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LYAPUNOV-TYPE INEQUALITIES FOR n-DIMENSIONAL
QUASILINEAR SYSTEMS

MUSTAFA FAHRI AKTAŞ

Abstract. In this article, inspired by the paper of Yang et al [12], we estab-

lish new versions of Lyapunov-type inequalities for a certain class of Dirichlet

quasilinear systems.

1. Introduction

In this article, we prove generalized Lyapunov-type inequalities for a special case
of the system

−
(
rk(x)φpk(u′k)

)′ = fk(x)φαkk(uk)
n∏

i=1, i 6=k

|ui|αki , (1.1)

where n ∈ N, φγ(u) = |u|γ−2u, γ > 1, rk, fk ∈ C([a, b],R), rk(x) > 0 for k =
1, 2, . . . , n and x ∈ R. Let (u1(x), u2(x), . . . , un(x)) be a real nontrivial solution of
the system (1.1) such that

uk(a) = uk(b) = 0 k = 1, 2, . . . , n, (1.2)

for a, b ∈ R with a < b are consecutive zeros of uk, and uk are not identically zero
on [a, b], 1 < pk <∞ and αki are nonnegative constants, for k, i = 1, 2, . . . , n.

Lyapunov [6] proved the following remarkable result, for problem (1.1)-(1.2) with
n = 1, p1 = 2, and r1(x) = 1,

−u′′1 = f1(x)u1, (1.3)

u1(a) = u1(b) = 0. (1.4)

Theorem 1.1. If f1 ∈ C([a, b], [0,∞)) and u1(x) is a nontrivial solution on [a, b]
for the problem (1.3)-(1.4), then the so-called Lyapunov inequality holds,

4
b− a

≤
∫ b

a

f1(s)ds . (1.5)

Lyapunov-type inequalities have been studied extensively; see for example the
references in this article and their references. Çakmak and Tiryaki [3] obtained the
following inequality for system (1.1) with n = 2 under the condition

∑2
k=1

αik
pk

= 1
for i = 1, 2.
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Theorem 1.2. If fk ∈ C([a, b],R) for k = 1, 2 and (u1(x), u2(x)) is a nontrivial
solution on [a, b] for the system (1.1) with n = 2, then the inequality

2α21+α12 ≤
(∫ b

a

f+
1 (s)ds

)α21
p1
(∫ b

a

f+
2 (s)ds

)α12
p2

×
(∫ b

a

(r1(s))
1

1−p1 ds
)α21(p1−1)

p1
(∫ b

a

(r2(s))
1

1−p2 ds
)α12(p2−1)

p2

(1.6)

holds, where f+
k (x) = max{0, fk(x)} is the nonnegative part of fk(x) for k = 1, 2.

Recently, Çakmak and Tiryaki [4] obtained the following inequality for sys-
tem (1.1) with rk(x) = 1 and αik = αkk, k, i = 1, 2, . . . , n, under the condition∑n
k=1

αkk
pk

= 1.

Theorem 1.3. If fk ∈ C([a, b],R) for and (u1(x), u2(x), . . . , un(x)) is a nontrivial
solution on [a, b] for system (1.1) with rk(x) = 1 and αik = αkk, k, i = 1, 2, . . . , n,
then the inequality

n∏
k=1

[(ck − a)1−pk + (b− ck)1−pk ]αkk/pk ≤
n∏
k=1

(∫ b

a

f+
k (s)ds

)αkk/pk
(1.7)

holds, where |uk(ck)| = maxa<x<b |uk(x)| and f+
k (x) = max{0, fk(x)} for k =

1, 2, . . . , n.

Throughout this article, for the sake of brevity, we denote

Dk(x) =
[ξk(x)ηk(x)]pk−1

ξpk−1
k (x) + ηpk−1

k (x)
, Ek(x) = 2pk−2

( ξk(x)ηk(x)
ξk(x) + ηk(x)

)pk−1

, (1.8)

Fk = 2−pk(ξk(x) + ηk(x))pk−1 = 2−pk
(∫ b

a

r
1/(1−pk)
k (s)ds

)pk−1

, (1.9)

where

ξk(x) =
∫ x

a

r
1/(1−pk)
k (s)ds, ηk(x) =

∫ b

x

r
1/(1−pk)
k (s)ds (1.10)

for k = 1, 2, . . . , n.
Recently, Yang et al. [12] obtained the following inequality for system (1.1).

