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HOMOGENIZATION OF A DOUBLE POROSITY MODEL IN
DEFORMABLE MEDIA

ABDELHAMID AINOUZ

Abstract. The article addresses the homogenization of a family of micro-

models for the flow of a slightly compressible fluid in a poroelastic matrix
containing periodically distributed poroelastic inclusions, with low permeabil-

ities and with imperfect contact on the interface. The micro-models are based

on Biot’s system for consolidation processes in each phase, with interfacial
barrier formulation. Using the two-scale convergence technique, it is shown

that the derived system is a general model of that proposed by Aifantis, plus

an extra memory term.

1. Introduction

The interaction between fluid flow and solid deformation in porous media is of
great importance in petroleum engineering and geomechanics, biosciences, chemical
processes and many industrial applications [12, 13, 22].

Some types of porous rocks, like aquifers and petroleum reservoir systems, may
contain fractures. It is known that flows in such media occur mainly in the fracture
region and the dominant fluid storage is in the matrix blocks. In this situation,
the reservoir possesses two porous structures, one related to the matrix, and the
other related to fractures. This notion of double porosity/permeability has first
been introduced by Barenblatt, Zheltov and Kochina [7] to model the flow of a
slightly compressible fluid within naturally fractured porous media. The proposed
model is a system of two partial differential equations in a two-medium description,
with Darcy’s law in each phase, plus exchange terms representing the interfacial
coupling that results from the interaction, at the micro-scale, between the two
phases, see (1.6)-(1.7) below. This was derived under the main assumption that
the fluid pressure is uniformly distributed at the surface of each phase.

Generally, fractured rock formations present at the micro-scale high degrees of
heterogeneity, and permeability is mainly determined by the size of the pores and
the connectedness of the fracture system. So any mathematical modeling of fluid
flow in such porous media must take into account the rapid spatial variation of
the phenomenological parameters. Furthermore, from the numerical point of view,
modeling of such systems at the local scale yields a huge number of discretized
equations, so computations will be fastidious and intractable. To deal with such
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highly heterogeneous domains, the idea is to replace the medium by an effective
one. Homogenization techniques, like the two-scale convergence method, have been
used to rigorously derive an effective double-porosity model for the Barenblatt,
Zheltov and Kochina (BZK) system, see for instance H. Ene and D. Polisevski
[15]. However, this model does not take into account the elastic behavior of the
solid. In fact, a rise in pore pressure of the fluid produces a dilation of the solid
mass. On the other hand, compression of the medium will increase pore pressure.
This coupled pressure-deformation was first introduced by Terzaghi [21] in the one-
dimensional setting and gave the first soil consolidation problem for a homogeneous
elastic porous medium. Later, M. A. Biot [9] has developed in the multidimensional
setting a linear theoretical analysis for the behavior of a fluid saturated poroelastic
medium. The model was based on macroscopic description of the phenomenological
and physical quantities where the representative volume element is described as
the superposition of a particle of fluid and a particle of solid. Assuming that
microstructures are periodically distributed and that the pore scale is very small
compared to the macroscopic scale, a two-scale asymptotic expansion technique can
be used to rigorously justify the Biot model. The microscopic models are based
on the linear elasticity equations in the skeleton and on the Stokes equations in
the fluid with appropriate transmission conditions. For more details, we refer the
reader to the earlier work by Auriault and Sanchez-Palencia [6].

Because of the coupling between the deformation and fluid pressure in double
porosity rocks, which must be understood in order to predict reservoir or aquifer be-
havior, the concept of double porosity has been developed by Aifantis [1] to model
oil flow in porous elastic rocks. More precisely, Aifantis gave a phenomenologi-
cal model for flow of a weakly compressible fluid in a complex and heterogeneous
medium where a system of partial differential equations is given and generalizes
Biot’s consolidation model by taking into account the basic physics of flow through
fractured media with interscale couplings. The proposed model reads as follows:

−µ∆u− (λ+ µ)∇(div u) + α1∇p1 + α2∇p2 = f , (1.1)

c1∂tp1 + α1 div(∂tu)−K1∆p1 + g(p1 − p2) = h1, (1.2)

c1∂tp2 + α2 div(∂tu)−K2∆p2 − g(p1 − p2) = h2 (1.3)

where u is the displacement of the medium; λ and µ are the dilation and shear
moduli of elasticity, respectively; pi is the pressure of the fluid in phase (i); ci
the compressibility, Ki the permeability and αi the Biot-Willis parameters [10].
We note that if we let the volume of fissures shrink to zero so that c2, α2,K2, g
become negligible then the system (1.1)-(1.3) reduces to the classical Biot system
with single porosity [9]:

−µ∆u− (λ+ µ)∇(div u) + α1∇p1 = f , (1.4)

c1∂tp1 + α1 div(∂tu)−K1∆p1 = h1. (1.5)

On the other hand, by neglecting the deformation effects λ, µ and αi the system
(1.1)-(1.3) reduces to the BZK model [7]:

c1∂tp1 −K1∆p1 + g(p1 − p2) = h1, (1.6)

c2∂tp2 −K2∆p2 − g(p1 − p2) = h2 (1.7)
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Aifantis’ theory of consolidation with the concept of double porosity unify then
the proposed models (1.4)-(1.5) of Biot for consolidation of deformable porous me-
dia with single porosity and (1.6)-(1.7) of BZK model for fluid flow through un-
deformable porous media with double porosity. Note also that a mathematical
justification of the Aifantis model has been established in [2]. More precisely, it
is considered micro-models with periodically distributed poroelastic inclusions, em-
bedded in an extra poroelastic matrix, with imperfect contact on the interface. The
micro-model is based on Biot’s system for consolidation processes with interfacial
barrier formulation. The macro-model is then derived by means of the two-scale
convergence technique and it reads as follows:

−div σ(u) + α1∇p1 + α2∇p2 = f , (1.8)

∂t(c̃1p1 + β1 : e(u))− div(K1∇p1) + g̃(p1 − p2) = h1 (1.9)

∂t(c̃2p2 + β2 : e(u))− div(K2∇p2)− g̃(p1 − p2) = h2 (1.10)

where σ, αi, βi and Ki are some effective tensors, i = 1, 2. See [2] for more details.
It is then worth pointing out that the Aifantis model (1.1)-(1.3) can be seen as
a special case of the homogenized model (1.8)-(1.10) (βi = αi = γiI3, γi being a
scalar and I3 the identity matrix).

