\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 103, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/103\hfil Oscillation criteria] {Oscillation criteria for second-order nonlinear perturbed differential equations} \author[P. Temtek \hfil EJDE-2014/103\hfilneg] {Pakize Temtek} % in alphabetical order \address{Pakize Temtek \newline Department of Mathematics, Faculty of Science, Erciyes University, Kayseri, Turkey} \email{temtek@erciyes.edu.tr} \thanks{Submitted January 13, 2014. Published April 11, 2014.} \subjclass[2000]{34C10, 35C15} \keywords{Oscillation; second order nonlinear differential equation} \begin{abstract} In this article, we study the oscillation of solutions to the nonlinear second-order differential equation $$ \Big(r(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)\Big)' +P(t,x'(t))\psi(x(t))+Q(t,x(t))=0. $$ We obtain sufficient conditions for the oscillation of all solutions to this equation. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} This article concerns the oscillation of solutions to the nonlinear second-order differential equation \begin{equation} \label{e1} \Big(r(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)\Big)'+P(t,x'(t))\psi(x(t))+Q(t,x(t))=0, \quad t\geq t_0 \end{equation} where $r\in C^1(I,\mathbb{R^{+}})$, $P,Q\in C(I\times\mathbb{R},\mathbb{R})$, $\psi(x)\in C(\mathbb{R,\mathbb{R^{+}}})$, $I=[T_0,\infty)\subset\mathbb{R}$, $0<\psi(x)<\gamma$ and $\alpha$ is a positive constant. Throughout this article, we assume the following conditions: \begin{itemize} \item[(E1)] $Q\in C(I\times\mathbb{R},\mathbb{R})$ and there exist $f\in C^1(\mathbb{R},\mathbb{R})$ and a continuous function $q(t)$ such that \[ xf(x)>0 \quad\text{and}\quad \frac{Q(t,x)}{f(x)}\geq q(t)\quad\text{for }x\neq0. \] \item[(E2)] $P\in C(I\times\mathbb{R},\mathbb{R})$ and there exists a continuous function $p(t)$ such that \[ \frac{P(t,x'(t))}{|x'(t)|^{\alpha-1}x'(t)}\geq p(t)\quad\text{for }x'\neq0. \] \end{itemize} We restrict our attention to solutions satisfying $\sup\{|x(t)|:t\geq T\}>0 $ for all $T\geq T_0$. A solution of \eqref{e1} is said to be oscillatory if it has arbitrarily large zeros, and otherwise it is said to be non-oscillatory. If all solutions of \eqref{e1} are oscillatory, \eqref{e1} is called oscillatory. The oscillatory behavior of solutions of second-order ordinary differential equations, including the existence of oscillatory and non-oscillatory solutions, has been the subject of intensive investigations; see for example \cite{l1}--\cite{y1}. Some criteria involve the behavior of the integral of alternating coefficients. In this article, we give general integral criteria for the oscillation of \eqref{e1}, which contain some of the results in the references as particular cases. \section{Main results} Let $h(\cdot)$ and $K(\cdot,\cdot,\cdot):\mathbb{R}\times\mathbb{R} \times\mathbb{R^{+}}\to\mathbb{R}$ be continunous functions such that for each fixed $t,s$, the function $K(t,s,.)