Theorem 1.4. Assume that there exist nontrivial solutions (e1, e2, . . . , en) of the
linear homogeneous system

ek
(
1− αkk

pk

)
−

n∑
i=1, i 6=k

αik
pk

ei = 0, (1.11)

where ek ≥ 0 for k = 1, 2, . . . , n and
∑n
k=1 e

2
k > 0. If fk ∈ C([a, b],R) for k =

1, 2, . . . , n and (u1(x), u2(x), . . . , un(x)) is a nontrivial solution on [a, b] for system
(1.1), then the inequality

1 <
n∏
k=1

(
Fk

∫ b

a

f+
k (s)ds

)ek
(1.12)

holds, where f+
k (x) = max{0, fk(x)} for k = 1, 2, . . . n.



EJDE-2013/67 LYAPUNOV-TYPE INEQUALITIES 3

Our motivation comes from the recent papers of Çakmak and Tiryaki [3, 4],
Sim and Lee [8], Tang and He [9], and Yang et al. [12]. In this article, we state
and prove new generalized Lyapunov-type inequalities for system (1.1) under the
condition αki = αik for k, i = 1, 2, . . . , n.

Since our attention is restricted to the Lyapunov-type inequalities for the quasi-
linear systems of differential equations, we shall assume the existence of the nontriv-
ial solution of the system (1.1). For readers interested in the existence of solutions
of these type systems, we refer to the paper by Afrouzi and Heidarkhani [1].

Now, we present some inequalities on Dk(x), Ek(x), and Fk for k = 1, 2, . . . , n
which are useful in the comparison of our main results. We know that since the
function h(x) = xpk−1 is concave for x > 0 and 1 < pk < 2, Jensen’s inequality
h(ω+v

2 ) ≥ 1
2 [h(ω) + h(v)] with ω = 1/ξk(x) and v = 1/ηk(x) implies

Dk(x) ≥ Ek(x) (1.13)

for 1 < pk < 2, k = 1, 2, . . . , n. If pk > 2 for k = 1, 2, . . . , n, then the function
h(x) = xpk−1 is convex for x > 0. Thus, the inequality (1.13) is reversed; i.e.,

Dk(x) ≤ Ek(x) (1.14)

for pk > 2, k = 1, 2, . . . , n. In addition, since the function l(x) = x1−pk is convex
for x > 0 and pk > 1, Jensen’s inequality l(ω+v

2 ) ≤ 1
2 [l(ω) + l(v)] with ω = ξk(x)

and v = ηk(x) implies
Dk(x) ≤ Fk (1.15)

for k = 1, 2, . . . , n. By using inequality

4AB ≤ (A+B)2 (1.16)

with A = ξk(x) > 0 and B = ηk(x) > 0 for k = 1, 2, . . . , n in Ek(x), we obtain the
inequality

Ek(x) ≤ Fk (1.17)

for k = 1, 2, . . . , n.

2. Main results

One of the main results of this paper is the following theorem.

Theorem 2.1. Assume that there exist nontrivial solutions (e1, e2, . . . , en) of the
linear homogeneous system

ek

(
1− αkk

pk

)
−

n∑
i=1, i 6=k

αki
pk

ei = 0, (2.1)

where ek ≥ 0 for k = 1, 2, . . . , n and
∑n
k=1 e

2
k > 0. If fk ∈ C([a, b],R) for k =

1, 2, . . . , n and (u1(x), u2(x), . . . , un(x)) is a nontrivial solution on [a, b] for system
(1.1) with αki = αik for k, i = 1, 2, . . . , n, then the inequality

