\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 113, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/113\hfil Lower bounds for the blow-up time] {Lower bounds for the blow-up time of nonlinear parabolic problems with Robin boundary conditions} \author[K. Baghaei, M. Hessaraki \hfil EJDE-2014/113\hfilneg] {Khadijeh Baghaei, Mahmoud Hesaaraki} % in alphabetical order \address{Khadijeh Baghaei \newline Department of mathematics, Iran University of Science and Technology, Tehran, Iran} \email{khbaghaei@iust.ac.ir} \address{Mahmoud Hesaaraki \newline Department of mathematics, Sharif University of Technology, Tehran, Iran} \email{hesaraki@sina.sharif.edu} \thanks{Submitted June 6, 2013. Published April 16, 2014.} \subjclass[2000]{35K55, 35B44} \keywords{Parabolic equation; Robin boundary condition; blow-up; lower bound} \begin{abstract} In this article, we find a lower bound for the blow-up time of solutions to some nonlinear parabolic equations under Robin boundary conditions in bounded domains of $\mathbb{R}^n$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} In this article, we consider the nonlinear initial-boundary value problem \begin{equation} \label{e1} \begin{gathered} (b(u))_{t} =\nabla \cdot (g(u)\nabla u)+f(u), \quad x\in \Omega, \; t > 0 \\ \frac{\partial u}{\partial \nu}+\gamma u =0,\quad x \in \partial \Omega, \; t > 0, \\ u(x,0) =u_0(x)\geq 0, \quad x \in \Omega \end{gathered} \end{equation} where $ \Omega\subseteq \mathbb{R}^{n}, n\geq 3$, is a bounded domain with smooth boundary, $\nu$ is the outward normal vector to $\partial\Omega$, $ \gamma$ is a positive constant and $u_0(x)\in C^{1}(\overline{\Omega})$ is the initial value. We assume that $f $ is a nonnegative $C(\mathbb{R}^{+})$ function and the nonnegative functions $g$ and $b$ satisfy \begin{equation}\label{g} \begin{gathered} g\in C^{1}(\mathbb{R}^{+}), \quad g(s) \geq g_{m}>0, \quad g'(s) \leq 0, \quad \forall s>0, \\ b \in C^{2}(\mathbb{R}^{+}), \quad 0< b'(s) \leq b'_{M}, \quad b''(s)\leq 0, \quad \forall s > 0, \end{gathered} \end{equation} where $ g_{m}$ and $ b'_{M}$ are positive constants. The reader is referred to \cite{b1, e1, p1, p2, p3, z1} for results on bounds for blow-up time in nonlinear parabolic problems. Ding \cite{d1} studied problem \eqref{e1} under assumptions \eqref{g} and derived conditions on the data which imply blow-up or the global existence of solutions. In addition, Ding obtained a lower bound for the blow-up time when $\Omega\subseteq \mathbb{R}^{3}$ is a bounded convex domain. Here we obtain a lower bound for the blow-up time for \eqref{e1} in general bounded domains $\Omega\subseteq\mathbb{R}^{n}, n\geq3$. \section{A lower bound for the blow-up time} In this section we find a lower bound for the blow-up