$ is nondecreasing. Then there exists a solution to the integral equation \begin{equation} \label{e2} v(t)=h(t)+\int_{t_0}^t K(t,s,v(s))\,ds,\quad t\geq t_0. \end{equation} Furthermore there exists a ``minimal solution'' $v$ in the sense that any solution $y$ of this equation satisfies $v(t)\leq y(t)$ for all $t\geq t_0$. See \cite[p. 322]{l1}. \begin{lemma}[cite{w1}] \label{lem1} If $v$ is the minimal solution of \eqref{e2} and \[ u(t)\geq h(t)+\int_{t_0}^{t}K(t,s,u(s))ds, \quad t\geq t_0, \] then $u(t)\geq v(t)$ for all $t\geq t_0$. Similarly for a maximal solution $w(t)$ of \eqref{e2}: if $u(t)\leq h(t)+\int_{t_0}^tK(t,s,u(s))ds$, then $u(t)\leq w(t)$ for all $t\geq t_0$. \end{lemma} Our main results reads as follows. \begin{theorem} \label{thm1} Assume {\rm (E1)}, $f'(x)\geq0$, $ p(t)\leq 0$, $q(t)>0$ and $\int_{t_0}^{\infty}(\frac{1}{r^{1/\alpha}(t)})dt=\infty$. Also assume that there exists a positive function $\rho(t)$ such that \begin{gather} \label{e3} \int_{t_0}^{\infty}q(t)\rho(t)dt=\infty, \\ \label{e4} p(t)\rho(t)\geq r(t)\rho'(t). \end{gather} Then every solution of \eqref{e1} is oscillatory. \end{theorem} \begin{proof} For the shake of contradiction, suppose that \eqref{e1} has a non-oscillatory solution $x(t)$. Without loss of generality, suppose that it is an eventually positive solution (if it is an eventually negative solution, the proof is similar), that is, $x(t)>0$ for all $t\geq t_0$. We consider the following three cases. \smallskip \textbf{Case 1.} Suppose that $x'(t)$ is oscillatory. Then there exists $t_1\geq t_0$ such that $x'(t_1)=0$. From \eqref{e1}, we have \begin{align*} &\Big[r(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)\exp \Big( \int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big)\Big]' \\ & =[r(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)]'\exp \Big( \int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big) \\ &\quad +p(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)\exp \Big( \int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big) \\ &=(-P(t,x'(t))\psi(x(t))-Q(t,x(t)))\exp \Big( \int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big)\\ &\quad +p(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)\exp \Big( \int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big) \\ &\leq (-p(t)|x'(t)|^{\alpha-1}x'(t)\psi(x(t))-q(t)f(x(t)))\exp \Big( \int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big) \\ &\quad +p(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)\exp \Big(\int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big) \\ &=-q(t)f(x(t))\exp\Big( \int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big)<0 \end{align*} %e2.5 which implies that \begin{align*} &r(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)\exp \Big( \int_{t_0}^{t}\frac{p(s)}{r(s)}ds\Big)\\ & t_1$, which contradicts to the assumption that $x'(t)$ is oscillatory. \smallskip \textbf{Case 2.