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A NOTE ON p(x)-HARMONIC MAPS

BEI WANG, YUZE CAI

Abstract. This article is concerned with Lp(x) estimates of the gradient of
p(x)-harmonic maps. It is known that p(x)-harmonic maps are the weak so-

lutions of a system with natural growth conditions, but it is difficult to use

the classical elliptic techniques to find gradient estimates. In this article, we
use the monotone inequality to show that the minimum p(x)-energy can be

expressed by the Lp(x) norm of a gradient of a function Φ, which is a weak

solution of a single equation.

1. Introduction

Let B = {x ∈ R2 : |x| < 1}, S1 = {x ∈ R2 : |x| = 1}. Assume g(x) = x on S1,
and p(x) > 1 is a smooth function on B. We are concerned with the gradient of
p(x)-harmonic maps. A function u is called a p(x)-harmonic map, if it is a weak
solution of

− div(|∇u|p(x)−2∇u) = u|∇u|p(x). (1.1)
A function up is called a p(x)-energy minimizer if it is a solution of

inf
{∫

B

1
p(x)
|∇u|p(x)dx : u ∈W 1,p(x)

g (B,S1)
}
, (1.2)

where p(x) ∈ (1, 2). This minimum is also called the p(x)-energy minimum. It is
not difficult to see that the p(x)-energy minimizer is a p(x)-harmonic map.

Partial regularity of p(x)-harmonic maps in the space W 1,p(x)(B,R2) was given
in [4]. When a p(x)-harmonic map u belongs to W 1,p(x)(B,S1) with S1-valued
boundary data g, it is more complicated to locate the singularities of u (cf. [9]).

When p(x) ≥ 2, the class of function W
1,p(x)
g (B,S1) is empty (cf. Page xi in

[3]), and problem (1.2) does not make sense. There are two penalized methods
to investigate the p(x)-energy minimum, which are helpful to understand the local
properties of p(x)-harmonic maps. First, the Ginzburg-Landau type functional

Eε(u) =
∫
B

1
p(x)
|∇u|p(x)dx+

∫
B

1
εp(x)

(1− |u|2)2dx

can be applied to study p(x)-harmonic maps. Since W 1,p(x)
g (B,R2) is not empty,

there exists a Ginzburg-Landau minimizer uε. The singularities of p(x)-harmonic
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maps are often viewed as the limit of zeros of uε (cf. [9]). Some papers studied the p-
energy minimum by estimating Eε(uε) when p is a constant (cf. [1], [2, 7, 8, 10, 13]).
Second, we can use the method of drilling holes which was introduced in [3, Page
xii] to deal with the case of p(x) non-constant. For example, we can consider the
problem

inf
{∫

Bρ

1
p(x)
|∇u|p(x)dx : u ∈W 1,p(x)

g (Bρ, S1);u|∂B(0,ρ) =
x

|x|
}

(1.3)

instead of the problem (1.2), since W 1,p(x)
g (Bρ, S1) 6= ∅. Here Bρ = B \B(0, ρ).

In this paper, we investigate the p(x)-energy minimum with p(x) > 2 by the
second penalized method. This research is motivated from two aspects. On the
one hand, the energy functional

∫
Bρ
|∇u|p(x)dx can be used in the theories of phase

transitions, such as the problems of superconductivity and superfluids. In the study
of type-II superconductors, the vortices can be described by this hole B(0, ρ) (cf.
[3]). On the other hand, the energy functional

∫
Bρ

1
p(x) |∇u|

p(x)dx can be used in the
partial regularity of p(x)-harmonic maps. In general, the p(x)-energy minimizer is
a p(x)-harmonic map on the domain Bρ. The singularities of p(x)-harmonic maps
are also located in those holes.

Since (1.1) is a system with the natural growth condition, it seems difficult to
estimate the weak solution by the classical elliptic technique. Now, we show that
the p(x)-energy minimum can be expressed by the Lp(x) norm of a gradient of a
function Φ, which is a weak solution of a single equation. Then, the complicated
partial regularity of p(x)-harmonic maps can be understood well by investigating
the regularity of a weak solution of such a single equation.

Another problem is whether x/|x| is a p(x)-harmonic map. In general, the solu-
tion of (1.3) exists and is also a p(x)-harmonic map when p(x) is constant. However,
a calculation shows the interesting result: if p(x) = p̃(r, θ) depends on θ, then x/|x|
is not p(x)-harmonic, and hence it does not minimize the p(x)-energy.

2. Main results and proofs

When p(x) is constant and is in (1, n), papers [5, 6, 11] show that x/|x| is a
p-energy minimizer, and hence is a p-harmonic map. The following result shows
that if p(x) is variable, then x/|x| may be not a p(x)-harmonic map.

Theorem 2.1. Let p(x) > 1 be a C1(B) function. Assume p(x) = p̃(r, θ), then
x/|x| is a p(x)-harmonic map on B \ {0} if and only if p̃(r, θ) is independent of θ.
Namely, it is a C1 function with one variable r ∈ [0, 1].

Proof. In polar coordinates, u(x) = x/|x| = (cos θ, sin θ). In this case, the p(x)-
harmonic maps equation

−div(|∇u|p(x)−2∇u) = u|∇u|p(x)

is equivalent to
−div(|∇θ|p(x)−2∇θ) = 0.

Noting ∆θ = 0, the equality above is true if and only if

−∇(|∇θ|p(x)−2) · ∇θ = 0.