In this paper, we consider a family of microscopic models for the fluid flow in a
periodic poroelastic medium made of two constituents : the matrix and the inclu-
sions, where the material properties change rapidly on a small scale characterized
by a parameter ε representing the periodicity of the medium. We shall make the
essential assumption that these inclusions have sizes large enough compared with
the sizes of pores so that it makes sense to consider these media as poroelastic
materials.

An interesting question is to investigate the limiting behavior of such media
when the flow in the inclusions presents very high frequency spatial variations as
a result of a relatively very low permeability when comparing to the matrix per-
meability, since pore flow velocities in the porous matrix can be high compared
to movement through the interconnected pore spaces in the inclusions. The main
difference here from [2] is that the coefficients are scaled analogously to Arbogast
et al [5]. This leads especially to re-scale the flow potential in the inclusions by ε2.
The main objective of this paper is to derive a general model from the point of view
of homogenization theory. It will be seen that the macro-model is in some sense
the limit of a family of periodic micro-models in which the size of the periodicity
approach zero. It is shown that the overall behavior of fluid flow in such heteroge-
neous media with low permeability at the micro-scale may present memory terms.
It is also shown that in such anisotropic media, with different coupling interaction
properties in different directions, the Biot-Willis parameters are, as in [2], matrices
and no longer scalars, as it is usually considered in the poroelasticity literature,
since it is assumed there that the medium is homogeneous and isotropic.

The paper is organized as follows. In the next section 2, we give the geometrical
setting, the family of the periodic micro-models, and state the main result of the
paper. Section 3 is devoted to the proof of the main result with the help of the
two-scale convergence technique. We conclude this paper with some remarks.
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2. Setting of the micro-model and main result

The aim of this section is to provide a detailed set up of the studied microstruc-
ture problem, introduce some necessary notations, basic mathematical tools as well
as the notion of two-scale convergence, auxiliary problems, and then formulate the
main result of the paper.

We consider Ω a bounded and smooth domain in R3, ε > 0 a sufficiently small
parameter (ε � 1) and Y =]0, 1[3 the generic cell of periodicity. We assume that
Y is divided as Y = Y1 ∪ Y2 ∪ Γ where Y1, Y2 are two connected open subsets of Y
and Γ is a smooth surface that separates them. They are such that

Y2 ⊂ Y, Y1 ∩ Y2 = ∅, Γ = Y1 ∩ Y2 = ∂Y2, ∂Y1 = Γ ∪ ∂Y.

We denote n = (ni)1≤i≤3 the unit normal vector on ∂Y1 pointing outward with
respect to Y1. Let χ1, χ2 denote respectively the characteristic function of Y1, Y2

extended by Y -periodicity to R3. Denote for x ∈ Ω, χε
i (x) = χi(x/ε) and set

Ωε
i = {x ∈ Ω : χε

i (x) = 1} and Γε = Ωε
1 ∩ Ωε

2.

Let Zi = ∪e∈Z3(Yi + e), i = 1, 2. As in [3], we shall assume that the subset Z1 is
smooth and connected open subset of R3.

With the above assumptions, the material occupying the domain Ωε
2 is then

embedded in the material occupying Ωε
1, and the interface Γε is the boundary of

Ωε
2. We observe that the boundary of Ωε

1 consists of two parts the outer boundary
∂Ω and Γε. Usually, the region Ωε

1 is referred to as the matrix while the region Ωε
2

is the inclusions. Note that no connectedness assumption is made on the material
part Ωε

2.
Let T > 0 and t ∈ [0, T ] denote the time variable. We set the space-time domains

Q = (0, T )× Ω, Σ = (0, T )× Γ, Qε
i = (0, T )× Ωε

i , and Σε = (0, T )× Γε.
Let us assume that each phase (Ωε

1, Ωε
2) is occupied by a porous and deformable

material through which a slightly compressible and viscous fluid flow diffuses. Let
uε

i denote the displacement of the medium Ωε
i , i = 1, 2. The equation of motion in

Ωε
1 ∪ Ωε

2 is given by

−div σε
1 = f1, in Ωε

1, (2.1)

−div σε
2 = f2, in Ωε

2 (2.2)

where σε
i is the stress tensor which satisfies a constitutive equation of linear poroe-

lasticity of the form [12]:

σε
i = Aε

i e(uε
1)− αε

ip
ε
i I3, in Ωε

i (2.3)

and fi ∈ L2(Ω)3 is the volume distributed force in the corresponding medium,
i = 1, 2. It is assumed that fi is independent of ε. In (2.3), Aε

1 and Aε
2 are fourth

rank elasticity tensors, e(·) is the linearized strain tensor, I3 is the identity matrix,
pε

i is the pressure and αε
i is the Biot-Willis parameter in the poroelastic material

Ωε
i [10].
Let cε1 (resp. cε2) and Kε

1 (resp. Kε
2) denote respectively the porosity and the

permeability of the medium Ωε
1 (resp. Ωε

2). The equation for mass conservation in
each phase reads as follows:

∂t(cε1p
ε
1 + αε

1 div uε
1)− div(Kε

1∇pε
1) = 0 in Ωε

1, (2.4)

