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STEPANOV-LIKE PSEUDO-ALMOST AUTOMORPHIC
FUNCTIONS IN LEBESGUE SPACES WITH VARIABLE
EXPONENTS LP@®)

TOKA DIAGANA, MOHAMED ZITANE

ABSTRACT. In this article we introduce and study a new class of functions
called Stepanov-like pseudo-almost automorphic functions with variable expo-
nents, which generalizes in a natural way classical Stepanov-like pseudo-almost
automorphic spaces. Basic properties of these new spaces are investigated. The
existence of pseudo-almost automorphic solutions to some first-order differen-
tial equations with SP’Q(I)-pseudo-almost automorphic coefficients will also be
studied.

1. INTRODUCTION

The impetus of this article comes from three main sources. The first one is a
series of papers by Liang et al [16, 22 23] in which the concept of pseudo-almost
automorphy was introduced and intensively studied. Pseudo-almost automorphic
functions are natural generalizations to various classes of functions including almost
periodic functions, almost automorphic functions, and pseudo-almost periodic func-
tions.

The second source is a paper by Diagana [7] in which the concept of SP-pseudo-
almost automorphy (p > 1 being a constant) was introduced and studied. Note that
SP-pseudo-almost automorphic functions (or Stepanov-like pseudo-almost automor-
phic functions) are natural generalizations of pseudo-almost automorphic functions.
The spaces of Stepanov-like pseudo-almost automorphic functions are now fairly
well-understood as most of their fundamental properties have recently been estab-
lished through the combined efforts of several mathematicians. Some of the recent
developments on these functions can be found in [6, [9] 12} T3] [15].

The third and last source is a paper by Diagana and Zitane [II] in which the
class of S7:1(*)_pseudo-almost periodic functions was introduced and studied, where
q : R — R is a measurable function satisfying some additional conditions. The
construction of these new spaces makes extensive use of basic properties of the
Lebesgue spaces with variable exponents L4(*) (see [5, 14} 21]).
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In this article we extend SP-pseudo-almost automorphic spaces by introducing
SPa(*)_pseudo-almost automorphic spaces (or Stepanov-like pseudo-almost auto-
morphic spaces with variable exponents). Basic properties as well as some compo-
sition results for these new spaces are established (see Theorems and .

To illustrate our above-mentioned findings, we will make extensive use of the
newly-introduced functions to investigate the existence of pseudo-almost automor-
phic solutions to the first-order differential equations

u'(t) = A(t)u(t) + f(t), teR, (1.1)

and
u'(t) = A(t)u(t) + F(t, Bu(t)), teR, (1.2)
where A(t) : D(A(t)) C X — X is a family of closed linear operators on a Banach
space X, satisfying the well-known Acquistapace—Terreni conditions, the forcing
terms f : R — X is an SP?(*)_pseudo-almost automorphic function and F : R x
X — X is an SP'?-pseudo-almost automorphic function, satisfying some additional
conditions, and B : X — X is a bounded linear operator. Such result (Theorems
an generalize most of the known results encountered in the literature on
the existence and uniqueness of pseudo-almost automorphic solutions to Equations

C.D-C2).

2. PRELIMINARIES

Let (X, | - 1D, (Y, |l - |ly) be two Banach spaces. Let BC(R,X) (respectively,
BC(R x Y,X)) denote the collection of all bounded continuous functions from R
into X (respectively, the class of jointly bounded continuous functions F : R x Y —
X). The space BC(R,X) equipped with the sup norm || - || is a Banach space.
Furthermore, C(R,Y) (respectively, C(R x Y, X)) denotes the class of continuous
functions from R into Y (respectively, the class of jointly continuous functions
F :RxY — X). Let B(X,Y) stand for the Banach space of bounded linear
operators from X into Y equipped with its natural operator topology || - [|5(x,v)
with B(X,X) := B(X).

2.1. Pseudo-almost automorphic functions.

Definition 2.1 ([4, 6 20]). A function f € C(R,X) is said to be almost auto-
morphic if for every sequence of real numbers (s ),en there exists a subsequence
($n)nen such that

g(t) == nlln;of(t + sp)
is well defined for each ¢t € R and

F() = lim g(t — s,)

n—oo

for each t € R.

The collection of all such functions will be denoted by AA(X), which turns out
to be a Banach space when it is equipped with the sup-norm.

