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ENTIRE SOLUTIONS OF FERMAT TYPE q-DIFFERENCE
DIFFERENTIAL EQUATIONS

KAI LIU, TING-BIN CAO

Abstract. In this article, we describe the finite-order transcendental entire
solutions of Fermat type q-difference and q-difference differential equations.

In addition, we investigate the similarities and other properties among those

solutions.

1. Introduction

Fermat’s last theorem [20] states that do not exist nonzero rational numbers
x, y and an integer n ≥ 3 such that xn + yn = 1. The equation x2 + y2 = 1
does admit nontrivial rational solutions. Replacing x, y in above equation by entire
or meromorphic functions f, g, Fermat type functional equations were studied by
Gross [4, 5] and many others thereafter, such as [14, 16]. Yang [16] investigated the
Fermat type functional equation

a(z)f(z)n + b(z)g(z)m = 1, (1.1)

where a(z), b(z) are small functions with respect to f(z). Recall that α(z) 6≡ 0,∞
is a small function with respect to f(z), if T (r, α) = S(r, f), where S(r, f) is used
to denote any quantity satisfying S(r, f) = o(T (r, f)), and r → ∞ outside of a
possible exceptional set of finite logarithmic measure. In fact, Yang [16, Theorem
1] obtained the following result.

Theorem 1.1. Let m,n be positive integers satisfying 1
m + 1

n < 1. Then there are
no nonconstant entire solutions f(z) and g(z) that satisfy (1.1).

The above theorem implies that there is no nonconstant entire solutions with
the assumption of n > 2, m > 2 in (1.1). However, when m = n = 2 and g(z) has a
specific relationship with f(z) in (1.1), the problem that can we obtain the accurate
expressions of entire solutions is deserve to be considered. This article is devoted to
considering Fermat type functional equations in the cases where an entire function
f(z) together with one the following: derivative f ′(z), shift f(z+ c) or q-difference
f(qz). This article is organized as follows. In Section 2, we mainly consider Fermat
type q-difference equations. Some similarities or other properties among the Fermat

2000 Mathematics Subject Classification. 39B32, 34M05, 30D35.
Key words and phrases. q-difference equations; q-difference differential equations;

entire solutions; finite order.
c©2013 Texas State University - San Marcos.

Submitted November 25, 2012. Published February 26, 2013.
Partially supported by grant 11101201 from the NSFC.

1



2 K. LIU, T. B. CAO EJDE-2013/59

functional equations of different types can be found in the section. In Section 3,
some results on entire solutions of Fermat type q-difference differential equations
are given. In this article, we assume that the reader is familiar with standard
symbols and fundamental results of Nevanlinna theory [8, 19].

2. Fermat type q-difference equations

Let us recall some results on Fermat type differential equations. Yang and Li
[18] considered the entire solutions of

f(z)2 + f ′(z)2 = 1. (2.1)

In fact, they considered a generalization of above equation. The solutions of (2.1)
can be described as follows.

Theorem 2.1 ([18, Theorem 1]). Transcendental meromorphic solutions of (2.1)
satisfy f(z) = 1

2

(
Pe−iz + 1

P e
iz
)
, where P is a nonzero constant.

Let eA = P in Theorem 2.1. The solutions of (2.1) also can be written as
f(z) = sin(z+Ai+ π

2 ). In addition, they obtained the following result [18, Theorem
3].

Theorem 2.2. Let a1, a2, a3 be nonzero meromorphic functions in the complex
plane C. Then a necessary condition for the differential equation

a1f
2 + a2(f ′)2 = a3 (2.2)

to have a transcendental meromorphic solution satisfying T (r, ak) = S(r, f), k =
1, 2, 3, is a3

a1
≡ a, where a is a constant.

Here, we will show the different properties among results on the existence of
Fermat type differential equations, difference equations and q-difference equations.
If we replace f ′ with f(z + c) in (2.2), Theorem 2.2 is not valid for difference
equation

a1f
2 + a2f(z + c)2 = a3.

