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PERMANENCE FOR A COMPETITION AND COOPERATION
MODEL OF ENTERPRISE CLUSTER WITH DELAYS AND

FEEDBACK CONTROLS

PING LIU, YONGKUN LI

Abstract. In this article, based on population ecology theory, we present a

competition and cooperation system of the enterprise cluster with time de-

lays and feedback controls. By using differential inequalities, we obtain suf-
ficient conditions for the permanence of the system, which shows that the

time delay, feedback control and initial production have an influence on the

persistent properties of the system. We further interpret our result from the
economic point of view. Some suggestions about enterprise cluster are put

forward through the analysis of our results.

1. Introduction

Enterprise cluster refers to the concentration of similar or related enterprises
in a specific area, which form fixed economic outputs and have certain economic
influence on outsides [8]. After a large number of observations, it is found that there
is a similarity between the enterprise cluster and the ecological population system.
Recently, some researchers have presented some models about enterprise clusters
based on ecology theory, which arouse growing interest in applying the methods
of ecology and dynamic system theory to study enterprise clusters, for example
[3, 4, 5, 6, 9, 11, 12, 13, 14] and references cited therein. For an example, in [9], the
authors considered the following competition and cooperation of enterprise cluster
based on the ecosystem

x′1(t) = r1x1(t)[1− 1
K
x1(t)− 1

K
α(x2(t)− b2)2],

x′2(t) = r2x2(t)[1− 1
K
x2(t) +

1
K
β(x1(t)− b1)2],

where x1(t), x2(t) represent the outputs of enterprise A and enterprise B, respec-
tively, ri, bi,K, α, β are positive constants, i = 1, 2. r1, r2 are the intrinsic growth
rates, K denotes the carrying capacity of market under the natural conditions,
α, β are the competitive power coefficients of the two enterprises, and b1, b2 are the
initial productions of the enterprises, respectively.
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Let a1 = r1
K , a2 = r2

K , c1 = α
K , c2 = β

K , the system above becomes

x′1(t) = x1(t)[r1 − a1x1(t)− c1(x2 − b2)2],

x′2(t) = x2(t)[r2 − a2x2(t) + c2(x1 − b1)2].

In real world, competitors always invade the core assets of enterprises by counter-
plans and bring the actual loss, which is not transient happened, there is a time
delay. On the other hand, enterprises in the real world are continuously distributed
by unpredictable forces which can result in changes in the economic parameters
such as intrinsic growth rates. Of practical interest in economics is the question
of whether or not an enterprise cluster can withstand those unpredictable distur-
bances which persist for a finite period of time. In the language of control variables,
we call the disturbance functions as control variables.

Motivated by above, in this paper, we propose a competitive and cooperation
model of n satellite enterprises and a dominant enterprise under center halfback
model with time-varying delays and feedback controls as follows:

dx1(t)
dt

= x1(t)
[
r1(t)−

m∑
i=0

ai1(t)x1(t− iτ)− γ1(t)(x2(t)− b2)2

− q1(t)
∫ 0

−δ1
F1(s)u1(t+ s)ds

]
,

dx2(t)
dt

= x2(t)
[
r2(t)−

n∑
j=0

aj2(t)x2(t− jτ) + γ2(t)
∫ 0

−σ
H(s)(x1(t+ s)− b1)2ds

− q2(t)
∫ 0

−δ2
F2(s)u2(t+ s)ds

]
,

duk(t)
dt

= −dk(t)uk(t) + ek(t)xk(t) + fk(t)
∫ 0

−ηk

Gk(s)xk(t+ s)ds, k = 1, 2

(1.1)
with initial conditions

x1(t) = φ1(t) ≥ 0, for t ∈ [−γ, 0) and φ1(0) > 0,

x2(t) = φ2(t) ≥ 0, for t ∈ [−γ, 0) and φ2(0) > 0,

uk(t) = φk+2(t) ≥ 0, for t ∈ [−γ, 0) and φk+2(0) > 0, k = 1, 2,
(1.2)

where ξ = max{δ1, δ2, η1, η2, σ,mτ, nτ}, φ1(t), φ2(t), φk+2(t)(k = 1, 2) are continu-
ous on [−ξ, 0], x1(t) and x2(t) denote the outputs of enterprises A and B in cluster
respectively, r1(t) and r2(t) are their intrinsic growth rates at time t, ai1(t) and
aj2(t) account for their self-regulation coefficients, γ1(t) and γ2(t) represent their
contribution coefficients to the other, b1, b2 are the initial productions of the en-
terprises respectively, δk, ηk, σ, τ,m, n are positive constants, Fk(s), Gk(s), H(s) are
all nonnegative continuous functions such that∫ 0