∂t(cε2p
ε
2 + αε

2 div uε
2)− div(Kε

2∇pε
2) = 0 in Ωε

2. (2.5)
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On the interface Γε, we associate to (2.1)-(2.2) the following transmission condi-
tions:

uε
1 = uε

2, σε
1 · nε = σε

2 · nε (2.6)

and to (2.4)-(2.5) the well-known open-pore conditions:

(Kε
1∇pε

1) · nε = (Kε
2∇pε

2) · nε, (Kε
1∇pε

1) · nε = −gε(pε
1 − pε

2). (2.7)

where nε stands for the unit normal vector on Γε pointing outward with respect
to Ωε

1, and gε is the hydraulic permeability of the thin layer Γε. Taking the limit
on the thickness of the thin layer, one can prove that these conditions are the only
ones that are fully consistent with the validity of the poroelasticity’s equations
throughout heterogeneous media presenting interfaces across which the pressure is
discontinuous, see [16]. Observe that when gε = ∞, (2.7) reduces to the standard
transmission condition, that is a perfect hydraulic contact on the interface, and
when gε = 0, condition (2.7) implies no flux exchange. Here, in this paper we shall
assume that neither of these conditions is fulfilled. See assumption (H4) below.

On the exterior boundary ∂Ω\Γε, we assume the homogeneous Dirichlet bound-
ary conditions:

uε
1 = 0 and pε

1 = 0. (2.8)

Finally, the system (2.4)-(2.8) is supplemented by the initial conditions

uε
1(0, ·) = 0, pε

1(0, ·) = 0 in Ωε
1, (2.9)

uε
2(0, ·) = 0, pε

2(0, ·) = 0 in Ωε
2. (2.10)

Remark 2.1. The initial conditions (2.9)-(2.10) are already considered in the liter-
ature, see for e.g. [8]. Actually, they are stronger than those studied, for example,
by R. E. Showalter [19]. In fact, we do not need to specify the initial values for the
displacements and the pressures but merely the combinations: (cεip

ε
i + αε

i div uε
i ).

For example, we could impose the following conditions:

lim
t→0+

(cεip
ε
i (t) + αε

i div uε
i (t)) = vi in L2(Ωε

i ). (2.11)

See [19] for full details. Nevertheless, the choice of the inhomogeneous initial con-
ditions is rather for technical reasons, and it is convenient for our purpose. See for
e.g. [2].

To deal with periodic homogenization with microstructures, we shall assume the
following:

(H1) There exists Y -periodic, fourth rank tensor-valued functions Ai(y), i = 1, 2
and continuous on R3 such that

Aε
i (x) = Ai(

x

ε
), x ∈ Ω,

(Ai(y)Ξ : Ξ) ≥ C(Ξ : Ξ).

for all y ∈ R3 and Ξ ∈M3×3
sym(R);

(H2) There exist Y -periodic real-valued functions ci(y), i = 1, 2 and continuous
on R3 such that

cεi (x) = ci(
x

ε
), x ∈ Ω

and ci(y) ≥ C > 0 for all y ∈ R3;
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(H3) There exist Y -periodic matrix-valued functions Ki(y), i = 1, 2, continuous
on R3 such that

Kε
1(x) = K1(

x

ε
), Kε

2(x) = ε2K2(
x

ε
), x ∈ Ω (2.12)

and 〈Kiξ, ξ〉 ≥ C|ξ|2, i = 1, 2 for all y ∈ R3 and ξ ∈ R3;
(H4) There exists a function g ∈ C(R3), Y -periodic such that

gε(x) = εg(x/ε), x ∈ R3 and inf
y∈R3

g(y) ≥ C > 0.

(H5) The Biot-Willis parameter αε
i is defined a.e. in Ω as follows:

αε
1(x) = α1 for x ∈ Ωε

1, αε
2(x) = εα2 for x ∈ Ωε

2 (2.13)

where αi is a positive constant, i = 1, 2.

Here and throughout this paper, the quantity C denotes various positive con-
stants independent of ε > 0, of the subscript i = 1, 2 and the microscopic variable
y ∈ R3.

Remark 2.2. We have chosen a particular scaling of the permeability coefficients
in (2.12). This means that the permeability is much larger in the network of
inclusions than in the porous matrix. This gives that both terms

∫
Ωε

1
|∇pε

1|2dx and
ε2
∫

Ωε
2
|∇pε

2|2dx have the same order of magnitude and thus leading to a balance in
potential energies. For more details, we refer the reader to Arbogast, Douglas, and
Hornung [5] (see also Allaire [3]). In the same way, we also have taken a special
scaling factor of the Biot-Willis parameters in (2.13).

To set the mathematical framework of our Problem, we introduce the following
spaces:

H = H1
0 (Ω)3, Lε = L2(Ωε

1)× L2(Ωε
2),

Eε
1 = {q ∈ H1(Ωε

1); q|Γ = 0}, Eε
2 = H1(Ωε

2), Eε = Eε
1 × Eε

2 .

The space H is equipped with the standard norm: ‖v‖H = ‖e(v)‖L2(Ω)3×3 and Eε

with
‖(q1, q2)‖2Eε = ‖∇q1‖2L2(Ωε

1) + ε2‖∇q2‖2L2(Ωε
2) + ε‖q1 − q2‖2L2(Γε).

See Monsurrò [17]. For a.e. (t, x) ∈ Q, we denote

uε(t, x) = χε
1(x)uε

1(t, x) + χε
2(x)uε

2(t, x),

Aε(x) = χε
1(x)Aε

1(x) + χε
2(x)Aε

2(x),

fε(x) = χε
1(x)f1(x) + χε

2(x)f2(x).

Note that, thanks to the transmission condition (2.6), the displacement uε(t, ·) lies
in H for a.e. t ∈ (0, T ).