Definition 2.2 ([0 [16]). A function F' € C'(R x Y, X) is said to be almost auto-
morphic if F(¢,u) is almost automorphic in ¢ € R uniformly for all u € K, where
K C Y is an arbitrary bounded subset. The collection of all such functions will be
denoted by AA(R x X).
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Definition 2.3 ([I5]). A function L € C(R xR, X) is called bi-almost automorphic
if for every sequence of real numbers (s},),, we can extract a subsequence (s,,),, such
that

H(t,s) := lim L(t+ sn,s+ sn)

n—oo

is well defined for each t,s € R, and

L(t,s) = lim H(t — $n,8 — Spn)
n—oo
for each ¢,s € R. The collection of all such functions will be denoted by bAA(R x
R, X).

Proposition 2.4 ([20]). Assume f,g : R — X are almost automorphic and X is
any scalar. Then the following hold

(a) f+g, M, fr(t):=f(t+7) and f(t) := f(—t) are almost automorphic;

(b) The range Ry of f is precompact, so f is bounded;

(¢) If{fn} is a sequence of almost automorphic functions and f,, — f uniformly
on R, then f is almost automorphic.

Define

T
PAAY(K) = {f € BORX) : Jim. %/T 1£(0)ldo = 0}.

Similarly, define PAA((R x X) as the collection of jointly continuous functions
F:R xY — X such that F(-,y) is bounded for each y € Y and

1 T
Jim 5z [ IPGlds =0

uniformly in y € Y.

Definition 2.5 ([4]). A function f € BC(R,X) is said to be pseudo-almost auto-
morphic if it can be decomposed as f = g+ ¢ where g € AA(X) and p € PAA(X).
The set of all such functions will be denoted by PAA(X).

Definition 2.6 ([I6]). A function F' € C(R x Y,X) is said to be pseudo-almost
automorphic if it can be decomposed as f = G + ® where G € AA(R x X) and
® € AAp(R x X). The collection of such functions will be denoted by PAA(R x X).

Theorem 2.7 ([22]). The space PAA(X) equipped with the sup-norm is a Banach
space.

Theorem 2.8 ([I5]). If u € PAA(X) and if C' € B(X), then the function t — Cu(t)
belongs to PAA(X).

Theorem 2.9 ([7, [15]). Assume F € PAA(R x X). Suppose that u — F(t,u) is
Lipschitz uniformly in t € R, in the sense that there exists L > 0 such that

|F(t,u) — F(t,v)|| < Llju —v|| forallt € Riu,veX (2.1)
If® € PAA(X), then F(.,®(.)) € PAA(X).
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2.2. Evolution family and exponential dichotomy.

Definition 2.10 ([0, [18]). A family of bounded linear operators (U(t, s));>s on a
Banach space X is called a strongly continuous evolution family if
(i) U(t,t) =1 for all t € R;
(ii) U(t,s) =U(t,r)U(r,s) for allt > r > s and ¢,7, s € R; and
(iii) the map (t,s) — U(t, s)x is continuous for all x € X;t > s and ¢, s € R.

Definition 2.11 ([6,18]). An evolution family (U(t,s)):>s on a Banach space X is
called hyperbolic (or has exponential dichotomy) if there exist projections P(t),t €
R, uniformly bounded and strongly continuous in t, and constants M > 0,5 > 0
such that
(i) U(t,s)P(s) =P)U(t,s) fort>s and t,s € R;
(if) The restriction Ug(t,s) : Q(s)X — Q(t)X of U(t,s) is invertible fort > s
(and we set Ug(s,t) :=U(t,s)™1);
(iii) [|U(t, s)P(s)|| < Me 0= |Ug(s,)Q(t)|| < Me=°t=%) for t > s and
t,s € R,
where Q(t) :== I — P(t) for allt € R.

Definition 2.12 ([I8]). Given a hyperbolic evolution family U(t,s), we define its
so-called Green’s function by

F(t,S) = {U(t’S)P(s)a fOT’tZS’ t,SGR,

(2.2)
Ug(t,8)Q(s), fort<s, t,seR.

3. LEBESGUE SPACES WITH VARIABLE EXPONENTS LP(%)

The setting of this section follows that of Diagana and Zitane [II]. This sec-
tion is mainly devoted to the so-called Lebesgue spaces with variable exponents
Lp(”’)(R,X). Various basic properties of these functions are reviewed. For more on
these spaces and related issues we refer to Diening et al [5].