For example, the equation

(z + c)2f(z)2 + z2f(z + c)2 = z2(z + c)2

has an entire solution f(z) = z sin z with the order ρ(f) = 1, where c = π
2 . Here

a3
a1

= z2 is not a constant.
Theorem2.2 is not valid for the q-difference equation

a1f
2 + a2f(qz)2 = a3. (2.3)

The equation f(z)2 + f(−z)2 = z2 has a transcendental entire solution

f(z) =
zez+

π
4 i + ze−z−

π
4 i

2
, (2.4)

here a3
a1

= z2. A natural question is that how to describe the entire solutions of
Fermat type difference equations or q-difference equations. The difference analogue
of the logarithmic derivative lemma [3, 6] for meromorphic function with finite order
has been developed to study difference equations [6, 7], also can be used to consider
Fermat type difference equations [10, 11, 12]. One of the results can be stated as
follows.
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Theorem 2.3 ([11, Theorem 1.1]). The transcendental entire solutions with finite
order of f(z)2 + f(z + c)2 = 1 satisfy f(z) = sin(Az + B), where B is a constant
and A = (4k+1)π

2c , k is an integer, c is a nonzero constant.

Li [9] considered the meromorphic solutions of f2 + a(f ′)2 = 1, where a is a
nonzero function. Tang and Liao [15] investigated the entire solutions of a general-
ization of (2.1) as follows

f(z)2 + P (z)2f (k)(z)2 = Q(z), (2.5)

where P (z), Q(z) are nonzero polynomials and obtained the following result.

Theorem 2.4 ([15, Theorem 1]). Let P (z), Q(z) be nonzero polynomials. If (2.5)
has a transcendental meromorphic solution f(z), then P (z) ≡ A, Q ≡ B, k = 2n+1
for some nonnegative integer n and f(z) = b sin(az+ c), where a, b, c are constants
such that Aak = ±1, b2 = B.

In a recent article [13], Liu considered an improvement of Theorem 2.3 and ob-
tained the following result which can be seen as the difference analogue of Theorem
2.4.

Theorem 2.5 ([13, Theorem 2.1]). Let P (z), Q(z) be nonzero polynomials. If the
difference equation

f(z)2 + P (z)2f(z + c)2 = Q(z) (2.6)
admits a transcendental entire solution of finite order, then P (z) ≡ ±1 and Q(z)
reduces to a constant q. Thus, f(z) =

√
q sin(Az + B), where B is a constant and

A = (4k+1)π
2c , k is an integer, c is a nonzero constant.

In [1, Theorem1.1], a q-difference analogue of the logarithmic derivative lemma
was given. Similarly, as the finite-order solutions play a key role in complex dif-
ference equations, solutions of order zero are in focus for q-difference equations. A
natural idea is how to describe the entire solutions with zero order of Fermat type
q-difference equations. However, we will consider the entire solutions with finite or-
der, not limited to zero order in the following, we mainly study the entire solutions
of Fermat type q-difference equations

f(z)2 + P (z)f(qz)2 = Q(z), (2.7)

where P (z), Q(z) are nonzero polynomials, and |q| = 1. We obtain the following
result.

Theorem 2.6. Let P (z), Q(z) be nonzero polynomials and |q| = 1. If the q-
difference equation

f(z)2 + P (z)2f(qz)2 = Q(z) (2.8)
admits a transcendental entire solution of finite order, then P (z) must be a constant
P . This solution can be written as

f(z) =
Q1(z)ep(z) +Q2(z)e−p(z)

2
satisfying one of the following conditions:

(i) q satisfies p(qz) = p(z) and Q1(z)− iPQ1(qz) ≡ 0, Q2(z) + iPQ2(qz) ≡ 0,
P 4Q(q2z) = Q(z);

(ii) q satisfies p(qz) + p(z) = 2a0, and iPQ1(qz)e2a0 ≡ −Q2(z), iPQ2(qz) ≡
Q1(z)e2a0 , P 4Q(q2z) = Q(z), e8a0 = 1,
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where Q(z) = Q1(z)Q2(z) and p(z) is a nonconstant polynomial.