−δk

Fk(s)ds = 1,
∫ 0

−ηk

Gk(s)ds = 1,
∫ 0

−σ
H(s)ds = 1 (k = 1, 2),

the above two equations describe the process of interactions between enterprises
A and B, the latter two equations are control equations, u1(t) and u2(t) are feed-
back control variables, ai1(t), aj2(t) (i = 0, 1, . . . ,m; j = 0, 1, . . . , n), rk(t), γk(t),
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qk(t), dk(t), ek(t), fk(t) (k = 1, 2) are continuous, bounded and positive real-valued
functions on [0,+∞).

Since the competition and cooperation among inter-members in a cluster is the
driving force for the evolution of enterprise cluster, a nature question is that un-
der what conditions an enterprise cluster can attain the goal of co-existence, co-
evolution and common prosperity? Our main purpose of this paper is to study the
permanence of (1.1). Our result shows that not only the time delay and feedback
control but also the initial production have influence on the permanence of system
(1.1).

2. Main results

In this section, we establish the permanence of system (1.1). It is not difficult to
see that solutions of system (1.1) and (1.2) are well defined for all t ≥ 0 and satisfy

xk(t) > 0, uk(t) > 0, t ≥ 0, k = 1, 2.

For convenience, we shall introduce some notations, definition and lemmas which
will be useful for our main results. For a continuous bounded function g(t) defined
on [0,+∞), we denote

gM = sup
0≤t<+∞

g(t), gL = inf
0≤t<+∞

g(t).

Definition 2.1 ([10]). System (1.1) is said to be permanent if there exists two
positive constants m,M such that

m ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤M, i = 1, 2;

m ≤ lim inf
t→∞

ui(t) ≤ lim sup
t→∞

ui(t) ≤M, i = 1, 2;

for any solution (x1(t), x2(t), u1(t), u2(t))T of system (1.1).

As a direct consequence of [10, Lemma 2.2], we have the following result.

Lemma 2.2. Assume that for y(t) > 0, it holds that

dy(t)
dt
≤ y(t)

[
λ−

k∑
l=0

µly(t− lτ)
]

with initial conditions y(t) = φ(t) ≥ 0 for t ∈ [−kτ, 0) and φ(0) > 0, where

λ > 0, µl ≥ 0, l = 0, 1, . . . , k, µ =
k∑
l=0

µl > 0,

are constants. Then there exists a positive constant Ky < +∞ such that

lim sup
t→+∞

y(t) ≤ Ky =
λ

µ
exp{λkτ} < +∞. (2.1)

Lemma 2.3 ([7]). Assume that for y(t) > 0, it holds that

dy(t)
dt
≥ y(t)

[
λ−

k∑
l=0

µly(t− lτ)
]
.

If (2.1) holds, then there exists a positive constant ky > 0 such that

lim inf
t→+∞

y(t) ≥ ky =
λ

µ
exp{(λ− µKy)kτ} > 0, (2.2)



4 P. LIU, Y. LI EJDE-2013/22

where µ =
∑k
l=0 µ

l > 0, λ > 0.

Lemma 2.4 ([1]). Let a > 0, b > 0,
(I) If dx

dt ≥ b− ax, then lim inft→+∞ x(t) ≥ b
a for t ≥ 0 and x(0) > 0.

(II) If dx
dt ≤ b− ax, then lim supt→+∞ x(t) ≤ b

a for t ≥ 0 and x(0) > 0.