Let (X,]| - ||) be a Banach space and let @ C R be a subset. Let M(,X)
denote the collection of all measurable functions f :  +— X. Let us recall that two
functions f and g of M (9, X) are equal whether they are equal almost everywhere.
Set m(9) := M(Q,R) and fix p € m(2). Let ¢(x,t) = tP®) for all z € Q and t > 0,
and define

pl0) =y ) = [ (o lu(@))dn = [ o)
p(x) — RF -
L7@)(Q, X) {ueEAJ(Q,X).AEgL;KAu) 0},
ngMQ,X)::{ue;LMIMQ,X):p@o<<oo},and
EP@(Q,X) = {u e LP®)(Q,X) : for all A > 0, p(hu) < oo}.

Note that the space LP(*)(€,X) defined above is a Musielak-Orlicz type space
while Lg%)(Q,X) is a generalized Orlicz type space. Further, the sets EP(*)(Q, X)
and LP(*)(Q,X) are vector subspaces of M(€,X). In addition, Lg(g)(ﬂ,X) is a
convex subset of LP(*)(Q,X), and the following inclusions hold

EP@(Q,X) ¢ L& (9,X) ¢ LX), X).
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Definition 3.1 ([5]). A convex and left-continuous function % : [0,00) — [0, 00] is
called a ®—function if it satisfies the following conditions:

(a) ¥(0) = 0;

(b) lim;_,o+ 9 (t) = 0; and

(¢) limy,00 ¥(t) = 0.
Moreover, 9 is said to be positive whether ¢ (¢) > 0 for all ¢ > 0.

Let us mention that if ¢ is a ®-function, then on the set {¢t > 0: ¢ (¢) < oo}, the
function v is of the form

vt = [ ko

where k(+) is the right-derivative of ¥ (¢). Moreover, k is a non-increasing and right-
continuous function. For more on these functions and related issues we refer to
[5].

Example 3.2. (a) Consider the function ¢,(t) = p~1#? for 1 < p < co. It can
be shown that ¢, is a ®-function. Furthermore, the function ¢, is continuous and
positive.

(b) It can be shown that the function ¢ defined above; that is, p(z,t) = ()
for all z € R and ¢ > 0 is a ®—function.

For any p € m(Q2), we define

p~ i=essinfreqp(z), pti=esssup,cqp().

Define
Ci(Q) := {p em(Q):1<p <plx) <p' <oo, foreach z € Q}
Let p € C4(£2). Using similar argument as in [5, Theorem 3.4.1], it can be shown

that
EF@(Q,X) = LXE(9,X) = 1P (Q, X).

In view of the above, we define the Lebesgue space LP(*)(Q, X) with variable expo-
nents p € C (), by
LP@)(Q, X) = {u e M(9,X) : / () [P@dz < oo}.
Q
Define, for each u € LP(®)(Q, X),

llullp) = inf{)\ >0: /Q H@Hpmd&t < 1}'

It can be shown that [ - ||,(;) is @ norm upon LP®)(Q, X), which is referred to as
the Luremburg norm.

Remark 3.3. Let p € C,(Q). If p is constant, then the space LPO)(Q,X), as
defined above, coincides with the usual space LP (£, X).

We now establish some basic properties for these spaces. For more on these
functions and related issues we refer to [5].
Proposition 3.4 ([T1]). Letp € C+ () and let u,ug,v € M(Q,X) fork=1,2,....
Then the following statements hold,
(a) If up — u a.e., then pp(u) < limg_, o0 inf(pp(ug));
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(b) 17 llupll = llul] a.c., then py(u) = Ty oo pp(un);
(¢) Ifup — u ace., ||lug| < |v|| and v € EP®)(Q,X), then up — u in the space
LP®)(Q, X).
Proposition 3.5 ([5,21]). Letp € C(Q). Ifu,v € LP*)(Q,X), then the following
properties hold,
(a) ||ullp) > 0, with equality if and only if u = 0;

)
(©) polullull ) =1 ifu #0;
() gyl <1 ond oy f e <1

1/117 +
op@)] " < Nl < [op (]
() If lullpzy > 1, then

o] ™ < Nl < [0t

Proposition 3.6 ([5]). Let p € C(R) and let u,u,v € M(Q,X) fork=1,2,....
Then the following statements hold:
(a) Ifu € LP®)(Q,X) and 0 < |Jv|| < ||Jul|, then v € LP®)(Q,X) and 0] p(a) <

[wllp(a) -
(b) If up — w a.e., then |[ulpm) < limg_ oo inf(|lurl[p))-

(c) If |luxll — |lul|l ae. with up € LP@(Q,X) and supy, ||ukllpe) < oo, then
u e Lp(x)(R,X) and Huka(m) — Hqu(z)'
Using similar arguments as in Fan et al [14], we obtain the following result.