Throughout this article, the following notation will be used: if F is any Banach
space then Lp

T (F) denotes the vector-valued functions space defined by Lp
T (F) =

Lp(0, T ;F)
The weak formulation of (2.4)-(2.10) can be read as follows: Find (uε, pε) ∈

L∞T (H)× L2
T (Eε), such that pε = (pε

1, p
ε
2) ∈ L∞T (Lε),

∂t(cε1p
ε
1 + α1 div uε) ∈ L2

T (Eε
1
∗), ∂t(cε2p

ε
2 + εα2 div uε) ∈ L2

T (Eε
2
∗)
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and for all v ∈ H, (q1, q2) ∈ Eε, we have∫
Ω

Aεe(uε)e(v)dx+
∫

Ωε
1

α1∇pε
1vdx+

∫
Ωε

2

αε
2∇pε

2vdx =
∫

Ω

fεvdx, (2.14)

〈∂t(cε1p
ε
1 + α1 div uε), q1〉Eε

1
∗,Eε

1
+
∫

Ωε
1

Kε
1∇pε

1∇q1dx

+ 〈∂t(cε2p
ε
2 + εα2 div uε), q2〉Eε

2
∗,Eε

2
+
∫

Ωε
2

Kε
2∇pε

2∇q2dx

+
∫

Γε

gε(pε
1 − pε

2)(q1 − q2)dsε(x) = 0,

(2.15)

uε(0, ·) = 0, χ1(·)pε
1(0, ·) + χ2(·)pε

2(0, ·) = 0 a.e. in Ω. (2.16)

Here and throughout this paper dx and dsε(x) stand respectively for the Lebesgue
measure on R3 and the Hausdorff measure on Γε.

Using assumptions (H1)–(H5), we establish the following existence and unique-
ness result whose proof is a slight modification of that given by Showalter and
Momken [20] and therefore will be omitted.

Theorem 2.3. Assume that (H1)–(H5) hold. Then, for any sufficiently small ε > 0
and fε ∈ L2(Ω), there exists a unique couple (uε, pε) ∈ L∞T (H)× L2

T (Eε), solution
of the weak system (2.14)-(2.16), such that

‖uε‖L∞T (H) + ‖pε‖L2
T (Eε) + ‖pε‖L∞T (Lε) ≤ C. (2.17)

Now, thanks to the a priori estimates (2.17), one is led to study the limiting
behavior of the sequence (uε, pε) as ε approaches 0. To do this, we shall use the
two-scale convergence technique that we shall recall hereafter.

First, we define C#(Y ) to be the space of all continuous functions on R3 which
are Y -periodic. Let the space L2

#(Y ) (resp. L2
#(Yi), i = 1, 2) to be all functions

belonging to L2
loc(R3) (resp. L2

loc(Zi)) which are Y -periodic, and H1
#(Y ) (resp.

H1
#(Yi)) to be the space of those functions together with their derivatives belonging

to L2
#(Y ) (resp. L2

#(Zi)).
Now, we recall the definition and main results concerning the method of two-scale

convergence. For more details, we refer the reader to [3, 4, 18].

Definition 2.4. A sequence (vε) in L2(Ω) two-scale converges to v ∈ L2(Ω × Y )
(we write vε 2−s

⇀ v) if, for any admissible test function ϕ ∈ L2(Ω; C#(Y )),

lim
ε→0

∫
Ω

vε(x)ϕ(x,
x

ε
)dx =

∫
Ω×Y

v(x, y)ϕ(x, y) dx dy.

Theorem 2.5. Let (vε) be a sequence of functions in L2(Ω) which is uniformly
bounded. Then, there exist v ∈ L2(Ω × Y ) and a subsequence of (vε) which two-
scale converges to v.

Theorem 2.6. Let (vε) be a uniformly bounded sequence in H1(Ω) (resp. H1
0 (Ω)).

Then there exist v ∈ H1(Ω) (resp. H1
0 (Ω)) and v̂ ∈ L2(Ω;H1

#(Y )/R) such that, up
to a subsequence,

vε 2−s
⇀ v; ∇vε 2−s

⇀ ∇v +∇y v̂.

Here and in the sequel the subscript y on a differential operator denotes the
derivative with respect to y.
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Theorem 2.7. Let (vε) be a sequence of functions in H1(Ω) such that

‖vε‖L2(Ω) + ε‖∇vε‖L2(Ω)3 ≤ C.

Then, there exist v ∈ L2(Ω;H1
#(Y )) and a subsequence of (vε), still denoted by (vε)

such that
vε 2−s

⇀ v, ε∇vε 2−s
⇀ ∇yv

and for every ϕ ∈ D(Ω; C#(Y )), we have

lim
ε→0

∫
Γε

vε(x)ϕ(x,
x

ε
)dsε(x) =

∫
Ω×Γ

v(x, y)ϕ(x, y) dx ds(y).

Here and in the sequel ds(y) denotes the Hausdorff measure on Γ.

The notion of two-scale convergence can easily be generalized to time-dependent
functions without affecting the results stated above. According to [11], we have the
following:

Definition 2.8. We say that a sequence (vε) in L2(Q) two-scale converges to v ∈
L2(Q× Y ) (we always write vε 2−s

⇀ v) if, for any ϕ ∈ L2(Q; C#(Y )):

lim
ε→0

∫
Q

vε(t, x)ϕ(t, x,
x

ε
) dt dx =

∫
Q×Y

v(t, x, y)ϕ(t, x, y)dt dx dy.

Remark 2.9. The results stated above still hold for the case of time-dependent
sequences. For if (vε) is a uniformly bounded sequence in L2(Q), there exists then
v ∈ L2(Q) such that, up to a subsequence, vε 2−s

⇀ v in the sense of Definition 2.8.
Moreover, if (vε) is uniformly bounded in L2

T (H1(Ω)), then up to a subsequence,
there exist v ∈ L2

T (H1(Ω)) and v0 ∈ L2(Q;H1
#(Y )/R) such that vε 2−s

⇀ v and

∇vε 2−s
⇀ ∇v +∇yv0. On the other hand, if a sequence (vε) is such that

‖vε‖L2(Q) + ε‖∇vε‖L2(Q) ≤ C,

then, up to a subsequence, there exists v ∈ L2
T (H1

#(Y )) such that vε 2−s
⇀ v and

ε∇yv
ε 2−s
⇀ ∇yv.

