\Big],\\ \nu_2(x)=F_2'(x)-\int_0^1{F_2(\xi)\frac{\partial}{\partial x}R(x,\xi)d\xi} -\psi'(\frac{x}{2}). \end{gather*} The solution of the problem in the domain $\Omega^+$ can be written as \begin{equation} \begin{aligned} u(x,y) &=\int_0^y{G_{\xi}(x,y,0,\eta)\varphi_1(\eta)d\eta} -\int_0^y{G_{\xi}(x,y,1,\eta)\varphi_2(\eta)d\eta}\\ &\quad + \int_0^1{\overline{G}(x-\xi,y)\tau_1(\xi)d\xi}, \end{aligned} \label{e24} \end{equation} where \begin{gather*} \overline{G}(x-\xi,y) =\frac{1}{\Gamma(1-\alpha)}\int_0^y{\eta^{-\alpha}G(x,y,\xi,\eta)d\eta}, \\ G(x,y,\xi,\eta) =\frac{(y-\eta)^{\beta-1}}{2}\sum_{n=-\infty}^{\infty} \big[e_{1,\beta}^{1,\beta}\big(-\frac{|x-\xi+2n|}{(y-\eta)^\beta}\big)- e_{1,\beta}^{1,\beta}\big(-\frac{|x+\xi+2n|}{(y-\eta)^\beta}\big)\big] \end{gather*} is the Green's function of the first boundary problem for \eqref{e1} in the domain $\Omega^+$ with the Riemann-Liouville fractional differential operator instead of the Caputo ones \cite{p4}, $\beta=\alpha/2$, $$ e_{1,\beta}^{1,\beta}(z) =\sum_{n=0}^{\infty}\frac{z^n}{n!\,\Gamma(\beta-\beta n)} $$ is the Wright type function \cite{p4}. The solution of the problem in the domain $\Omega^-$ will be found by formula \eqref{e6}. Hence, we proved the following result. \begin{theorem} \label{thm2} If $\varphi_i(y),\psi(x)\in C[0,1]\cap C^1(0,1)$, $Q(x,t)\in C^1([0,1]\times[0,1])$, then there exists a solution of the problem and it can be represented in the domain $\Omega^+$ by formula \eqref{e24} and in the domain $\Omega^-$ by the formula \eqref{e6}. \end{theorem} \subsection*{Acknowledgements} Authors are grateful to Professor M. Kirane for his useful suggestions, which made the paper more readable. \begin{thebibliography}{00} \bibitem{a1} T. J. Anastasio; \emph{The fractional order dynamics of brainstem vestibulo-oculomotor neurons}. Biological Cybernetics, 72 (1994), pp. 69-79. \bibitem{b1} A. S. Berdyshev, A. Cabada, E. T. Karimov; \emph{On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator}. Nonlinear Analysis, 75 (2012), pp. 3268-3273. \bibitem{b2} A. S. Berdyshev, E. T. Karimov, N. Akhtaeva; \emph{Boundary value problems with integral gluing conditions for fractional-order mixed-type equation}. International Journal of differential Equations, (2011), Article ID 268465. \bibitem{e1} B. E. Eshmatov, E. T. Karimov; \emph{Boundary value problems with continuous and special gluing conditions for parabolic-hyperbolic type equations}. Central European Journal of Mathematics, 5(4) (2007), pp. 741-750. \bibitem{k1} N. Yu. Kapustin. E. I. Moiseev; \emph{On spectral problems with a spectral parameter in the boundary condition}. Differential Equations, 33(1) (1997), pp. 116-120. \bibitem{k2} E. T. Karimov; \emph{Non-local problems with special gluing condition for the parabolic-hyperbolic type equation with complex spectral parameter}. PanAmerican Mathematical Journal, 17 (2007), pp. 11-20. \bibitem{k3} A. A. Kilbas, O. A. Repin; \emph{An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative}. Fractional Calculus and Applied Analysis, 13(1) (2010), pp. 69-84. \bibitem{k4} C. G. Koh, J. M. Kelly; \emph{Application of fractional derivatives to seismic analysis of base-isolated models}. Earthquake Engineering and Structural Dynamics, 19 (1990), pp. 229-241. \bibitem{l1} Y. Luchko; \emph{Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation}. Journal of Mathematical Analysis and Applications, 374 (2011), pp. 538-548. \bibitem{p1} I. Podlubny; \emph{Fractional Differential Equations}, Academic Press, San Diego, 1999. \bibitem{p2} Y. Povstenko; \emph{Neumann boundary-value problems for a time-fractional diffusion wave equation in a half-plane}. Computer and Mathematics with Applications,\\ doi:10.1016/j.camwa.2012.02.064 \bibitem{p3} A. V. Pskhu; \emph{Solution of the first boundary value problem for a fractional order diffusion equation}. Differential Equations, 39(9) (2003), pp. 1359-1363. \bibitem{p4} A. V. Pskhu; \emph{Solution of boundary value problems for the fractional diffusion equation by the Green function method}. Differential Equations, 39(10) (2003), pp.1509-1513. \end{thebibliography} \end{document}