Proposition 3.7. If u,u, € LP®)(Q,X) for k =1,2,..., then the following state-
ments are equivalent:

1/p~

(a) hmk_,oo ||uk — ’U,Hp(w) = 0,‘

(b) limg—oo pp(ug —u) =0;

(¢) up — u and limy_,o0 pp(ur) = pp(u).
Theorem 3.8 (|5, 14]). Let p € C (). The space (LP)(Q,X),|| - llp(z)) is a Ba-
nach space that is separable and uniform convex. Its topological dual is Lq(“’)(ﬂ, X),
where p~t(z) +q~*(z) = 1. Moreover, for any u € LP®)(Q,X) and v € L1®) (Q,R),
we have

1 1
H/qudxH < ( ) e 0] gce)- (3.1)

—+ =
p q
Define
D, (Q) = {p em(Q):1<p <plx) <p' < oo, foreach z € Q}

Corollary 3.9 ([21]). Let p,r € D (). If the function q defined by the equation
1 1 1

=——+
q(z)  plx)  r(z)
is in D4 (), then there exists a constant C' = C(p,r) € [1,5] such that

||uv||q(x) < C||u‘|p(r)|v|r(z)7
for every u € LP®)(Q,X) and v € L"@)(Q,R).
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Corollary 3.10 ([5]). Let meas(2) < oo where meas(:) stands for the Lebesgue
measure and p,q € Dy(Q). If q(-) < p(:) almost everywhere in ), then the
embedding LP™)(Q,X) — Li®)(Q,X) is continuous whose norm does not exceed
2(meas(Q) +1).

4. STEPANOV-LIKE PSEUDO-ALMOST AUTOMORPHIC FUNCTIONS WITH VARIABLE
EXPONENTS

Definition 4.1. The Bochner transform f°(¢,s), t € R, s € [0,1] of a function
f:R — X is defined by f°(t,s) := f(t + s).

Remark 4.2. A function ¢(¢,s), t € R, s € [0,1], is the Bochner transform of a
certain function f, o(t,s) = f°(t,s), if and only if p(t + 7,5 — 7) = @(s,t) for all
t €R, s €[0,1] and 7 € [s — 1,s]. Moreover, if f = h+ ¢, then f* = h® 4+ P.
Moreover, (Af)? = Af® for each scalar .

Definition 4.3. The Bochner transform F®(¢,s,u), t € R, s € [0,1], u € X of a
function F : R x X — X, is defined by F®(t,s,u) := F(t + s,u) for each u € X.

Definition 4.4. Let p € [1,00). The space BSP(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with
values in X such that f* € L°°(R,LP((0,1),X)). This is a Banach space with the
norm

b t+1 1/p
I£1sr = 1wz =sup ([ 157 r)
teR \J¢
Note that for each p > 1, we have the following continuous inclusion:
(BCX), || - [loo) = (BSP(X), [ - l[s7)-

Definition 4.5 (Diagana and Zitane [I1]). Let p € C (R). The space BSP(*)(X)
consists of all functions f € M(R,X) such that || f||gre) < 00, where

1
||f||Sp(z> = ilelﬂg {Hlf{)\ >0: /0 Hfup + dr < 1}}

= sup [inf{)\ >0: /t+1 H@Hp(m)dx < 1}]

terR

Note that the space (BSP@®)(X), | - [|s»=) is a Banach space, which, depending
on p(+), may or may not be translation-invariant.