To state the main result, we introduce the following three auxiliary problems. For
j, k ∈ {1, 2, 3}, let wjk ∈ (H1

#(Y )/R)3 be the solution to the following microscopic
system:

−divy(A1ey(wjk + djk)) = 0 a.e. in Y1,

−divy(A2ey(wjk + djk)) = 0 a.e. in Y2,

A1ey(wjk + djk) · n = A2ey(wjk + djk) · n a.e. on Γ,

A1ey(wjk + djk) · n is Y -periodic

where djk(y) = (yjδlk)1≤l≤3 and (δkj) is the Krönecker symbol. For j = 1, 2, 3, let
πj ∈ H1(Y1)/R be the solution of the following stationary micro-pressure equation:

−divy(K1(∇πj + ej)) = 0 in Y1,

K1(∇πj + ej) · n = 0 on Γ,
y 7→ πj is Y -periodic
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where ej is the jth vector of the canonical basis of R3. Let ζ ∈ L∞T (H1
#(Y2)) be the

unique solution to the following non micro-pressure problem of the Robin type:

∂t(c2ζ)− divy(K2∇yζ) = 0 a.e. in (0, T )× Y2,

K2∇yζ · n = −g(y)[1− ζ] a.e. on Σ,
y 7→ ζ is Y -periodic,

ζ(0, y) = 0, a.e. y ∈ Y2.

Now, let us define the homogenized fourth rank tensor Ã = (ãj1j2j3j4)1≤j1,j2,j3,j4≤3,
where the coefficients are given by

ãj1j2j3j4 =
3∑

k1,k2=1

∫
Y

aj1j2k1k2(y)(δj1k1δj2k2 + ek1k2,y(wj3j4)(y))dy.

Here (ajklm) are the coefficients of the elasticity tensor A which are given by

A(y) = χ1(y)A1(y) + χ2(y)A2(y) (2.18)

for a.e. y ∈ Y , and ejk,y(·) is the linearized elasticity strain tensor where the
derivatives are taken with respect to the microscopic variable y. We also define the
following homogenized tensors:

σ̃(u) = (σ̃jk(u)), K̃ = (K̃jk), B = (bjk), Λ = (λjk) (2.19)

where for j, k ∈ {1, 2, 3},

σ̃jk(u) =
3∑

l,m=1

ãjklmelm(u), (2.20)

K̃jk =
∫

Y1

K1(y)(∇yπj + ej)(∇πk + ek)dy, (2.21)

bjk = α1(|Y1|δjk +
∫

Γ

πk(y)njds(y)), (2.22)

λjk = α1

∫
Y1

3∑
l=1

(δjlδkl +
∂wjk

l

∂yl
)dy. (2.23)

Here |Yi| denotes the volume of Yi and (wij
l )1≤l≤3 are the components of wij .

Finally let us define the following averaging quantities

f = |Y1|f1 + |Y2|f2, (2.24)

c̃ =
∫

Y1

c1(y)dy, (2.25)

g̃ =
∫

Γ

g(y)ds(y) (2.26)

and the time-dependent functions

θ(t, τ) = α2

∫
Γ

∂tζ(t− τ, y)nds(y), (2.27)

η(t, τ) = −
∫

Γ

g(y)∂tζ(t− τ, y)ds(y). (2.28)

With the above notation, we are now ready to give the main result of this article.
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Theorem 2.10. Let (uε, pε) ∈ L∞(0, T ; H) × L2(0, T ; Eε) be the solution of the
weak system (2.14). Then, up to a subsequence, there exists a unique (u, p) ∈
L2(0, T ; H1

0(Ω)×H1
0 (Ω)) such that

uε ⇀ u in L2(0, T ;H1
0 (Ω)) weakly,

pε
1 ⇀ p1 in L2(Q) weakly,

pε
2 ⇀

∫
Y2

p2(y)dy in L2(Q) weakly,

where p = (p1,
∫

Y2
p2(y)dy),

p2(t, x, y) =
∫ t

0

p1(τ, x)∂tζ(t− τ, y)dτ, a.e. (t, x, y) ∈ Q× Y2.

and the couple (u, p1) is a solution to the homogenized model

−div σ̃(u) +B∇p1 +
∫ t

0

θ(t, τ)p1(τ, x)dτ = f , a.e. in Q,

∂t(c̃p1 + Λ : e(u))− div(K̃∇p1) + g̃p1 −
∫ t

0

η(t, τ)p1(τ, x)dτ = 0, a.e. in Q,

u = 0, K̃∇p1 · ν = 0 a.e. on Σ,

u(0, x) = 0 a.e. in Ω, p1(0, x) = 0 a.e. in Ω,

Here σ̃, B, θ, f , c̃, Λ, K̃, g̃ and η are given in (2.19)-(2.28).

3. Proof of main result

As a direct application of Theorems 2.5-2.7, and of the a priori estimates (2.17),
we give without proof the following two-scale convergence result concerning the
solutions (uε, pε) of Problem (2.14)-(2.16).