} Assume that $x'(t)<0$. From \eqref{e1}, we obtain \begin{align*} -[r(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)]' &=[r(t)\psi(x(t))(-x'(t))^{\alpha}]'\\ &=P(t,x'(t))\psi(x(t))+Q(t,x(t)) \\ &\geq p(t)|x'(t)|^{\alpha-1}x'(t)\psi(x(t))+q(t)f(x(t))\\ &=-p(t)(-x'(t))^{\alpha}\psi(x(t))+q(t)f(x(t))\geq 0 \end{align*} %2.7 then there exists an $M>0$ and a $t_1\geq t_0$, such that \begin{equation} \label{e8} r(t)\psi(x(t))(-x'(t))^{\alpha} \geq M,\quad\forall t\geq t_1. \end{equation} It follows that \begin{gather*} \gamma(-x'(t))^{\alpha} \geq \frac{M}{r(t)},\\ x(t)\leq -\int_{t_1}^{\infty}\big(\frac{M}{\gamma}\big)^{1/\alpha} \frac{1}{r^{1/\alpha}(t)}dt,\quad\forall t\geq t_1 \end{gather*} which implies $ \lim_{t\to\infty}x(t)=-\infty$; this contradicts the assumption that $x(t)>0$. \smallskip \textbf{Case 3.} Suppose that $x'(t)>0$. Define $w(t)=\rho(t)r(t)\psi(x(t))(x'(t))^{\alpha} $. Differentiating $w(t)$ and using \eqref{e1}, \begin{equation} \label{e10} w'(t)=[r(t)\psi(x(t))(x'(t))^{\alpha}]'\rho(t)+r(t)\psi(x(t)) (x'(t))^{\alpha}\rho'(t),\quad\forall t\geq t_0. \end{equation} Then we obtain \begin{align*} \frac{w'(t)}{f(x(t))} &=-\frac{P(t,x'(t))\psi(x(t))\rho(t)}{f(x(t))} -\frac{Q(t,x(t))\rho(t)}{f(x(t))} \\ &\quad +\frac{\rho'(t)r(t)\psi(x(t))(x'(t))^{\alpha}}{f(x(t))}, \quad \forall t\geq t_0\,. \end{align*} Noticing that \begin{align*} \Big(\frac{w(t)}{f(x(t))}\Big)' &=\frac{w'(t)f(x(t))-w(t)f'(x(t))x'(t)}{f^{2}(x(t))} \\ &=-\frac{P(t,x'(t))\psi(x(t))\rho(t)}{f(x(t))} -\frac{Q(t,x(t))\rho(t)}{f(x(t))} \\ &\quad +\frac{\rho'(t)r(t)\psi(x(t))(x'(t))^{\alpha}}{f(x(t))} -\frac{w(t)f'(x(t))x'(t)}{f^{2}(x(t))},\quad\forall t\geq t_0\,. \end{align*} Integrating the above from $t_0$ to $t$, we obtain \begin{align*} \frac{w(t)}{f(x(t))} &=\frac{w(t_0)}{f(x(t_0))} -\int_{t_0}^{t}[\frac{P(s,x'(s))\psi(x(s))\rho(s)}{f(x(s))} +\frac{Q(s,x(s))\rho(s)}{f(x(s))}\\ &\quad-\frac{\rho'(s)r(s)\psi(x(s))(x'(s))^{\alpha}}{f(x(s))} +\frac{w(s)f'(x(s))x'(s)}{f^{2}(x(s))} ]ds, \end{align*} \begin{align*} \frac{w(t)}{f(x(t))} &\leq \frac{w(t_0)}{f(x(t_0))} -\int_{t_0}^{t}[q(s)\rho(s) +\frac{(\rho(s)p(s)-\rho'(s)r(s))(x'(s))^{\alpha}\psi(x(s))}{f(x(s))}\\ &\quad +\frac{w(s)f'(x(s))x'(s)}{f^{2}(x(s))} ]ds. \end{align*} Using \eqref{e3}, \eqref{e4} and $x'(t)>0$, we have \begin{eqnarray*} 0\leq \lim_{t\to \infty}\frac{w(t)}{f(x(t))}=-\infty, \end{eqnarray*} this is a contradiction. The proof is complete. \end{proof} \begin{theorem} \label{thm2} Assume that $f'(x)\geq 0$ and $\psi(x(t))\equiv1$. Also assume that \begin{gather} \label{e13} \rho_0(t)=\exp\Big(\int_{t_0}^{t}\frac{p(s)}{r(s)}ds \Big),\\ \label{e14} \int_{t_0}^{\infty}\frac{dt}{(\rho_0(t)r(t))^{1/\alpha}}=\infty, \end{gather} and $\rho_0(t)$ satisfies \eqref{e3}. Then every solution of \eqref{e1} is oscillatory. \end{theorem} \begin{proof} Let $x(t)$ be a non-oscillatory solution of \eqref{e1}. Without loss of generality, we assume that $x(t)$ is