1 <
n∏
k=1

[ ∫ b

a

f+
k (s)

n∏
i=1

D
αki/pi
i (s)ds

]ek
(2.2)

holds, where f+
k (x) = max{0, fk(x)} for k = 1, 2, . . . n.
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Proof. Let uk(a) = 0 = uk(b) for k = 1, 2, . . . , n where n ∈ N, a, b ∈ R with a < b
are consecutive zeros and uk for k = 1, 2, . . . , n are not identically zero on [a, b]. By
using uk(a) = 0 and Hölder’s inequality, we obtain

|uk(x)| ≤
∫ x

a

|u′k(s)|ds

≤
(∫ x

a

r
1/(1−pk)
k (s)ds

)(pk−1)/pk(∫ x

a

rk(s)|u′k(s)|pkds
)1/pk

= ξ
(pk−1)/pk

k (x)
(∫ x

a

rk(s)|u′k(s)|pkds
)1/pk

for k = 1, 2, . . . , n and x ∈ [a, b]. Thus, we have

|uk(x)|pkξ
1−pk
k (x) ≤

∫ x

a

rk(s)|u′k(s)|pkds (2.3)

for k = 1, 2, . . . , n and x ∈ [a, b]. Similarly, by using uk(b) = 0 and Hölder’s
inequality, we obtain

|uk(x)|pkη
1−pk
k (x) ≤

∫ b

x

rk(s)|u′k(s)|pkds (2.4)

for k = 1, 2, . . . , n and x ∈ [a, b]. Adding (2.3) and (2.4), we have

|uk(x)|pk ≤ Dk(x)
∫ b

a

rk(s)|u′k(s)|pkds (2.5)

for k = 1, 2, . . . , n and x ∈ [a, b]. After that by using a technique similar to the one
in [9, Theorem 3.1], it can be showed that the equality case in (2.5) does not hold.
Thus, we have

|uk(x)|pk < AkDk(x), x ∈ (a, b), (2.6)

where Ak =
∫ b
a
rk(s)|u′k(s)|pkds for k = 1, 2, . . . , n. If we take the αki

pk
-th power of

both side of inequality (2.6), we obtain

|uk(x)|αki < A
αki/pk
k D

αki/pk
k (x), (2.7)

for k, i = 1, 2, . . . , n.
Multiplying both sides of (2.7) with i = k by f+

k (x)
∏n
i=1, i 6=k |ui(x)|αki for k =

1, 2, . . . , n, integrating from a to b, we have∫ b

a

fk(s)
n∏
i=1

|ui(s)|αkids < A
αkk/pk
k

∫ b

a

f+
k (s)Dαkk/pk

k (s)
n∏

i=1, i 6=k

|ui(s)|αkids (2.8)

for k = 1, 2, . . . , n. On the other hand, multiplying the k-th equation of system
(1.1) by uk and integrating from a to b, we get

Ak =
∫ b

a

rk(s)|u′k(s)|pkds =
∫ b

a

fk(s)
n∏
i=1

|ui(s)|αkids (2.9)

for k = 1, 2, . . . , n. By using (2.9) in (2.8), we have

Ak < A
αkk/pk
k

∫ b

a

f+
k (s)Dαkk/pk

k (s)
n∏

i=1, i 6=k

|ui(s)|αkids



EJDE-2013/67 LYAPUNOV-TYPE INEQUALITIES 5

and hence from αki = αik for k, i = 1, 2, . . . , n

Ak < A
αkk/pk
k

∫ b

a

f+
k (s)Dαkk/pk

k (s)
n∏

i=1, i 6=k

|ui(s)|αikds (2.10)

for k = 1, 2, . . . , n. Therefore, by using (2.7) in (2.10), we have

A
1−αkk/pk
k <

∫ b

a

f+
k (s)Dαkk/pk

k (s)
n∏

i=1, i 6=k

A
αik/pi
i D

αik/pi
i (s)ds,

and hence

A
1−αkk/pk
k <

n∏
i=1, i 6=k

A
αik/pi
i

∫ b

a

f+
k (s)

n∏
i=1

D
αik/pi
i (s)ds (2.11)

for k = 1, 2, . . . , n. Raising the both sides of the inequality (2.11) to the power ek
for each k = 1, 2, . . . , n, respectively, and multiplying the resulting inequalities side
by side, we obtain