Before giving some examples, we want to explain why we assume the condition
|q| = 1. From the proof of Theorem 2.6 blew, it is easy to find that the entire
solutions with zero order of (2.8) must be polynomials. In addition, Bergweiler,
Ishizaki and Yanagihara [2] considered the linear q-difference equation

n∑
j=0

aj(z)f(cjz) = Q(z), (2.9)

where Q(z) and aj(z) (j = 0, 1, . . . , n) are polynomials without common zeros,
an(z)a0(z) 6= 0 and 0 < |c| < 1. They proved that any meromorphic solution f(z)
of (2.9) satisfies T (r, f) = O((log r)2), which implies that the order of f(z) is zero.
Thus, assume that f(z) is an entire solution of (2.8). Let F (z) = f(z)2. If |q| < 1,
then (2.8) changes into F (z) + P (z)2F (qz) = 1, we have ρ(F ) = 0, implies that
ρ(f) = 0, thus f(z) should be a polynomial. If |q| > 1, thus | 1q | < 1, we assume
that G(z) = f(qz)2. Thus, (2.8) takes into G( 1

q z) + P (z)2G(z) = 1. Using the
observation (see [2, p. 2]), we have T (r, f(z)) ≤ T (|q|r, f(z)) = T (r, f(qz))+O(1) =
1
2T (r,G(z)) + O(1) = O((log r)2) + O(1). We also get ρ(f) = 0, thus f(z) should
be a polynomial. So, when considering the transcendental entire solution of (2.8),
we need the condition |q| = 1.

Example 2.7. If P (z) ≡ i, q = −1 and Q(z) ≡ z3, then f(z)2 − f(−z)2 = z3 has
a transcendental entire solution f(z) = zep(z)+z2e−p(z)

2 , where p(z) is a polynomial
satisfies p(−z) = p(z), which implies that we can assume that p(z) = a2nz

2n +
a2n−2z

2(n−1) + . . .+ a2z
2 + a0. Thus, ρ(f) = 2n.

Example 2.8. If P (z) ≡ 1, q = −i and Q(z) ≡ z4, then f(z)2 + f(−iz)2 = z4 has
a transcendental entire solution f(z) = zep(z)+z3e−p(z)

2 , where p(z) is a polynomial
satisfies p(−iz) = p(z), which implies that we can assume that p(z) = a4nz

4n +
a4n−4z

4(n−1) + . . .+ a4z
4 + a0. Thus, ρ(f) = 4n.

Example 2.9. If P (z) ≡ −1, q = −1 and Q(z) ≡ z2, then f(z)2 +f(−z)2 = z2 has
a transcendental entire solution f(z) = zep(z)+ze−p(z)

2 , where p(z) is a polynomial
satisfies p(−z) + p(z) = 4kiπ + iπ

2 , which implies that we can assume that p(z) =
a2n+1z

2n+1 +a2n−1z
2n−1 + . . .+a1z+2kiπ+ iπ

4 , where k ∈ Z. Thus, ρ(f) = 2n+1.
We also remark that (2.4) is a solution of above equation.

Remark 2.10. From Examples 2.7–2.9, we find that the order of entire solutions
of q-difference equation (2.8) can be large enough which is different from the growth
of entire solutions on (2.5) and (2.6).

Corollary 2.11. If P (z), Q(z) are nonconstant polynomials, then there does not
exist transcendental entire solutions of finite order of q-difference equation

f(z)2 + P (z)2f(qz)2 = Q(z). (2.10)

Theorem 2.12. Let P (z), Q(z) be nonzero polynomials. Then the q-difference
equation

f(z)2 + zP (z)2f(qz)2 = Q(z) (2.11)

has no transcendental entire solutions of finite order.
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Proof. Assume that f(z) is a transcendental entire solutions of finite order. Let
z = z2

1 and F (z1) = f(z2
1), M(z1) = P (z2

1), N(z1) = Q(z2
1). Then F (z1) is entire

function in z1, and M(z1), N(z1) are polynomials in z1. Thus, from (2.11), we have
the following equation

F (z1)2 + z2
1M(z1)2F (

√
qz1)2 = N(z1) (2.12)

From Theorem 2.6, we obtain z2
1M(z1)2 reduce to a constant, which is impossible.