time $T$ in an appropriate measure. The idea of the proof of the following theorem comes from \cite{b1}. \begin{theorem}\label{thm1} Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}, n\geq3$, and let the functions $f, g, b$ satisfy \begin{equation}\label{e14} 0< f(s) \leq c g(s)\Big(\int_0^s \frac{b'(y)}{g(y)} dy \Big)^{p+1}, \quad s > 0, \end{equation} for some constants $c>0$ and $p\geq1$. If $u(x,t) $ is a nonnegative classical solution to problem \eqref{e1}, which becomes unbounded in the measure \[ \Phi(t)= \int_{\Omega} \Big(\int_0^{u(x,t)}\frac{b'(y)}{g(y)}dy\Big)^{2k}dx, \] where $k$ is a parameter restricted by the condition \begin{equation}\label{k} k > \max \big\{p(n-2), 1\big\}, \end{equation} then $ T$ is bounded from below by \begin{equation}\label{xxx} \int_{\Phi(0)}^{+\infty} \frac{d\xi}{k_1+ k_2\xi ^{\frac{3(n-2)}{3n-8}} + k_3 \xi^{\frac{2n-3}{2(n-2)}}}, \end{equation} where $ k_1, k_2$ and $ k_3$ are positive constants which will be determined later in the proof. \end{theorem} \begin{proof} To simplify our computations we define \begin{equation}\label{e3} v(s)=\int_0^{s}\frac{b'(y)}{g(y)}dy, \quad s>0. \end{equation} Hence, \begin{align*} \frac{d\Phi}{dt} &=\frac{d}{dt}\int_{\Omega} v^{2k} \,dx= 2k\int_{\Omega} v^{2k-1}\frac{b'(u)}{g(u)} u_{t} \,dx \\ &=2k \int_{\Omega} v^{2k-1} \frac{(b(u))_{t}}{g(u)} \, dx \\ &=2k \int_{\Omega} v^{2k-1} \frac{1}{g(u)}\Big[\nabla\cdot(g(u)\nabla u) + f(u)\Big]\, dx \\ &= - 2k (2k-1)\int_{\Omega}v^{2k-2}v'(u) |\nabla u|^{2} \,dx + 2k \int_{\Omega}v^{2k-1}\frac{g'(u)}{g(u)}|\nabla u|^{2} \, dx \\ & \quad - 2k\gamma \int_{\partial\Omega} v^{2k-1} u \,ds +2k \int_{\Omega}v^{2k-1}\frac{f(u)}{g(u)} \, dx \\ & \leq - 2k (2k-1)\int_{\Omega}v^{2k-2} \frac{b'(u)}{g(u)} |\nabla u|^{2} \,dx +2k \int_{\Omega}v^{2k-1}\frac{f(u)}{g(u)} \, dx, \end{align*} where in the above inequality we used $u\geq0$ and $ g'(u) \leq 0$ from \eqref{g}. From \eqref{e3}, we have \begin{equation}\label{e4} |\nabla u|^{2} = \Big(\frac{g(u)}{b'(u)}\Big)^{2}|\nabla v|^{2}. \end{equation} By \eqref{g}, \eqref{e4}, and \eqref{e14} we have \begin{equation} \label{e5} \begin{aligned} \frac{d\Phi}{dt} &\leq - 2k (2k-1)\int_{\Omega}v^{2k-2} \frac{g(u)}{b'(u)} |\nabla v|^{2} \, dx + 2k\int_{\Omega}v^{2k-1}\frac{f(u)}{g(u)} \, dx \\ & \leq - \frac{2(2k-1)g_{m}}{k b'_{M}} \int_{\Omega} |\nabla v ^{k}|^{2} \, dx + 2kc \int_{\Omega}v^{2k+p}\, dx. \end{aligned} \end{equation} From \eqref{k}, H\"{o}lder, and Young inequalities, we infer \begin{equation} \label{e6} \begin{aligned} \int_{\Omega}v^{2k+p}\, dx &\leq |\Omega|^{m_1}\Big( \int_{\Omega}v^{\frac{k(2n-3)}{n-2}}\, dx \Big)^{m_2} \\ & \leq m_1|\Omega| + m_2 \int_{\Omega}v^{\frac{k(2n-3)}{n-2}}\, dx, \end{aligned} \end{equation} where \[ m_1=\frac{k(2n-3)-(n-2)(2k+p)}{k(2n-3)}, \quad