n∏
k=1

A
ek(1−αkk/pk)
k <

n∏
k=1

[ n∏
i=1, i 6=k

A
αik/pi
i

]ek n∏
k=1

[ ∫ b

a

f+
k (s)

n∏
i=1

D
αik/pi
i (s)ds

]ek
and hence

n∏
k=1

A
ek(1−αkk/pk)
k <

[ n∏
k=1

A

Pn
i=1, i 6=k

αki
pk

ei

k

] n∏
k=1

[
∫ b

a

f+
k (s)

n∏
i=1

D
αik/pi
i (s)ds]ek .

(2.12)
It is easy to see that by using a technique similar to the one in [9, Theorem 3.1],
we obtain the inequalities Ak > 0 for k = 1, 2, . . . , n. Thus, we have

n∏
k=1

Aθkk <

n∏
k=1

[ ∫ b

a

f+
k (s)

n∏
i=1

D
αki/pi
i (s)ds

]ek
, (2.13)

where θk = ek(1− αkk
pk

)−
∑n
i=1, i 6=k

αki
pk
ei for k = 1, 2, . . . , n. By assumption, system

(2.1) has nonzero solutions (e1, e2, . . . , en) such that θk = 0 for k = 1, 2, . . . , n,
where ek ≥ 0 for k = 1, 2, . . . , n and at least one ej > 0 for j = {1, 2, . . . , n}.
Choosing one of the solutions (e1, e2, . . . en), we obtain from (2.13) the inequality
(2.2). This completes the proof. �

Another main result of this paper is the following theorem.

Theorem 2.2. Assume that there exist nontrivial solutions (e1, e2, . . . , en) of sys-
tem (2.1). If fk ∈ C([a, b],R) for k = 1, 2, . . . , n and (u1(x), u2(x), . . . , un(x)) is a
nontrivial solution on [a, b] for the system (1.1) with αki = αik for k, i = 1, 2, . . . , n,
then the inequality

1 <
n∏
k=1

[ ∫ b

a

f+
k (s)

n∏
i=1

E
αki/pi
i (s)ds

]ek
(2.14)

holds, where f+
k (x) = max{0, fk(x)} for k = 1, 2, . . . n.

Proof. Let uk(a) = 0 = uk(b) for k = 1, 2, . . . , n where n ∈ N, a, b ∈ R with a < b
are consecutive zeros and uk for k = 1, 2, . . . , n are not identically zero on [a, b]. As
in the proof of Theorem 2.1, we have inequalities (2.3) and (2.4). Multiplying the
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inequalities (2.3) and (2.4) by ηpk−1
k (x) and ξpk−1

k (x), k = 1, 2, . . . , n, respectively,
we obtain

ηpk−1
k (x)|uk(x)|pk ≤ ηpk−1

k (x)ξpk−1
k (x)

∫ x

a

rk(s)|u′k(s)|pkds (2.15)

and

ξpk−1
k (x)|uk(x)|pk ≤ ξpk−1

k (x)ηpk−1
k (x)

∫ b

x

rk(s)|u′k(s)|pkds (2.16)

for k = 1, 2, . . . , n and x ∈ [a, b]. Thus, adding the inequalities (2.15) and (2.16),
we have

|uk(x)|pk(ξpk−1
k (x) + ηpk−1

k (x)) ≤ (ξk(x)ηk(x))pk−1

∫ b

a

rk(s)|u′k(s)|pkds (2.17)

for k = 1, 2, . . . , n and x ∈ [a, b]. It is easy to see that the functions ξpk−1
k (x) +

ηpk−1
k (x) take the minimum values at ck ∈ (a, b) such that ξk(ck) = ηk(ck) for
k = 1, 2, . . . , n. Thus, we obtain

|uk(x)|pk(ξpk−1
k (ck) + ηpk−1

k (ck)) ≤ (ξk(x)ηk(x))pk−1

∫ b

a

rk(s)|u′k(s)|pkds (2.18)

for k = 1, 2, . . . , n. Since ξk(ck) + ηk(ck) = ξk(x) + ηk(x), ∀x, ck ∈ (a, b), and