�

If we replace f(qz) with f(qz)− f(z), then we obtain the following result.

Theorem 2.13. If P (z) is a nonzero polynomial with nonzero constant term, then
there is no finite order entire solution f(z) satisfying

f(z)2 + P (z)2[f(qz)− f(z)]2 = Q(z). (2.13)

The following result plays an important part in the proofs of our theorems.

Lemma 2.14 ([19, Theorem 1.62]). Let fj(z) be meromorphic functions, fk(z) be
not constant functions (k = 1, 2, . . . , n − 1), satisfying

∑n
j=1 fj = 1 and n ≥ 3. If

fn(z) 6≡ 0 and
n∑
j=1

N(r,
1
fj

) + (n− 1)
n∑
j=1

N(r, fj) < (λ+ o(1))T (r, fk),

where λ < 1 and k = 1, 2, . . . , n− 1, then fn(z) ≡ 1.

Lemma 2.15. Let p(z) be a nonzero polynomial with degree n. If p(qz)− p(z) is a
constant, then qn = 1 and p(qz) ≡ p(z). If p(qz)+p(z) is a constant, then qn = −1
and p(qz) + p(z) ≡ 2a0, where a0 is the constant term of p(z).

Proof. Assume that p(z) = anz
n + · · ·+ a1z + a0. Then

p(qz)− p(z) = an(qz)n + · · ·+ a1qz − anzn + · · · − a1z,

we obtain an(qz)n = anz
n, which implies that qn = 1.

From p(qz) + p(z) = an(qz)n + · · · + a1qz + anz
n + · · · + a1z + 2a0, we obtain

an(qz)n+anzn = 0, which implies that qn = −1. We have completed the proof. �

Proof of Theorem 2.6. Assume that f(z) is a transcendental entire solution of finite
order of (2.8), then

[f(z) + iP (z)f(qz)][f(z)− iP (z)f(qz)] = Q(z). (2.14)

Thus, both f ′(z) + iP (z)f(qz) and f ′(z) − iP (z)f(qz) have finitely many zeros.
Combining (2.14) with the Hadamard factorization theorem, we assume that

f(z) + iP (z)f(qz) = Q1(z)ep(z)

and
f(z)− iP (z)f(qz) = Q2(z)e−p(z),

where p(z) is a nonconstant polynomial, otherwise f(z) is a polynomial, and Q(z) =
Q1(z)Q2(z), where Q1(z), Q2(z) are nonzero polynomials. Thus, we have

f(z) =
Q1(z)ep(z) +Q2(z)e−p(z)

2
(2.15)
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and

f(qz) =
Q1(z)ep(z) −Q2(z)e−p(z)

2iP (z)
. (2.16)

Combining (2.15) with (2.16), we obtain

f(qz) =
Q1(qz)ep(qz) +Q2(qz)e−p(qz)

2
=
Q1(z)ep(z) −Q2(z)e−p(z)

2iP (z)
.

Thus,

iP (z)Q1(qz)ep(qz)+p(z)

−Q2(z)
+
iP (z)Q2(qz)ep(z)−p(qz)

−Q2(z)
+
Q1(z)e2p(z)

Q2(z)
= 1. (2.17)

Since p(z) is not a constant, then p(qz) − q(z) and p(qz) + q(z) are not constants
simultaneously. From Lemma 2.14, we have one of p(qz) − q(z) and p(qz) + q(z)
must be a constant. The following, we will discuss two cases.
Case 1. Suppose that p(qz)− q(z) is a constant. From Lemma 2.15, then p(qz)−
p(z) ≡ 0. It implies that qn = 1. Thus,

(Q1(z)− iP (z)Q1(qz))e2p(z) = Q2(z) + iP (z)Q2(qz)

follows from (2.17). Since p(z) is not a constant, then we have

Q1(z)− iP (z)Q1(qz) ≡ 0,

and
Q2(z) + iP (z)Q2(qz) ≡ 0.