Theorem 3.1. There exists a subsequence of (uε, pε), solution of (2.14)-(2.16),
still denoted (uε, pε), and there exist

u ∈ L∞T (H), û ∈ L∞T (L2(Ω;H1
#(Y )/R))3,

p1 ∈ L∞T (H1
0 (Ω)), p̂1 ∈ L2(Q;H1

#(Y )/R),

p2 ∈ L∞T (L2(Ω;H1
#(Y )))

such that, for a.e. t ∈ (0, T ),

uε(t, ·) 2−s
⇀ u(t, ·), (3.1)

χε
1p

ε
1(t, ·) 2−s

⇀ χ1p1 (t, ·), (3.2)

χε
1p

ε
2(t, ·) 2−s

⇀ χ2p2(t, ·) (3.3)

in the sense of Definition 2.4 and
∂uε

∂xj

2−s
⇀

∂u
∂xj

+
∂û
∂yj

, j = 1, 2, 3, (3.4)

χε
1∇pε

1
2−s
⇀ χ1(∇p1 +∇yp̂1), (3.5)

εχε
2∇pε

2
2−s
⇀ χ2∇yp2 (3.6)
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in the sense of Definition 2.8. Moreover, the following convergence holds:

lim
ε→0

∫
Σε

ε(pε
1 − pε

2)ψε dt dsε =
∫

Q×Γ

(p1 − p2)ψ dt dx ds, (3.7)

for any ψ ∈ D(Q; C#(Y )) with ψε(t, x) = ψ(t, x, x/ε).

To determine the limiting equations of the system (2.14)-(2.16), we begin by
choosing the adequate admissible test functions. Let vε(x) = v(x) + εv̂(x,

x

ε
)

where v ∈ D(Ω)3 and v̂ ∈ D(Ω; C∞# (Y ))3. Let qε
1(t, x) = ϕ1(t, x) + εϕ̂1(t, x,

x

ε
) and

qε
2(t, x) = ϕ2(t, x,

x

ε
) where ϕ1 ∈ D((0, T )× Ω̄) and ϕ2, ϕ̂1 ∈ D(Q; C∞# (Y )). Taking

v = vε in (2.14), we have∫
Ω

fεvεdx =
∫

Ω

Aε(x)e(uε)e(vε)dx+
∫

Ωε
1

α1∇pε
1v

εdx+ ε

∫
Ωε

2

α2∇pε
2v

εdx

=
∫

Ω

Aε(x)e(uε)(e(v)(x) + ey(v̂)(x,
x

ε
))dx

+
∫

Ω

(α1χ
ε
1(x)∇pε

1 + εα2χ
ε
2(x)∇pε

2)v(x)dx+ εRε
1,

(3.8)

where

Rε
1 =

∫
Ω

Aε(x)e(uε)ex(w)(x,
x

ε
)dx+ α1

∫
Ω

χε
1(x)∇pε

1w(x,
x

ε
)dx

+ εα2

∫
Ω

χε
2(x)∇pε

2w(x,
x

ε
)dx.

Observe that Rε
1 = O(1).

Now, we pass to the limit in (3.8). In view of (3.4), and since At(e(v)+ey(v̂)) is
an admissible test function, the first integral in the left-hand side of (3.8) converges
to ∫

Ω×Y

A(e(u) + ey(û))(e(v) + ey(v̂)) dx dy (3.9)

where the tensor A(y) is given by (2.18). In view of Divergence Lemma and (3.5)-
(3.6), the second integral of the left-hand side of (3.8) tends to

α1

∫
Ω×Y1

(∇p1 +∇yp̂1)v(x) dx dy + α2

∫
Ω×Y2

∇yp2v(x) dx dy

= α1|Y1|
∫

Ω

∇p1v(x)dx+
∫

Ω×Γ

(α1p̂1 + α2p2)(v · n) dx ds,
(3.10)

By Theorem 2.5, it follows that

lim
ε→0

∫
Ω

fεvε(x)dx = lim
ε→0

(∫
Ω

fε(x)v(x)dx+ ε

∫
Ω

fε(x)v̂(x,
x

ε
)dx
)

=
∫

Ω

fv(x)dx
(3.11)
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where f is given by (2.24). Thus, collecting these limits (3.9)-(3.11), we obtain the
limiting equation of (3.8),∫

Ω×Y

A[e(u) + ey(û)][e(v) + ey(v̂)] dx dy + α1|Y1|
∫

Ω

∇p1vdx

+
∫

Ω×Γ

(α1p̂1 + α2p2)(v · n) dx ds =
∫

Ω

fvdx
(3.12)

which is valid for a.e. t ∈ (0, T ). Next, we proceed to get the limiting equation of
(2.15). Taking q1 = qε

1 and q2 = qε
2 in (2.15), integrating by parts over (0, T ) and

taking into account the initial conditions (2.16), we obtain

−
∫

Qε
1

(cε1(x)pε
1 + α1 div uε)∂tϕ1(t, x) dt dx

−
∫

Qε
2

cε2(x)pε
2∂tϕ2(t, x,

x

ε
) dt dx

+
∫

Qε
1

K1(
x

ε
)∇pε

1(∇ϕ1(t, x) +∇yϕ̂1(t, x,
x

ε
)) dt dx

+
∫

Qε
2

εk2(
x

ε
)∇pε

2∇yϕ2(t, x,
x

ε
) dt dx

+ ε

∫
Σε

g(
x

ε
)(pε

1 − pε
2)(ϕ1(t, x)− ϕ2(t, x,

x

ε
)) dt dsε + εRε

2 = 0

(3.13)

where

Rε
2 =

∫
Qε

1

−(cε1(x)pε
1 + α1 div uε)∂tϕ̂1(t, x,

x

ε
) dt dx

+
∫

Qε
2

−α2 div uε∂tϕ2(t, x,
x

ε
) dt dx

+
∫

Qε
1

K1(
x

ε
)∇pε

1∇xϕ̂1(t, x,
x

ε
) dt dx

+ ε

∫
Qε

1

K2(
x

ε
)∇pε

2∇xϕ2(t, x,
x

ε
) dt dx

+ ε

∫
Σε

g(
x

ε
)(pε

1 − pε
2)ϕ̂1(t, x) dt dsε.