Lemma 2.5. [2] Assume that a > 0, b(t) > 0 is a bounded continuous function
and x(0) > 0. Further suppose that

dx(t)
dt
≤ b(t)− ax(t),

then for all t ≥ s ≥ 0,

x(t) ≤ x(t− s) exp{−as}+
∫ t

t−s
b(r) exp{a(r − t)}dr.

Lemma 2.6. Assume that aiL1 > 0, ajL2 > 0 (i = 0, 1, . . . ,m; j = 0, 1, . . . , n), dLk >
0 (k = 1, 2). Let (x(t), u(t))T = (x1(t), x2(t), u1(t), u2(t))T be any positive solution
of system (1.1), then there exists a positive constant M which is independent of the
solution of system (1.1) such that

lim sup
t→+∞

xk(t) ≤M, lim sup
t→+∞

uk(t) ≤M, k = 1, 2.

Proof. Let (x(t), u(t))T = (x1(t), x2(t), u1(t), u2(t))T be a solution of system (1.1)
satisfying the initial condition (1.2). For t ≥ 0, from the first equation of system
(1.1), it follows that

dx1(t)
dt

≤ x1(t)
[
rM1 −

m∑
i=0

aiL1 x1(t− iτ)
]
, t ≥ 0. (2.3)

Applying Lemma 2.2 to (2.3) leads to

lim sup
t→+∞

x1(t) ≤ rM1∑m
i=0 a

iL
1

exp{rM1 mτ} := M1. (2.4)

Next, we show that x2(t) is bounded above. By (2.4), there exists a positive
constant T1 > 0 such that x1(t) ≤ 2M1 for t > T1. Then, from the second equation
of system (1.1), we obtain

dx2(t)
dt

≤ x2(t)
[
rM2 + γM2 (2M1 − b1)2 −

n∑
j=0

ajL2 x2(t− jτ)
]
, t ≥ T1.

By Lemma 2.2, it follows that

lim sup
t→+∞

x2(t) ≤ rM2 + γM2 (2M1 − b1)2∑n
j=0 a

jL
2

exp{(rM2 +γM2 (2M1−b1)2)nτ} := M2. (2.5)

Thus, there exists a T2 > T1 + ξ such that x1(t) ≤ 2M1, x2(t) ≤ 2M2 for t ≥ T2. It
follows from system (1.1) that

duk(t)
dt

≤ 2(eMk + fMk )Mk − dLk uk(t), k = 1, 2, t ≥ T2,

applying Lemma 2.4 (II) to the differential inequalities above, we obtain

lim sup
t→+∞

uk(t) ≤ 2(eMk + fMk )Mk

dLk
:= Mk+2, k = 1, 2. (2.6)
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Combined with (2.4),(2.5) and (2.6), we set

M := max{M1,M2,M3,M4}. (2.7)

Obviously, M is independent of the solution of(1.1) and

lim sup
t→+∞

xk(t) ≤M, lim sup
t→+∞

uk(t) ≤M, k = 1, 2.

The proof is complete. �

Lemma 2.7. Assume that rL2 > 0, γLk > 0, dLk > 0, eLk > 0, fLk > 0 (k = 1, 2),

2qM2 M < 1
2r
L
2 , γM1 (2M − b2)2 < rL

1
2 . Let (x(t), u(t))T = (x1(t), x2(t), u1(t), u2(t))T

be any positive solution of (1.1), then there exists a positive constant m, which is
independent of the solution of (1.1) such that

lim inf
t→+∞

xk(t) ≥ m, lim inf
t→+∞

uk(t) ≥ m, k = 1, 2,

where M is defined by (2.7).