m_2=\frac{(n-2)(2k+p)}{k(2n-3)}. \] From \eqref{e6} and the Cauchy-Schwartz inequality we have: \begin{equation} \label{e7} \begin{aligned} \int_{\Omega}v^{\frac{k(2n-3)}{n-2}}\,dx &\leq \Big(\int_{\Omega} v^{2k}\,dx \Big)^{1/2} \Big(\int_{\Omega} v^{\frac{2k(n-1)}{n-2}}\,dx \Big)^{1/2} \\ &\leq\Big(\int_{\Omega} v^{2k}\,dx \Big)^{\frac{3}{4}} \Big(\int_{\Omega} (v^{k})^{\frac{2n}{n-2}}\,dx \Big)^{1/4}. \end{aligned} \end{equation} Applying the Sobolev inequality (see \cite{t1}) to the last term in \eqref{e7}, for $n>3$, we obtain \begin{equation} \label{e8} \begin{aligned} \|v^{k}\|_{L^{\frac{2n}{n-2}}(\Omega)}^{\frac{n}{2(n-2)}} &\leq(c_{s})^{\frac{n}{2(n-2)}}\|v^{k}\|_{W^{1,2}(\Omega)}^{\frac{n}{2(n-2)}} \\ &\leq (c_{s})^{\frac{n}{2(n-2)}} \Big( \|\nabla v^{k}\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}} + \| v^{k}\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}} \Big) \end{aligned} \end{equation} In the case, $n=3$, we have \begin{equation} \begin{aligned} \label{e15} \|v^{k}\|_{L^{\frac{2n}{n-2}}(\Omega)}^{\frac{n}{2(n-2)}} &\leq (c_{s})^{\frac{n}{2(n-2)}}\|v^{k}\|_{W^{1,2}(\Omega)}^{\frac{n}{2(n-2)}} \\ &\leq 2^{\frac{4-n}{2(n-2)}}(c_{s})^{\frac{n}{2(n-2)}} \Big( \|\nabla v^{k}\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}} + \| v^{k}\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}} \Big). \end{aligned} \end{equation} Here, $c_{s}$ is the best constant in the Sobolev inequality. By inserting \eqref{e8} in \eqref{e7} for $n>3$ and \eqref{e15} in \eqref{e7} for $n=3$, we have \begin{equation} \label{e9} \begin{aligned} &\int_{\Omega}v^{\frac{k(2n-3)}{n-2}}\, dx \\ &\leq c_0\Big(\int_{\Omega} v^{2k}\, dx \Big)^{\frac{3}{4}} \Big( \|\nabla v^{k}\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}} + \| v^{k}\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}} \Big) \\ &= c_0\Big(\int_{\Omega} v^{2k}\, dx \Big)^{\frac{3}{4}} \Big(\int_{\Omega} |\nabla v^{k}|^{2}\, dx \Big)^{\frac{n}{4(n-2)}} + c_0 \Big(\int_{\Omega} v^{2k}\, dx \Big)^{\frac{2n-3}{2(n-2)}}, \end{aligned} \end{equation} where \[ c_0= \begin{cases} 2^{\frac{4-n}{2(n-2)}}(c_{s})^{\frac{n}{2(n-2)}}, & \text{for } n=3, \\[4pt] (c_{s})^{\frac{n}{2(n-2)}}, & \text{for } n>3. \end{cases} \] Now, using Young's inequality we obtain \begin{equation}\label{e16} \begin{aligned} &\int_{\Omega}v^{\frac{k(2n-3)}{n-2}}\, dx \\ & \leq \frac{c_0^{\frac{4(n-2)}{3n-8}}(3n-8)}{4(n-2)\epsilon^{\frac{n}{3n-8}}} \Phi^{\frac{3(n-2)}{3n-8}} + \frac{n\epsilon}{4(n-2)}\int_{\Omega} |\nabla v^{k}|^{2}\, dx + c_0 \Phi^{\frac{2n-3}{2(n-2)}}, \end{aligned} \end{equation} where $ \epsilon$ is a positive constant to be determined later. Substituting \eqref{e16} into \eqref{e6} yields \begin{align*} 2kc \int_{\Omega}v^{2k+p}\, dx &\leq 