eventually positive. Let $w(t)=\rho_0(t)r(t)|x'(t)|^{\alpha-1}x'(t)$. Then \[ w(t)x'(t)=\rho_0(t)r(t)|x'(t)|^{\alpha-1}(x'(t))^{2}\geq 0\quad \text{for } t\geq t_0 \] and \begin{equation} \label{e15} w'(t)=(r(t)|x'(t)|^{\alpha-1}x'(t))'\rho_0(t)+r(t)|x'(t)|^{\alpha-1}x'(t)\rho_0'(t) \quad \forall t\geq t_0\,. \end{equation} In view of \eqref{e1} and \eqref{e13}, we obtain \begin{equation} \label{e16} \begin{gathered} w'(t)=(-P(t,x'(t))-Q(t,x(t)))\rho_0(t)+|x'(t)|^{\alpha-1}x'(t)p(t)\rho_0(t),\\ w'(t)\leq(-p(t)|x'(t)|^{\alpha-1}x'(t)-q(t)f(x(t)))\rho_0(t)+|x'(t)|^{\alpha-1} x'(t)p(t)\rho_0(t), \\ \frac{w'(t)}{f(x(t))}\leq -q(t)\rho_0(t)\quad\forall t\geq t_0\,. \end{gathered} \end{equation} Since \begin{align*} \Big(\frac{w(t)}{f(x(t))}\Big)' &=\frac{w'(t)f(x(t))-w(t)f'(x(t))x'(t)}{f^{2}(x(t))} \\ &\leq -q(t)\rho_0(t)-\frac{w(t)f'(x(t))x'(t)}{f^{2}(x(t))} \quad\forall t\geq t_0, \end{align*} integrating from $t_0$ to $t$, we have \begin{align*} -\frac{w(t)}{f(x(t))} \geq -\frac{w(t_0)}{f(x(t_0))}+\int_{t_0}^{t}q(s)\rho_0(s)ds +\int_{t_0}^{t}\frac{w(s)f'(x(s))x'(s)}{f^{2}(x(s))}ds,\quad\forall t\geq t_0. \end{align*} By using \eqref{e3}, there exists a constant $ m>0$ and $t_1\geq t_0$ such that \begin{equation} \label{e19} -\frac{w(t_0)}{f(x(t_0))}+\int_{t_0}^{t}q(s)\rho_0(s)ds+ \int_{t_0}^{t_1}\frac{w(s)f'(x(s))x'(s)}{f^{2}(x(s))}ds\geq m \quad\forall t\geq t_0 \end{equation} which means that \begin{equation} \label{e20} -\frac{w(t)}{f(x(t))}\geq m+\int_{t_1}^{t}\frac{w(s)f'(x(s))x'(s)}{f^{2}(x(s))}ds. \end{equation} Because that $x(t)$ is positive, \eqref{e20} implies $-w(t)>0$, or equivalently $x'(t)<0$. Let \begin{equation} \label{e21} u(t)=-w(t)=- \rho_0(t)r(t)|x'(t)|^{\alpha-1}x'(t)=\rho_0(t)r(t)(-x'(t))^{\alpha}, \end{equation} thus \eqref{e20} can be written as \begin{equation} \label{e22} u(t)\geq m f(x(t))+\int_{t_1}^{t}\frac{f(x(t))f'(x(s))(-x'(s))}{f^{2}(x(s))}u(s)ds. \end{equation} Define \begin{equation} \label{e23} K(t,s,u)=\frac{f(x(t))f'(x(s))(-x'(s))}{f^{2}(x(s))}u. \end{equation} Then, for any fixed $t$ and $s$, $K(t,s,u)$ is nondecreasing in $u$. Let $v(t)$ be the minimal solution of the equation \begin{equation} \label{e24} v(t)= m f(x(t))+\int_{t_1}^{t}\frac{f(x(t))f'(x(s))(-x'(s))}{f^{2}(x(s))}v(s)ds. \end{equation} Applying Lemma \ref{lem1}, we obtain \begin{equation} \label{e25} u(t)\geq v(t)\quad\forall t\geq t_0. \end{equation} Dividing both sides of \eqref{e24} by $f(x(t))$ and deriving both sides of \eqref{e24}, \begin{equation} \begin{aligned} \Big(\frac{v(t)}{f(x(t))}\Big)' =\Big(m+\int_{t_1}^{t}\frac{f'(x(s))(-x'(s))}{f^{2}(x(s))}v(s)ds\Big)' =\frac{f'(x(t))(-x'(t))}{f^{2}(x(t))}v(t). \end{aligned} \label{e26} \end{equation} On the other hand \begin{equation} \label{e27} \Big(\frac{v(t)}{f(x(t))}\Big)' =\frac{v'(t)}{f(x(t))}+\frac{f'(x(t))(-x'(t))}{f^{2}(x(t))}v(t). \end{equation} Combining \eqref{e26} and \eqref{e27}, it follows that \begin{equation} \label{e28} v'(t)\equiv 