Thus, P (z) must be a constant P . From above two equations, we have P 4Q(q2z) =
Q(z), where Q(z) = Q1(z)Q2(z).
Case 2. Suppose that p(qz) + p(z) is a constant. Thus, from Lemma 2.15, we
obtain

iP (z)Q1(qz)e2a0 ≡ −Q2(z). (2.18)
From (2.17), we obtain

iP (z)Q2(qz) ≡ Q1(z)e2a0 . (2.19)
Combining (2.18) with (2.19), we have

P (z)P (qz)Q2(q2z) ≡ Q2(z), (2.20)

which implies that P (z) must be a constant P . We also have

P (z)P (qz)Q1(q2z) ≡ Q1(z). (2.21)

Thus, from (2.20) and (2.21), we have P 4Q(q2z) = Q(z) and

Q1(q2z)
Q2(q2z)

=
Q1(z)
Q2(z)

.

Combining (2.18) with (2.19), we also have

Q1(qz)
Q2(qz)

e4a0 = −Q2(z)
Q1(z)

.

Hence, Q1(q
2z)

Q2(q2z)
e4a0 = −Q2(qz)

Q1(qz)
= 1

e4a0
Q1(z)
Q2(z)

, thus e8a0 = 1. �

For the proof of Theorem 2.13, we need the following two results.

Lemma 2.16. Let Q(z) be a nonzero polynomial, |t| 6= 1. If Q(qz) ≡ tQ(z), then
Q(z) should be reduce to a monomial and Q(z) = anz

n.
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Proof. Obviously, we have Q(0) = 0. Assume that

Q(z) = anz
n + an−1z

n−1 + an−2z
n−2 + . . .+ a1z,

where an 6= 0. Then,

Q(qz) = an(qz)n + an−1(qz)n−1 + an−2(qz)n−2 + . . .+ a1qz.

Since Q(qz) ≡ tQ(z), then an(qz)n = tanz
n, thus qn = t. From an−1(qz)n−1 =

tan−1z
n−1, we have either an−1 = 0 or qn−1 = t. If qn−1 = t, combining with

qn = t, we have q = 1, which is impossible. Thus, an−1 = 0. From an−2(qz)n−2 =
tan−2z

n−2, then an−2 = 0 or qn−2 = t. If qn−2 = t, combining with qn = t, we
have q2 = 1, hence t2 = q2n = 1, thus |t| = 1, a contradiction with the condition.
Using this method, we can get aj = 0(j = 1, 2, . . . , n− 1). �

Lemma 2.17. Let P (z) be a polynomial with nonzero constant term. If P (z) and
Q(z) satisfy P (z)2Q(qz) = (1+P (z)2)Q(z), then P (z) must be a constant and Q(z)
must be a monomial.

Proof. Obviously, Q(0) = 0. Assume that P (z)2 = bmz
m + bm−1z

m−1 + . . . +
b1z + b0, where b0 6= 0 and Q(z) = anz

n + an−1z
n−1 + an−2z

n−2 + . . . + a1z.
From P (z)2Q(qz) = (1 + P (z)2)Q(z), if P (z)2 ≡ b0, we obtain Q(qz) = 1+b0

b0
Q(z),

from Lemma 2.16, we obtain Q(z) should be reduce to a monomial Q(z) = anz
n.

If P (z)2 is not a constant, that is bm 6= 0, then P (z)2Q(qz) = (1 + P (z)2)Q(z),
thus bmqnzn+m = bmz

n+m, qn = 1 follows, and b0q
nzn = (1 + b0)zn, we obtain

b0 = (1 + b0) which is a contradiction. �

Proof of Theorem 2.13. Assume that f(z) is a transcendental entire solution of
finite order of (2.13). Similar idea as the beginning of the proof of Theorem 2.6,
we can obtain

f(z) =
Q1(z)eh(z) +Q2(z)e−h(z)

2
(2.22)

and

f(qz)− f(z) =
Q1(z)eh(z) −Q2(z)e−h(z)

2iP (z)
, (2.23)

where h(z) is a nonconstant polynomial with deg(h(z)) = s. Thus, from the ex-
pression of f(qz), we have

Q1(qz)eh(qz) +Q2(qz)e−h(qz)

2
=
Q1(z)(1 + P (z)i)eh(z) −Q2(z)(1− P (z)i)e−h(z)

2iP (z)
.