The first integral of (3.13) is equal to∫
ΩT

−χ1(
x

ε
)(c1(

x

ε
)pε

1 + α1 div uε)∂tϕ1(t, x) dt dx,

and thanks to (3.2) and (3.4), it converges to∫
Q×Y

−χ1(y)(c1(y)p1 + α1(div u + divy û))∂tϕ1(t, x)dt dx dy.

In a similar way, by (3.3) and (3.4), it follows that∫
Qε

2

cε2(x)pε
2∂tϕ2(t, x,

x

ε
) dt dx→

∫
Q×Y

χ2(y)c2(y)p2∂tϕ2(t, x, y) dt dx dy



EJDE-2013/90 A DOUBLE POROSITY MODEL 13

Now, in view of (3.5) one can deduce that∫
Qε

1

K1(
x

ε
)∇pε

1(∇ϕ1(t, x) +∇yϕ̂1(t, x,
x

ε
)) dt dx

=
∫

Q

χ1(
x

ε
)K1(

x

ε
)∇pε

1(∇ϕ1(t, x) +∇yϕ̂1(t, x,
x

ε
)) dt dx

→
∫

Q×Y

χ1(y)K1(y)(∇p1 +∇yp̂1)(∇ϕ(t, x) +∇yϕ̂1(t, x, y)) dt dx dy

and thanks to (3.6), we also have∫
Qε

2

εk2(
x

ε
)∇pε

2∇yϕ2(t, x,
x

ε
) dt dx

=
∫

Q

χ2(
x

ε
)K2(

x

ε
)ε∇pε

2∇yϕ2(t, x,
x

ε
) dt dx

→
∫

Q×Y

χ2(y)K2(y)∇p2∇yϕ2(t, x, y)dt dx dy.

By (3.7), we find that

ε

∫
Σε

g(
x

ε
)(pε

1 − pε
2)(ϕ1(t, x)− ϕ2(t, x,

x

ε
)) dt dsε

→
∫

Q×Γ

g(y)(p1 − p2)(ϕ1(t, x)− ϕ2(t, x, y)) dt ds dy.

As before, we observe that Rε
2 = O(1) and, by collecting all the preceding limits,

we obtain the following limiting equation of (2.15):∫
Q×Y1

−(c1(y)p1 + α1(div u + divy û))∂tϕ1dt dx dy

+
∫

Q×Y1

K1(y)(∇p1 +∇yp̂1)(∇ϕ1 +∇yϕ̂1)dt dx dy

+
∫

Q×Y2

(−c2(y)p2∂tϕ2 +K2(y)∇yp2∇yϕ2)dt dx dy

+
∫

Q×Γ

g(y)(p1 − p2)(ϕ1 − ϕ2) dt ds dy = 0.

(3.14)

By a denseness argument, equations (3.12) and (3.14) still hold for any

(v, v̂) ∈ H× L2(Ω, H1(Y )/R)3

and any

(ϕ1, ϕ̂1, ϕ2) ∈ L2
T (H1(Ω))× L2(Q;H1

#(Y )/R)× L2(Q;H1
#(Y )).

We can summarize the preceding by observing that these equations are a weak
formulation associated to the two-scale homogenized system (3.15)-(3.31). Indeed,
integrating by parts in (3.12) and (3.14), we obtain the system

−divy(A1[e(u) + ey(û)]) = 0 a.e.in Q× Y1, (3.15)

−divy(A2[e(u) + ey(û)]) = 0 a.e.in Q× Y2, (3.16)
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− div(
∫

Y

A[e(u) + ey(û)]dy) + α1|Y1|∇p1

+
∫

Γ

(α1p̂1 + α2p2)nds = f a.e. in Q,

(3.17)

and

−divy(K1(∇p1 +∇yp̂1)) = 0 a.e. in Q× Y1, (3.18)

∂t(c2p2)− divy(K2∇yp2) = 0 a.e.in Q× Y2, (3.19)

∂t(
∫

Y1

(c1p1 + α1(div u + divy û)))− div(
∫

Y1

K1(∇p1 +∇yp̂1)dy)

+
∫

Γ

g(y)[p1 − p2]ds(y) = 0 a.e. in Q,

(3.20)

with the transmission and boundary conditions:

A1[e(u) + ey(û)] · n = A2[e(u) + ey(û)] · n a.e. on Q× Γ, (3.21)

(K1(∇p1 +∇yp̂1)) · n = 0 a.e. on Q× Γ, (3.22)

(K1(∇p1 +∇yp̂1)) · v = 0 a.e. on (0, T )× ∂Ω× Y1, (3.23)

K2∇yp2 · n = −g(y)[p1 − p2] a.e. on Q× Γ, (3.24)

u = 0 a.e. on ∂Ω, (3.25)

y 7→ û, p̂1, p2 are Y -periodic, (3.26)

and the initial conditions:

u(0, x) = 0 a.e. in Ω, (3.27)

û(0, x, y) = 0 a.e. in Ω× Y, (3.28)

p1(0, x) = 0 a.e. in Ω, (3.29)

p̂1(0, x, y) = 0 a.e. in Ω× Y1 (3.30)

p2(0, x, y) = 0 a.e. in Ω× Y2. (3.31)

Now we decouple the system (3.15)-(3.31). In view of the linearity of the two first
equations (3.15)-(3.16), we can write that, up to an additive constant:

û(t, x, y) =
3∑

i,j=1

eij(u)(t, x)wij(y) + Cte, a.e. (t, x, y) ∈ Q× Y, (3.32)

where, for i, j ∈ {1, 2, 3}, wij ∈ (H1
#(Y )/R)3 is the solution to the microscopic

system

−divy(A1ey(wij + dij)) = 0 a.e. in Y1,

−divy(A2ey(wij + dij)) = 0 a.e. in Y2,

A1ey(wij + dij) · n = A2ey(wij + dij) · n a.e. on Γ,

y 7→ wij Y -periodic.