2kc m_2 \Big\{ \frac{(3n-8)}{4(n-2)\epsilon^{\frac{n}{3n-8}}} c_0^{\frac{4(n-2)}{3n-8}}\Phi^{\frac{3(n-2)}{3n-8}} + \frac{n\epsilon}{4(n-2)}\int_{\Omega} |\nabla v^{k}|^{2}\, dx\\ &\quad+ c_0 \Phi^{\frac{2n-3}{2(n-2)}}\Big\} +2kc m_1|\Omega|. \end{align*} By inserting the last inequality in \eqref{e5}, we have \[ \frac{d\Phi}{dt} \leq \Big(- \frac{2(2k-1)g_{m}}{k b'_{M}} + \frac{nkc m _2\epsilon}{2(n-2)}\Big) \int_{\Omega} |\nabla v ^{k}|^{2} \, dx +k_1 +k_2\Phi^{\frac{3(n-2)}{3n-8}} + k_3\Phi^{\frac{2n-3}{2(n-2)}}, \] where \[ k_1=2kcm_1|\Omega|, \quad k_2=\frac{2kcm_2(c_0)^{\frac{4(n-2)}{3n-8}}(3n-8)}{4(n-2)\epsilon^{\frac{n}{3n-8}}}, \quad k_3=2kcc_0m_2. \] For \[ \epsilon=\frac{4(n-2)(2k-1)g_{m}}{nk^{2}c m_2b'_{M}}, \] the above inequality becomes \[ \frac{d\Phi}{dt}\leq k_1+ k_2\Phi ^{\frac{3(n-2)}{3n-8}} + k_3 \Phi ^{\frac{2n-3}{2(n-2)}}. \] Thus, \begin{equation}\label{e111} \frac{d\Phi}{k_1+ k_2\Phi ^{\frac{3(n-2)}{3n-8}} + k_3 \Phi ^{\frac{2n-3}{2(n-2)}}}\leq d t. \end{equation} We integrate from $0$ to $t$ to obtain \[ \int_{\Phi(0)}^{\Phi(t)} \frac{d\xi}{k_1+ k_2\xi ^{\frac{3(n-2)}{3n-8}} + k_3 \xi^{\frac{2n-3}{2(n-2)}}}\leq t, \] where \[ \Phi(0)=\int_{\Omega}\Big(\int_0^{u_0(x)}\frac{b'(y)}{g(y)}dy\Big)^{2k}dx. \] Passing to the limit as $ t\rightarrow T^{-}$, we conclude that \[ \int_{\Phi(0)}^{+\infty} \frac{d\xi}{k_1+ k_2\xi ^{\frac{3(n-2)}{3n-8}} + k_3 \xi^{\frac{2n-3}{2(n-2)}}}\leq T. \] The proof is complete. \end{proof} \begin{thebibliography}{0} \bibitem{b1} A. Bao, X. Song; \emph{Bounds for the blow-up time of the solutions to quasi-linear parabolic problems}, Z. Angew. Math. Phys. (2013), DOI: 10.1007/s00033-013-0325-1. \bibitem{d1} J. Ding; \emph{Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions}, Comput. Math. Appl. \textbf{65} (2013), 1808-1822. \bibitem{e1} C. Enache; \emph{Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions}, Glasg. Math. J. \textbf{53} (2011), 569-575. \bibitem{p1} L. E. Payne, G. A. Philippin, P. W. Schaefer; \emph{ Blow-up phenomena for some nonlinear parabolic problems}, Nonlinear Anal. {69} (2008), 3495-3502. \bibitem{p2} L. E. Payne, G. A. Philippin, P. W. Schaefer; \emph{Bounds for blow-up time in nonlinear parabolic problems}, J. Math. Anal. Appl., \textbf{338} (2008), 438-447. \bibitem{p3} L. E. Payne, J. C. Song, P. W. Schaefer; \emph{Lower bounds for blow-up time in a nonlinear parabolic problems}, J. Math. Anal. Appl., \textbf{354} (2009), 394-396. \bibitem{t1} G. Talenti; \emph{Best constants in Sobolev inequality}, Ann. Math. Pura. Appl., \textbf{110} (1976), 353-372. \bibitem{z1} H. L. Zhang; \emph{Blow-up solutions and global solutions for nonlinear parabolic problems}, Nonlinear Anal., \textbf{69} (2008), 4567-4575. \end{thebibliography} \end{document}