(2.24)
Hence, we obtain
Q1(z)(1 + P (z)i)
iQ2(qz)P (z)

eh(z)+h(qz) − Q2(z)(1− P (z)i)
iQ2(qz)P (z)

eh(qz)−h(z) − Q1(qz)
Q2(qz)

e2h(qz) = 1.

(2.25)
If P (z) ≡ i, from (2.25),

2Q2(z)
Q2(qz)

eh(qz)−h(z) − Q1(qz)
Q2(qz)

e2h(qz) = 1 (2.26)

follows. It is easy to find that 2h(qz) and h(qz)− q(z) are not constants simultane-
ously. Thus, the equation (2.26) is impossible. If P (z) ≡ −i, from (2.25), we have
2Q1(z)
Q2(qz)

eh(qz)+h(z)− Q1(qz)
Q2(qz)

e2h(qz) = 1, and 2h(qz) and h(qz)+q(z) are not constants
simultaneously, above equation also is impossible.
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Thus, we have P (z) 6≡ ±i. Since that 2h(z) is not a constant, then we discuss
two cases from Lemma 2.14 in the following:
Case 1. Suppose that h(qz)− h(z) is a constant, which implies that h(qz) = h(z)
and qs = 1. Thus,

Q1(z)(1 + P (z)i) ≡ iQ1(qz)P (z)
and

Q2(z)(1− P (z)i) ≡ −iQ2(qz)P (z).
From above two equations, we have

Q(z)(1 + P (z)2) ≡ Q(qz)P (z)2. (2.27)

Thus, we have Q(0) = 0. If P (z) is a constant, then equation (2.27) can be written
as Q(qz) ≡ 1+P 2

P 2 Q(z), where | 1+P
2

P 2 | 6= 1. Using Lemma 2.16, we obtain Q(z) =
anz

n. Thus, an(1+P 2) = anq
nP 2, which implies that |q| 6= 1, a contradiction with

qs = 1. If P (z) is a polynomial with nonzero constant term, from Lemma 2.17,
which is impossible.
Case 2. Suppose that h(qz) + h(z) is a constant 2a0. We have

Q1(z)(1 + iP (z))e2a0 ≡ iQ2(qz)P (z),

and
Q2(z)(1− iP (z)) ≡ −iQ1(qz)P (z)e2a0

From above two equations, we have

Q(z)(1 + P (z)2) ≡ Q(qz)P (z)2.

Similar discussions as the Case 1, we can get a contradiction. Thus, we have
completed the proof of Theorem 2.13. �

3. Fermat type q-difference differential equations

If an equation includes some of f(z), f(qz), f (k)(z), f(z+ c), then this equation
can be called q-difference differential equation. Yang and Laine [17] considered en-
tire solutions of difference-differential equation. Liu, Cao and Cao have considered
Fermat type differential-difference equation in [11, Theorem 1.3], and obtained the
following result.

Theorem 3.1. Transcendental entire solutions with finite order of the differential-
difference equation

f ′(z)2 + f(z + c)2 = 1 (3.1)
satisfy f(z) = sin(z±Bi), where B is a constant and c = 2kπ or c = 2kπ+ π, k is
an integer.

Next we will consider entire solutions for Fermat type q-difference differential
equation, such as

f ′(z)2 + f(qz)2 = 1, (3.2)

f(z + c)2 + f(qz)2 = 1, (3.3)

f ′(z + c)2 + f(qz)2 = 1. (3.4)

Using a method similar to the one in this paper, we can consider some generaliza-
tions of above equations, such as f ′(z)2 + P (z)2f(qz)2 = Q(z), but they will not
be considered here. We also find that the methods for the proofs of the following
two theorems are similar, so we just give the details of proof of Theorem 3.3.
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Theorem 3.2. The transcendental entire solutions with finite order of (3.2) satisfy
f(z) = sin(z+B) when q = 1, and f(z) = sin(z+ kπ) or f(z) = − sin(z+ kπ+ π

2 )
when q = −1. There are no transcendental entire solutions with finite order when
q 6= ±1.