Here dkl = (yKδil)1≤i≤3 and (δij) is the Krönecker symbol.
Similarly, in view of (3.18), (3.22) and (3.26) one can write that

p̂1(t, x, y) =
3∑

i=1

∂p1

∂xi
(t, x)πi(y) + Cte, a.e. (t, x, y) ∈ Q× Y1, (3.33)
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where, for i = 1, 2, 3, the micro-pressure πi ∈ H1(Y1)/R is the solution of the
stationary equation

−divy(K1(∇πi + ei)) = 0 in Y1,

K1(∇πi + ei) · n = 0 on Γ,
y 7→ πi Y -periodic.

Here ei is the ith vector of the canonical basis of R3. Let us denote

Ã = (ãi1i2i3i4)1≤i1,i2,i3,i4≤3,

ãi1i2i3i4 =
3∑

j1,j2=1

∫
Y

ai1i2j1j2(y)(δi1j1δi2j2 + ej1j2,y(wi3i4)(y))dy,

where (aijlm) are the coefficients of the elasticity tensor A and

eij,y(w) =
1
2

(∂wi

∂yj
+
∂wj

∂yi

)
, w = (wj)1≤j≤3.

Also define the effective stress tensor

σ̃(u) = (σ̃ij(u))1≤i,j≤3, σ̃ij(u) =
3∑

l,m=1

ãijlmelm(u),

the effective permeability tensor

K̃ = (K̃ij)1≤i,j≤3, K̃ij =
∫

Y1

K1(y)(∇yπi + ei)(∇πj + ej)dy,

the effective Biot-Willis matrices:

B = (bij), bij = α1(|Y1|δij +
∫

Γ

πj(y)nids(y)), n = (ni)1≤i≤3

Λ = (λij)1≤i,j≤3, λij = α1

∫
Y1

3∑
m=1

(
δimδjm +

∂wij
m

∂ym

)
dy,

wij = (wij
m)1≤m≤3

and finally the averaging quantities

c̃ =
∫

Y1

c1(y)dy, g̃ =
∫

Γ

g(y)ds(y).

Then from (3.32)-(3.33) we deduce the homogenized system

−div σ̃(u) +B∇p1 + α2

∫
Γ

p2nds(y) = f a.e. in Q, (3.34)

∂t(c̃p1 + Λ : e(u))− div(K̃∇p1) + g̃p1 −
∫

Γ

g(y)p2ds(y) = 0, a.e. in Q, (3.35)

∂t(c2p2)− divy(K2∇yp2) = 0 a.e. in Q× Y2, (3.36)

c2∇yp2 · n = −g(y)[p1 − p2] a.e. on Q× Γ, (3.37)

u = 0, K̃∇p1 · ν = 0 a.e. on (0, T )× Σ, (3.38)

y 7→ p2 Y -periodic, (3.39)

u(0, x) = 0 a.e. in Ω, p1(0, x) = 0 a.e. in Ω, (3.40)

p2(0, x, y) = 0 a.e. in Ω× Y2. (3.41)
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Now, we establish a relation between the two pressures p1 and p2. To this aim,
let ζ ∈ L∞(0, T ;H1

#(Y2)) be the unique solution to the following microscopic and
non homogeneous Robin problem

∂t(c2ζ)− divy(K2∇yζ) = 0 a.e.in (0, T )× Y2,

K2∇yζ · n = −g(y)[1− ζ] a.e. on Σ,
y 7→ ζ Y -periodic,

ζ(0, y) = 0 a.e. y ∈ Y2.

Since c2,K2, g are time-independent and p1 is independent of y, using the Laplace
transform method, one can then easily see that

p2(t, x, y) =
∫ t

0

p1(τ, x)∂tζ(t− τ, y)dτ, a.e. (t, x, y) ∈ Q× Y2. (3.42)

Therefore, the homogenized system (3.34)-(3.41) can be rewritten as

−div σ̃(u) +B∇p1 +
∫ t

0

θ(t, τ)p1(τ, x)dτ = f a.e. in Q,

∂t(c̃p1 + Λ : e(u))− div(K̃∇p1) + g̃p1 −
∫ t

0

η(t, τ)p1(τ, x)dτ = 0, a.e. in Q,

u = 0, K̃∇p1 · ν = 0 a.e. on (0, T )× ∂Ω,

u(0, x) = 0, p1(0, x) = 0 a.e. in Ω,

where we have denoted

θ(t, τ) = α2

∫
Γ

∂tζ(t− τ, y)nds(y),

η(t, τ) =
∫

Γ

g(y)∂tζ(t− τ, y)ds(y).

Finally, let us observe that the overall pressure of the fluid flow in the microstructure
model which is

P ε(t, x) = χε
1(x)pε

1(t, x) + χε
2(x)pε

2(t, x)
for a.e. (t, x) ∈ Q. The two-scale converges to χ1(y)p1(t, x) + χ2(y)p2(t, x, y), and
thanks to (3.42), converges then weakly in L2(Q) to

|Y1|p1(t, x) +
∫ t

0

∫
Y2

p1(τ, x)∂tζ(t− τ, y)dydτ.

This concludes the proof of Theorem 2.10.

Conclusion. We have used the homogenization theory to derive a macro-model
for fluid flow in composite poroelastic with microstructures, in which inclusions are
fully embedded and with very low permeabilities. We have shown that the overall
behavior of fluid flow in such heterogeneous media with low permeability at the
micro-scale may present memory terms. We also have shown that in such cases,
the Biot-Willis parameters are, as in [2], matrices and no longer scalars, as it is
usually considered in the poroelasticity literature, since it is assumed there that
the medium is homogeneous and isotropic. Nevertheless, anisotropic media may
present different coupling interaction properties in different directions at the micro-
scale, and which lead at the macro-scale to such anisotropic Biot-Willis parameters.
Finally, let us mention that the result of the paper remains valid if one considers
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non homogeneous initial conditions or with any volume distributed source densities
in each phases.
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