Proof. Let (x(t), u(t))T = (x1(t), x2(t), u1(t), u2(t))T be a solution of (1.1) satisfy-
ing the initial condition (1.2). From the first equation of system (1.1) and Lemma
2.6, there exists a positive constant T3 > T2 + ξ such that xk(t) ≤ 2M,uk(t) ≤
2M,k = 1, 2 for t ≥ T3, then we have

dx1(t)
dt

≥ x1(t)
[
rL1 −

m∑
i=0

aiM1 2M − γM1 (2M − b2)2 − 2qM1 M
]
, t > T3

≥ x1(t)
[
−

m∑
i=0

aiM1 2M − γM1 (2M − b2)2 − 2qM1 M
]

= x1(t) · θ,
(2.8)

where θ = −2
∑m
i=0 a

iM
1 M − γM1 (2M − b2)2− 2qM1 M < 0. Integrating (2.8) from α

to t(α ≤ t), we obtain

x1(α) ≤ x1(t) exp{−θ(t− α)}, (2.9)

then

x1(t+ s) ≤ x1(t) exp{θs}, s ≤ 0. (2.10)

By the third equation of system (1.1), we obtain

du1(t)
dt

≤ −dL1 u1(t) + eM1 x1(t) + fM1

∫ 0

−η1
G1(s)x1(t+ s)ds

≤ −dL1 u1(t) + eM1 x1(t) + fM1

∫ 0

−η1
G1(s)x1(t) exp{θs}ds

≤ −dL1 u1(t) + eM1 x1(t) + fM1 exp{−θη1}x1(t)

= (eM1 + fM1 exp{−θη1})x1(t)− dL1 u1(t).

(2.11)
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Applying Lemma 2.5 to (2.11), for t ≥ α > T3 + ξ, we have

u1(t) ≤ u1(t− α) exp{−dL1 α}+
∫ t

t−α
(eM1 + fM1 exp{−θη1})x1(r) exp{dL1 (r − t)}dr

≤ u1(t− α) exp{−dL1 α}+ (eM1 + fM1 exp{−θη1})

×
∫ t

t−α
x1(t) exp{−θ(t− r)} exp{dL1 (r − t)}dr

≤ u1(t− α) exp{−dL1 α}+ (eM1 + fM1 exp{−θη1})
1
θ

(1− exp{−θα})x1(t)

= u1(t− α) exp{−dL1 α}+ ρx1(t),
(2.12)

where ρ = 1
θ (eM1 +fM1 exp{−θη1})(1−exp{−θα}) > 0. Notice that for large enough

t, α and t− α > T3, then u1(t− α) ≤ 2M . Thus, for t > T3 + α, we obtain

u1(t) ≤ 2M exp{−dL1 α}+ ρx1(t).

Combined with (2.10), for t > T3 + α+ ξ, we have

u1(t+ s) ≤ 2M exp{−dL1 α}+ ρx1(t+ s), s ≤ 0

≤ 2M exp{−dL1 α}+ ρx1(t) exp{θs}.
(2.13)

Take (2.13) into the first equation of system (1.1), for all t > T3 +α+2ξ, we obtain

dx1(t)
dt

≥ x1(t)
[
rL1 −

m∑
i=0

aiM1 x1(t− iτ)− γM1 (2M − b2)2

− qM1
∫ 0

−δ1
F1(s)

(
2M exp{−dL1 α}+ ρx1(t) exp{θs}

)
ds
]

≥ x1(t)
[
rL1 −

m∑
i=0

aiM1 x1(t− iτ)− γM1 (2M − b2)2

− qM1
(

2M exp{−dL1 α}+ ρ exp{−θδ1}x1(t)
)]

= x1(t)
[
rL1 − (qM1 ρ exp{−θδ1})x1(t)−

m∑
i=0

aiM1 x1(t− iτ)

− γM1 (2M − b2)2 − 2qM1 M exp{−dL1 α}
]
.

Notice that for large enough t, exp{−dL1 α} → 0 as α → +∞. Then, there exists a
positive constant α0 = max{ 1

dL
1
ln

8qM
1 M

rL
1

+ 1, T3 + ξ} such that

2qM1 M exp{−dL1 α} <
rL1
4

for α ≥ α0,

then, for t > T3 + α0 + 2ξ = T4, we have

dx1(t)
dt

≥ x1(t)
[rL1

4
− (qM1 ρ′ exp{−θδ1}+ a0M

1 )x1(t)

− a1M
1 x1(t− τ)− · · · − −amM1 x1(t−mτ)

]
,

(2.14)
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where ρ′ = 1
θ (eM1 + fM1 exp{−θη1})(1− exp{−θα0}) > 0. Applying Lemma 2.3 to

the differential inequality (2.14), it follows that

lim inf
t→+∞

x1(t) ≥ m1 =
1
4r
L
1

µ
exp{(1

4
rL1 − µk1)mτ} > 0, (2.15)

where

µ = qM1 ρ′ exp{−θδ1}+
m∑
i=0

aiM1 > 0, k1 =
rL1
4µ

exp{r
L
1

4
mτ} > 0.