0. \end{equation} So $v(t)=v(t_1)=mf(x(t_1))$, $ t\geq t_0$. From \eqref{e25}, we obtain \begin{equation} \label{e29} -x'(t)\geq (mf(x(t_1)))^{1/\alpha}\frac{1}{(\rho_0(t)r(t))^{1/\alpha}},\quad \forall t\geq t_1. \end{equation} Integrating both sides of this inequality above from $t_1$ to $t$, we have \[ % 2.30 -x(t)+x(t_1)\geq (mf(x(t_1)))^{1/\alpha}\int_{t_1}^{t} \frac{ds}{(\rho_0(s)r(s))^{1/\alpha}}. \] Letting $t\to\infty$, and using \eqref{e14}, it follows that $\lim_ {t\to\infty} x(t)\leq -\infty$, which contradicts to that $x(t)$ is eventually positive. The proof is complete. \end{proof} In what follows, we always assume that $H(t)\in C^{2}(\mathbb{R};\mathbb{R})$ and it satisfies the following two conditions: \begin{itemize} \item[(H1)] $H(t)>0$ for all $t\geq t_0$, $H(t)$ is a bounded; \item[(H2)] $H'(t)=h(t)$ is a bounded. \end{itemize} \begin{theorem} \label{thm3} Assume that $f'(x)\geq 0$, $\int_{t_0}^{\infty}\frac{dt}{(r(t))^{1/\alpha}}=\infty$, $\psi(x(t))\equiv1$, and \begin{equation} \label{e31} p(t)\leq 0, \quad q(t)> 0, \end{equation} or \begin{equation} \label{e32} p(t)\leq 0, \quad q(t)\leq 0, \quad \lim_{t\to\infty}\frac{p(t)}{q(t)}=M>0. \end{equation} Suppose further that there exists a function $H(t)$ that satisfies {\rm (H1), (H2)}, and such that \begin{gather} \label{e33} \int_{t_0}^{\infty}H(t)\varphi(t)dt=\infty, \\ \label{e34} \limsup_{t\to\infty}v(t)r(t)<\infty, \end{gather} where \begin{gather} \label{e35} \varphi(t)=v(t)(q(t)-p(t)h(t)-(r(t)h(t))'), \\ \label{e36} v(t)=\exp\Big(\int_{t_0}^{t}\big(\frac{p(s)}{r(s)}-\frac{h(s)}{H(s)}\big)ds\Big). \end{gather} Then every solution of \eqref{e1} is oscillatory. \end{theorem} \begin{proof} Assume to the contrary that \eqref{e1} has a non-oscillatory solution $x(t)$. Without loss of generality, we may assume that $x(t)>0 $ for all $t\geq t_0 $. Define \begin{equation} \label{e37} u(t)=v(t)r(t)\Big(\frac{|x'(t)|^{\alpha-1}x'(t)}{f(x(t))}+h(t)\Big). \end{equation} Differentiating, we obtain \begin{gather*} \begin{aligned} u'(t)&=\Big(\frac{p(t)}{r(t)}-\frac{h(t)}{H(t)}\Big)u(t) +v(t)\Big[-\frac{P(t,x'(t))}{f(x(t))}\\ &\quad -\frac{Q(t,x(t))}{f(x(t))} -\frac{r(t)|x'(t)|^{\alpha-1}(x'(t))^{2}f'(x(t))}{f^{2}(x(t))}+(r(t)h(t))'\Big], \end{aligned} \\ \begin{aligned} u'(t)&\leq \Big(\frac{p(t)}{r(t)}-\frac{h(t)}{H(t)}\Big)u(t) +v(t)\Big[-\frac{p(t)|x'(t)|^{\alpha-1}x'(t)}{f(x(t))}-q(t)\\ &\quad -\frac{r(t)|x'(t)|^{\alpha-1}(x'(t))^{2}f'(x(t))}{f^{2}(x(t))}+(r(t)h(t))'\Big] \\ &\leq p(t)v(t)h(t)-\frac{h(t)}{H(t)}u(t)-q(t)v(t)+v(t)(r(t)h(t))' \\ &=-\frac{h(t)}{H(t)}u(t)-v(t)[q(t)-p(t)h(t)-(r(t)h(t))'] \end{aligned} \\ u'(t)\leq -\frac{h(t)}{H(t)}u(t)-\varphi(t). \end{gather*} Multiplying by $H(t)$, it follows that \begin{equation} \label{e39} \varphi(t)H(t)\leq -H(t)u'(t)-h(t)u(t). \end{equation} We consider the following three cases. \smallskip \textbf{Case 1.