Namely,
r2−p(x) log r(∇p(x)∇θ) + (p(x)− 2)r1−p(x)(∇r∇θ) = 0.
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In view of ∇r∇θ = 0, the result above is equivalent to ∇p(x)∇θ = 0. In polar
coordinates, ∇θ = (0, 1

r ), then ∇p(x)∇θ = 0 is equivalent to

∂θp̃(r, θ) = 0,

which holds if and only if p̃ is independent of θ. The rest of the proof is not difficult
to complete. �

Hereafter, we assume p(x) is independent of θ. We consider a more general class
of functions than those in (1.3),

V1 = {v ∈W 1,p(x)(Bρ, S1) : deg(v, ∂B) = 1,deg(v, ∂B(0, ρ)) = 1}.

The main result in this paper, stated below, shows that the p(x)-energy minimum
can be expressed by the Lp(x) norm of the gradient of

Φ(x) := arctan
x2

x1
.

Theorem 2.2.

min
{∫

Bρ

1
p(x)
|∇v|p(x)dx, v ∈ V1

}
=
∫
Bρ

1
p(x)
|∇Φ|p(x)dx. (2.1)

Proof. Step 1. We claim Φ(x) = arctan x2
x1

solves the equation

− div(|∇φ|p(x)−2∇φ) = 0, in Bρ; (2.2)

and there holds

∇Φ(x) · τ =
1
|x|
. (2.3)

In fact, by a simple calculation, we have ∇Φ(x) = (−x2, x1)/|x|2. Therefore, (2.3)
is true, and

− div(|∇Φ|p(x)−2∇Φ) = −div[
(−x2, x1)
|x|p(x)

]

= (x2,−x1) · [ log |x|
|x|p(x)

∇p(x) + p(x)
x

|x|p(x)+2
].

Since p(x) depends only on |x|, we have (x2,−x1) ·∇p(x) = 0. Thus, Φ solves (2.2).

Step 2. Let v ∈ V1. Set

D = (−v ∧ vx2 + Φx2 , v ∧ vx1 − Φx1),

then divD = 0. On the other hand,

D · ν = −(v ∧ vτ ) + Φτ ,

where ν is a unit outward norm vector on the corresponding boundary, and τ is a
unit tangent vector on the corresponding boundary. Noting (2.3), we have∫

∂B(0,ρ)

Φτds = 2π.

In view of the definition of the degree

d =
1

2π

∫
∂B(0,ρ)

v ∧ vτ ds = 1,
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we obtain ∫
∂B(0,ρ)

(D · ν)ds = 0,

Therefore, according to [3, Lemma I.1], there exists

H ∈ {H;D = (Hx2 ,−Hx1)}.
Step 3. Set

V3(v) = W
1,p(x)
0 (Bρ) ∩ {H;D = (Hx2 ,−Hx1)}.

Then V3(v) 6= ∅ in veiw of 0 ∈ V3(v).
If V3(v) = {0}, then for any v ∈ V1, |∇v|2 = |∇Φ|2. Thus, (2.1) holds.
If V3(v) \ {0} 6= ∅, then we can find

H ∈ V3(v) \ {0} (2.4)

such that

v ∧ vx1 = Φx1 −Hx1 ;
v ∧ vx2 = Φx2 −Hx2 .

This means
|∇v|p(x) = |∇(Φ−H)|p(x).

Step 4. We claim that

|∇v|p(x) ≥ |∇Φ|p(x) − p(x)|∇Φ|p(x)−2∇Φ · ∇H. (2.5)

To prove this inequality, we define the function

f(s, t) = |t− s|p(x) − |t|p(x) + p(x)|t|p(x)−2(t · s)
for two vectors s and t. According to the mean value theorem, there exists ξ ∈ (0, 1)
such that

|t|p(x) − |t− s|p(x) = p(x)|t− ξs|p(x)−2(t− ξs) · s.
Hence, applying the monotone inequality [14, (2.11)]), we have

f(s, t) = p(x)|t|p(x)−2(t · s)− p(x)|t− ξs|p(x)−2(t− ξs) · s

= p(x)ξ−1[|t|p(x)−2t− |t− ξs|p(x)−2(t− ξs)] · [t− (t− ξs)]

≥ γ0|s|p(x) ≥ 0.

Here γ0 > 0 only depends on p(x). Taking s = ∇H, t = ∇Φ, and by Step 3, we
can see (2.5).

Step 5. For any v ∈ V1, (2.5) implies that∫
Bρ

1
p(x)
|∇v|p(x)dx ≥

∫
Bρ

1
p(x)
|∇Φ|p(x)dx−

∫
Bρ

|∇Φ|p(x)−2∇Φ · ∇Hdx. (2.6)

Since H ∈ W 1,p(x)
0 (Bρ), and Φ is a solution of (2.2), we see that the second term

of the right-hand side of (2.6) is zero. Hence, (2.6) leads to∫
Bρ

1
p(x)
|∇v|p(x)dx ≥

∫
Bρ

1
p(x)
|∇Φ|p(x)dx,

which implies

inf
V1

∫
Bρ

1
p(x)
|∇v|p(x)dx ≥

∫
Bρ

1
p(x)
|∇Φ|p(x)dx. (2.7)
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Step 6. Let u∗ = (cos Φ, sin Φ) with Φ(x) = arctan x2
x1

. Then, (2.3) implies u∗ ∈ V1.
Clearly, ∫

Bρ

1
p(x)
|∇u∗|p(x)dx =

∫
Bρ

1
p(x)
|∇Φ|p(x)dx.

The p(x)-energy minimum attains
∫
Bρ
|∇Φ|p(x)dx at this function u∗. Combining

with (2.7), we complete the proof. �
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