ξk(ck) =
ξk(x) + ηk(x)

2
=

1
2

∫ b

a

r
1/(1−pk)
k (s)ds,

we have
|uk(x)|pk [22−pk(ξk(x) + ηk(x))pk−1]

= |uk(x)|pk [2ξpk−1
k (ck)]

≤ (ξk(x)ηk(x))pk−1

∫ b

a

rk(s)|u′k(s)|pkds

(2.19)

and hence

|uk(x)|pk ≤ Ek(x)
∫ b

a

rk(s)|u′k(s)|pkds (2.20)

for k = 1, 2, . . . , n and x ∈ [a, b]. After that by using a technique similar to the one
in [9, Theorem 3.1], it can be showed that the equality case in (2.20) does not hold.
Thus, we have

|uk(x)|pk < AkEk(x), x ∈ (a, b), (2.21)

where Ak =
∫ b
a
rk(s)|u′k(s)|pkds for k = 1, 2, . . . , n. The rest of the proof is the

same as in the proof of Theorem 2.1, and hence is omitted. �

Remark 2.3. It is easy to see from the inequality (1.13) that if we take 1 < pk < 2
for k = 1, 2, . . . , n, then inequality (2.14) is better than (2.2) in the sense that (2.2)
follows from (2.14), but not conversely. Similarly, from the inequality (1.14), if
pk > 2 for k = 1, 2, . . . , n, then inequality (2.2) is better than (2.14) in the sense
that (2.14) follows from (2.2), but not conversely.

By using the inequality (1.15) in Theorem 2.1 or (1.17) in Theorem 2.2, we
obtain the following result.
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Corollary 2.4. Assume that there exist nontrivial solutions (e1, e2, . . . , en) of sys-
tem (2.1). If fk ∈ C([a, b],R) for k = 1, 2, . . . , n and (u1(x), u2(x), . . . , un(x)) is a
nontrivial solution on [a, b] for system (1.1) with αki = αik for k, i = 1, 2, . . . , n,
then

1 <
n∏
k=1

(
Fk

∫ b

a

f+
k (s)ds

)ek
. (2.22)

Remark 2.5. Note that Theorem 2.1 or 2.2 yields a new Lyapunov-type inequality
which is not covered by Theorem 1.4 given by Yang et al [12]. It is easy to see
that Corollary 2.4 coincides with Theorem 1.4 under the condition αki = αik for
k, i = 1, 2, . . . , n.

Remark 2.6. Since |f(x)| ≥ f+(x), the functions f+
k (x) for in the above results

can also be replaced by |fk(x)| for k = 1, 2, . . . , n.

Now, we give an application of the obtained Lyapunov-type inequalities for the
eigenvalue problem

−(rk(x)φpk(u′k))′ = λkh(x)φαkk(uk)
n∏

i=1, i 6=k

|ui|αki

uk(a) = uk(b) = 0,

(2.23)

where h(x) > 0. Thus, if there exist nontrivial solutions (e1, e2, . . . , en) of linear
homogeneous system (2.1), then we have{( n−1∏

k=1

λekk

) n∏
k=1

[ ∫ b

a

h(s)
n∏
i=1

D
αki/pi
i (s)ds

]ek}− 1
en
< λn

or {( n−1∏
k=1

λekk

) n∏
k=1

[ ∫ b

a

h(s)
n∏
i=1

E
αki/pi
i (s)ds

]ek}− 1
en
< λn.

References

[1] G. A. Afrouzi, S. Heidarkhani; Existence of three solutions for a class of Dirichlet quasilinear
elliptic systems involving the (p1, p2, . . . , pn)-Laplacian, Nonlinear Anal. 70 (2009), 135-143.
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[4] D. Çakmak, A. Tiryaki; Lyapunov-type inequality for a class of Dirichlet quasilinear systems
involving the (p1, p2, . . . , pn)-Laplacian, J. Math. Anal. Appl. 369 (2010), 76-81.
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