} $u(t)$ is oscillatory. Then there exists a sequence $\{t_n\}$, $(n=1,2,\dots)$, $t_n\to\infty$ as $n\to\infty$ and such that $u(t_n)=0$ $(n=1,2,\dots)$. Integrating both sides of \eqref{e39} from $t_0$ to $t_n$, we obtain \begin{align*} \int_{t_0}^{t_n}H(t)\varphi(t)dt &\leq -\int_{t_0}^{t_n}H(t)u'(t)dt-\int_{t_0}^{t_n}h(t)u(t)dt\\ &= -H(t)u(t)\mid_{t_0}^{t_n}-\int_{t_0}^{t_n}(-H'(t)u(t)+h(t)u(t))dt\\ &= H(t_0)u(t_0)-H(t_n)u(t_n)=H(t_0)u(t_0); \end{align*} that is, \[ % \label{e41} \lim_{t_n\to\infty}\int_{t_0}^{t_n}H(t)\varphi(t)dt\leq H(t_0)u(t_0), \] which contradicts \eqref{e33}. \smallskip \textbf{Case 2.} $u(t)$ is eventually positive. Integrating both sides of \eqref{e39} from $t_0$ to $\infty$, we obtain \[ \int_{t_0}^{\infty}H(t)\varphi(t)dt\leq H(t_0)u(t_0)-\lim_{t\to\infty}H(t)u(t)\leq H(t_0)u(t_0), \] which also contradicts\eqref{e33}. \smallskip \textbf{Case 3.} $u(t)$ is eventually negative. If $\limsup_{t\to\infty}u(t)>-\infty $, then there exists a sequence $\{\bar{t}_{n}\}$, (n=1,2,\dots), that satisfies $\{\bar{t}_{n}\}\to\infty$ as $n\to\infty$ and such that $\lim_{\bar{t}_n\to\infty}u(\bar{t}_n)=\limsup_{t\to\infty}u(t)=M_1>-\infty$. Because $H(t)$ is a bounded function, then there exists a $M_2>0$ such that $H(\bar{t}_n)\leq M_2$, (n=1,2,\dots). According to \eqref{e39}, we obtain \begin{equation} \label{e43} \int_{t_0}^{\bar{t}_n}H(t)\varphi(t)dt \leq H(t_0)u(t_0)-H(\bar{t}_n)u(\bar{t}_n)\leq H(t_0)u(t_0)-M_2u(\bar{t}_n). \end{equation} Using \eqref{e33} and taking limit as $\bar{t}_{n}\to\infty$, it is easy to show that \begin{align*} \infty&=\lim_{\bar{t}_n\to\infty}\int_{t_0}^{\bar{t}_n}H(t)\varphi(t)dt\\ &\leq H(t_0)u(t_0)-\lim_{\bar{t}_n\to\infty}H(\bar{t}_n)u(\bar{t}_n)\\ &\leq H(t_0)u(t_0)-M_1M_2<\infty, \end{align*} which is obviously a contradiction. If $\limsup_{t\to\infty}u(t)=-\infty$, then $\lim_{t\to\infty}u(t)=-\infty$. From the definition of $h(t)$, combining \eqref{e34} and \eqref{e37}, it follows that $x'(t)<0$ and \[ \lim_{t\to\infty}(|x'(t)|^{\alpha-1}x'(t)/f(x(t)))=-\infty, \] which implies that $\lim_{t\to\infty}((-x'(t))^{\alpha}/f(x(t)))=\infty$. Owing to $p(t)\leq 0$, $q(t)\geq 0$, or $p(t)\leq 0$, $q(t)\leq 0$ and $\lim_{t\to\infty}(p(t)/q(t))=M>0$, using the similar method of the proof of Case 2 in Theorem \ref{thm1}, we will derive a contradiction. The proof is complete. \end{proof} \begin{theorem} \label{thm4} Assume that \eqref{e34} holds, $f'(x)\geq 0$, $\int_{t_0}^{\infty}\frac{dt}{(r(t))^{1/\alpha}}=\infty$, and \eqref{e31} or \eqref{e32} hold. Suppose further that there exists a function $H(t)$ that satisfies {\rm (H1), (H2)}, and such that \begin{equation} \label{e45} \int_{t_0}^{\infty}H(t)\bar{\varphi}(t)dt=\infty, \end{equation} where \begin{equation} \label{e46} \bar{\varphi}(t)=v(t)(q(t)+p(t)h(t)+(r(t)h(t))'), \end{equation} and $v(t)$ is defined in \eqref{e36}. Then every solution of \eqref{e1} is oscillatory when $\psi(x(t))\equiv1$. \end{theorem} \begin{proof} For the sake of contradiction, let \eqref{e1} have