From (2.15), there exists a positive constant T5 > T4 + ξ such that x1(t) ≥ m1
2 for

t ≥ T5. Then, by the second equation of system (1.1), we have

dx2(t)
dt

≥ x2(t)
[
rL2 + γL2 (

m1

2
− b1)2 − 2qM2 M −

n∑
j=0

ajM2 x2(t− jτ)
]
, t ≥ T5.

Applying Lemma 2.3 to the inequality above, we have

lim inf
t→+∞

x2(t) ≥ m2

=
1
2r
L
2 + γL2 (m1

2 − b1)2∑n
j=0 a

jM
2

exp
{[1

2
rL2 + γL2 (

m1

2
− b1)2 −

n∑
j=0

ajM2 k2

]
nτ
}
,

(2.16)

where k2 =
1
2 r

L
2 +γL

2 (
m1
2 −b1)

2Pn
j=0 a

jM
2

exp{[ 12r
L
2 + γL2 (m1

2 − b1)2]nτ}. From the above discus-

sion, there exists a T6 > T5 + ξ such that

xk(t) ≥ 1
2
mk, k = 1, 2, for t ≥ T6.

By system (1.1), we obtain

duk(t)
dt

≥ 1
2

(eLk + fLk )mk − dMk uk(t), k = 1, 2, t ≥ T6.

Applying Lemma 2.4(I) to the above differential inequalities, we obtain

lim inf
t→+∞

uk(t) ≥ mk+2 =
(eLk + fLk )mk

2dMk
> 0, k = 1, 2. (2.17)

Combined with (2.15),(2.16) and (2.17), we set m := min{m1,m2,m3,m4}. Then,

lim inf
t→+∞

xk(t) ≥ m, lim inf
t→+∞

uk(t) ≥ m, k = 1, 2.

The proof is complete. �

Theorem 2.8. Assume that aiL1 > 0, ajL2 > 0 (i = 0, 1, . . . ,m; j = 0, 1, . . . , n),
rL2 > 0, γLk > 0, dLk > 0, eLk > 0, fLk > 0 (k = 1, 2), 2qM2 M < 1

2r
L
2 , γM1 (2M−b2)2 <

rL
1
2 . Let (x(t), u(t))T = (x1(t), x2(t), u1(t), u2(t))T be any positive solution of system

(1.1), then system (1.1) is permanent, where M is defined by (2.7).

Proof. Combining Lemma 2.6 and Lemma 2.7, the conclusion is obvious. �
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Conclusion

In economic phenomena, time delays and feedback controls can not be ignored
due to the effect of factors such as information, technology, patent protection,
institutional arrangement and so on. In this paper, our result shows that time delays
and feedback controls have an influence on the permanence of corporation and
competition system (1.1) if 2qM2 M < 1

2r
L
2 . The limited time delay is one of the most

important conditions to guarantee the permanence of the system. Furthermore,
the persistent property of the system not only relies on time delays and feedback
controls, but also relies on the initial production of enterprise if γM1 (2M−b2)2 < rL

1
2 ,

which means that one enterprise with small initial production in a cluster should
expand its competitiveness and stimulate its production. Otherwise, the other
enterprise in the cluster will search for a new co-operative enterprise which will add
the new transaction cost and will be not good for its long term development. On
the other hand, One enterprise with large initial production in the cluster should
reduce its competitiveness. Otherwise, it will annex the other enterprise in the
cluster leading to the extinction.

This prompts us that enterprises in a cluster should keep the moderate com-
petition, moreover, share resource, improve the efficiency of cooperation, develop
jointly and confront the change of external factors of enterprise cluster, which will
guide enterprise cluster to become a healthy ecosystem of reciprocal regulation and
mutual dependence.
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