Theorem 3.3. The transcendental entire solutions with finite order of (3.4) satisfy
f(z) = sin(z − Ai − c), where 2A − ic = 2kiπ or f(z) = sin(z − Ai + c), where
2A + ic = 2kiπ + iπ when q = −1, and f(z) = sin(−z − Ai), c = 2iπ or f(z) =
sin(−z −Ai+ π), c = 2kπ + π when q = 1.

Proof. As in the beginning of the proof of Theorem 2.6, we have

f ′(z + c) =
ep(z) + e−p(z)

2
(3.5)

and

f(qz) =
ep(z) − e−p(z)

2i
. (3.6)

Combining (3.5) with (3.6), we obtain

p′(z + c
q )ep(z+

c
q )+p(qz)

iq
+
p′(z + c

q )ep(qz)−p(z+
c
q )

iq
− e2p(qz) = 1. (3.7)

From Lemma 2.14, if p(z + c
q ) + p(qz) = B, then we have

p′(z+ c
q )eB

iq = 1 and
p′(z+ c

q )e−B

iq = 1. Thus e2B = 1. If eB = 1, then p(z) = iqz + A − ic, where A is a
constant. Thus, from p(z+ c

q ) +p(qz) = 2kiπ, we have q = −1 and 2A− ic = 2kiπ,
k is an integer. Hence p(z) = −iz +A− ic, and

f(z) =
eiz+A−ic − e−iz−A+ic

2i
= sin(z −Ai− c),

where 2A−ic = 2kiπ. If eB = −1, then p(z) = −iqz+A+ic, where A is a constant.
Thus, from p(z+ c

q ) + p(qz) = 2kiπ+ iπ, we have q = −1 and 2A+ ic = 2kiπ+ iπ,
k is an integer. Hence p(z) = −iz +A+ ic, and

f(z) =
eiz+A+ic − e−iz−A−ic

2i
= sin(z −Ai+ c),

where 2A+ ic = 2kiπ + iπ.
If p(qz)−p(z+ c

q ) = D, where D is a constant. Then we have
p′(z+ c

q )eD

iq = 1 and
p′(z+ c

q )e−D

iq = 1. If eD = 1, thus p(z) = iqz + A− ic, where A is a constant. Thus,
we have q = 1 and c = 2kπ, k is an integer. Hence p(z) = iz +A− 2kiπ, and

f(z) =
eiz+A−2kiπ − e−iz−A+2kiπ

2i
= sin(−z −Ai).

If eD = −1, thus p(z) = −iqz+A+ ic, where A is a constant. Thus, we have q = 1
and c = 2kπ + π, k is an integer. Hence p(z) = −iz +A− 2kiπ − iπ, and

f(z) =
e−iz+A−2kiπ−iπ − eiz−A+2kiπ+iπ

2i
= sin(−z −Ai+ π).

�
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Remark 3.4. Obviously, Theorem 3.2 is an improvement of Theorem 2.1. However,
it may be difficult to give all entire solutions of (3.3). Because, we can not get the
precise expression of p(z) satisfying p(z+ c

q )−p(qz) = B or p(z+ c
q )+p(qz) = B. If

c = 0, it is the special case of Theorem 2.6. If q = 1, it is the case of Theorem 2.3.
Here, we can construct entire solutions of (3.3). For example, if q = −1, c = π

2 , thus
f(z) = sin z satisfies f(z + π

2 )2 + f(−z)2 = 1. If q = 1+i
√

3
2 , c = 1−i

√
3

2 , and p(z) =
1
3z

3 + z2 + z+ 3i
4 π+ 1

3 +kiπ, thus p(z+ c
q ) +p(qz) = 3iπ

2 + 2kiπ and k is an integer.

Thus, f(z) = ep(z−
1−i
√

3
2 )−e−p(z−

1−i
√

3
2 )

2 satisfies f(z + 1−i
√

3
2 )2 + f( 1+i

√
3

2 z)2 = 1.
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