a non-oscillatory solution. Without loss of generality, we may assume that \eqref{e1} has an eventually positive $x(t)>0 $ for all $t\geq t_0 $. Define \[ u(t)=v(t)r(t)\Big(\frac{|x'(t)|^{\alpha-1}x'(t)}{f(x(t))}-h(t)\Big). \] The rest of proof is similar to Theorem \ref{thm3} and is omitted. \end{proof} \begin{theorem} \label{thm5} Assume \eqref{e34}, $p(t)\leq0$, $q(t)>0$, $f'(x)\geq 0$ and $\int_{t_0}^{\infty}\frac{dt}{(r(t))^{1/\alpha}}=\infty$. Suppose further that there exists a function $H(t)$ that satisfies {\rm (H1), (H2)}, and such that \begin{equation} \label{e48} \int_{t_0}^{\infty}H(t){\phi}(t)dt=\infty, \end{equation} where \begin{equation} \label{e49} {\phi}(t)=v(t)(-p(t)h(t)-(r(t)h(t))'), \end{equation} where $v(t)$ is defined in \eqref{e36}. Then every solution of \eqref{e1} is oscillatory when $\psi(x(t))\equiv1$. \end{theorem} \begin{proof} To the contrary, assume that \eqref{e1} has a non-oscillatory solution $x(t)$. Without loss of generality, we may assume that \eqref{e1} has an eventually positive $x(t)>0 $ for all $t\geq t_0 $. Define \begin{equation} \label{e50} u(t)=v(t)r(t)\Big(\frac{|x'(t)|^{\alpha-1}x'(t)}{x(t)}+h(t)\Big). \end{equation} We use (E1) and noting that $xf(x)\geq0$ for $x\neq0$, so $\frac{f(x)}{x}\geq0$ for $x\neq0$. Differentiating \eqref{e50}, we obtain \begin{align*} u'(t)&=\Big(\frac{p(t)}{r(t)}-\frac{h(t)}{H(t)}\Big)u(t) +v(t)\Big[-\frac{P(t,x'(t))}{x(t)}-\frac{Q(t,x(t))}{x(t)}\\ &\quad -\frac{r(t)|x'(t)|^{\alpha-1}(x'(t))^{2}}{x^{2}(t)}+(r(t)h(t))'\Big] \\ &\leq\Big(\frac{p(t)}{r(t)}-\frac{h(t)}{H(t)}\Big)u(t) +v(t)\Big[-\frac{p(t)|x'(t)|^{\alpha-1}x'(t)}{x(t)}-\frac{q(t)f(x(t))}{x(t)}\\ &\quad -\frac{r(t)|x'(t)|^{\alpha-1}(x'(t))^{2}}{x^{2}(t)}+(r(t)h(t))'\Big] \\ &\leq p(t)v(t)h(t)-\frac{h(t)}{H(t)}u(t)+v(t)(r(t)h(t))' \\ &=-\frac{h(t)}{H(t)}u(t)-v(t)[-p(t)h(t)-(r(t)h(t))'] \\ &=-\frac{h(t)}{H(t)}u(t)-\phi(t). \end{align*} Multiplying by $H(t)$, it follows that \[ H(t)\phi(t)\leq -H(t)u'(t)-h(t)u(t). \] The rest of the proof is similar to Theorem \ref{thm3}, and it is omitted. \end{proof} \begin{theorem} \label{thm6} Assume \eqref{e34}, $p(t)\leq0$, $q(t)>0$, $f'(x)\geq 0$ and $\int_{t_0}^{\infty}\frac{dt}{(r(t))^{1/\alpha}}=\infty$. Suppose further that there exists a function $H(t)$ satisfying {\rm (H1), (H2)}, and such that \begin{equation} \label{e53} \int_{t_0}^{\infty}H(t)\overline{{\phi}}(t)dt=\infty, \end{equation} where \begin{equation} \label{e54} \overline{{\phi}}(t)=v(t)(p(t)h(t)+(r(t)h(t))'), \end{equation} where $v(t)$ is defined in \eqref{e36}. Then every solution of \eqref{e1} is oscillatory when $\psi(x(t))\equiv1$. \end{theorem} \begin{proof} For the sake of contradiction, assume that \eqref{e1} has a non-oscillatory solution. Without loss of generality, we may assume that \eqref{e1} has an eventually positive $x(t)>0 $ for all $t\geq t_0 $. Define \[ u(t)=v(t)r(t)\Big(\frac{|x'(t)|^{\alpha-1}x'(t)}{x(t)}-h(t)\Big). \] The rest of the proof is similar to Theorem \ref{thm3}, and it is omitted here. \end{proof} \subsection*{Acknowledgments} The author express a sincere gratitude to Professor Julio G. Dix and to the anonymous referees for their useful comments and suggestions. \begin{thebibliography}{99} \bibitem{l1} V. Lakshmikantham, S. Leela; \emph{Differential and Integral Inequalities}, Vol. 1, Academic Press, New York, (1969). \bibitem{l2} H. J. Li; \emph{Oscillation criteria for second order linear differential equations}. Journal of Mathematical Analysis and Applications,vol. 194, no. 1, pp. 217-234, (1995). \bibitem{l3} W. Li, J. R. Yan; \emph{Oscillation criteria for second order superlinear differential equations}. Indian Journal of Pure and Applied Mathematics, vol.28, no. 6, pp. 735-740, (1997). \bibitem{l4} W. T. Li; \emph{Oscillation of certain second order nonlinear differential equations}. Journal of Mathematical Analysis and Applications, vol. 217, no. 1, pp. 1-14, (1998). \bibitem{l5} W. T. Li, P. Zhao; \emph{Oscillation theorems for second order nonlinear differential equations with damped term}. Mathematical and Computer Modelling, vol.39, no. 4-5, pp. 457-471, (2004). \bibitem{m1} O. G. Mustafa, S. P. Rogovchenko, Yu. V. Rogovchenko; \emph{On oscillation of nonlinear second order differential equations with damping term}. Journal of Mathematical Analysis and Applications, vol. 298, no. 2, pp. 604-620, (2004). \bibitem{o1} Z. Ouyang, J. Zhong, S. Zou; \emph{Oscillation criteria for a class of second order nonlinear differential equations with damping term}. Hindawi Publishing Corporation Abstract and Applied Analysis, vol. 2009, pp. 1-12, (2009). \bibitem{r1} Yu. V. Rogovchenko, F. Tuncay; \emph{Oscillation criteria for second order nonlinear differential equations with damping}. Nonlinear Analysis, vol. 69, no. 1, pp. 208-221, (2008). \bibitem{t1} A. Tiryaki, A. Zafer; \emph{Oscillation criteria for second order nonlinear differential equations with damping}. Turkish Journal of Mathematics, vol. 24, no. 2, pp. 185-196, (2000). \bibitem{w1} P. J. Y. Wong, R. P. Agarwal; \emph{Oscillatory behavior of solutions of certain second order nonlinear differential equations}. Journal of Mathematical Analysis and Applications, vol. 198, no. 2, 337-354, (1996). \bibitem{w2} P. J. Y. Wong, R. P. Agarwal; \emph{The oscillation and asymptotically monotone solutions of second order quasi linear differential equations}. Applied Mathematics and Computation, vol. 79, no. 2-3, pp. 207-237, (1996). \bibitem{w3} J. S. W. Wong; \emph{On Kamenev-type oscillation theorems for second order differential equations with damping}. Journal of Mathematical Analysis and Applications, vol. 258, no. 1, pp. 244-257, (2001). \bibitem{y1} X. Yang; \emph{Oscillation criteria for nonlinear differential equations with damping}. Applied Mathematics and Computation, vol. 136, no. 2-3, pp. 549-557, (2003). \end{thebibliography} \end{document} \end{document}