Definition 4.6 (Diagana and Zitane [I1]). If p,q € C1(R), we then define the
space BSP(#):4(*)(X) as follows

BSP)a(x) (X) := BSP(:E)(X) + BS@) (X)
- {f =h+¢eMRX):heBSP(X)and ¢ Bsq(ﬂ(X)}.
We equip BSP(®)-4(®)(X) with the norm || - || gp(e).q=) defined by

1l soioratr = inf { IRl gon + @l gacr  f = b+ o}

Clearly, (BSP®)-2@)(X), || [|gp.qx) ) is a Banach space, which, depending on both
p(+) and ¢(-), may or may not be translation-invariant.
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Lemma 4.7 (Diagana and Zitane [I1]). Let p,q € C(R). Then the following
continuous inclusion holds,

(BO®.X). |- ) = (BS"@X), | llsoer ) = (BSTO 1), 1 [lsp0ra0 )-

Proof. The fact that (BSP(®)(X), || - | gr)) < (BSP@4@(X), || - || gp(er.ae ) 18 0b-
vious. Thus we will only show that (BC(R,X), || - |ls) < (BSP(“’) (X), || - llspe)-
Indeed, let f € BO(R,X) € M(R,X). If || fllo = 0, which yields f = 0, then
there is nothing to prove. Now suppose that ||f|| # 0. Using the facts that
0<| H];(\T?o || <1 and that p € C (R) it follows that for every ¢t € R,

t+1 () t+1
/ H (ig/ 1P@®) g = 1,
Hﬂh ¢

and hence ||f||o € {A >0: ft+1 |22 |[p() g < 1}, which yields

inf {1 > 0 ;/t H%”")Hmdx <1} < [l

Therefore, || f|gpe) < ||f]loc < 00. This shows that not only f € (BSP(*)(X)),]| -
| sp=)) but also the injection (BC(R,X), || - [|oo) <= (BSP@(X), || - || gpt=)) is contin-
uous. g

Definition 4.8. Let p > 1 be a constant. A function f € BSP(X) is said to
be SP-almost automorphic (or Stepanov-like almost automorphic function) if f* €
AA(L?((0,1),X)). That is, a function f € LI (R,X) is said to be Stepanov-
like almost automorphic if its Bochner transform f” : R — LP(0,1;X) is almost
automorphic in the sense that for every sequence of real numbers (s)),, there
exists a subsequence (s,,), and a function g € L} (R,X) such that

/p 1/p
jf 1f (t4+5+5)— @+sﬂPds - l/‘Hgt+s s)—f(t+s)|Pds) " =0

as n — oo pointwise on R. The collection of such functions will be denoted by

Sta(X)-

Remark 4.9. There are some difficulties in defining s (X) for a function p €
C+(R) that is not necessarily constant. This is mainly due to the fact that the
space BSP(””)(X) is not always translation-invariant. In other words, the quantities
fo(t +7,s) and fo(t,s) (for t € R, s € [0,1]) that are used in the definition of
SP(#)_almost automorphy, do not belong to the same space, unless p is constant.

Remark 4.10. It is clear that if 1 < p < ¢ < oo and f € L{ (R,X) is S%-almost
automorphic, then f is SP-almost automorphic. Also if f € AA(X), then f is
SP-almost automorphic for any 1 < p < oco.

Taking into account Remark we introduce the concept of SP-4(*)_pseudo-
almost automorphy as follows, which obviously generalizes the notion of SP-pseudo-
almost automorphy.

Definition 4.11. Let p > 1 be a constant and let ¢ € C.(R). A function
f € BSP9(®)(X) is said to be SP%(*)-pseudo-almost automorphic (or Stepanov-like
pseudo-almost automorphic with variable exponents p, g(x)) if it can be decomposed
as

f=h+o,
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where h € S, (X) and ¢ € Sgéﬁ)o( X) with ng;;l, (X) being the space of all ¢ €
BS®)(X) such that

N T (@) a@)
%ﬂoﬁ[Tlnf{A >0 :/t 152" < 1}t = 0
The collection of SP+4(*)_pseudo-almost automorphic functions will be denoted by
Shan™ (X).

Lemma 4.12. Letr,s > 1,p,q € D4 (R). Ifs <r,q" <p~ and f € BS"P(*)(X) is

grp(@) (z)

pan -pseudo-almost automorphic, then f is Spun" -pseudo-almost automorphic.

Proof. Suppose that f € BS™P®) (X) is S7P(#)_pseudo-almost automorphic. Thus
there exist two functions h, ¢ : R — X such that

f=h+o,

where h € ST (X) and ¢ € S,’,’((li?) (X). From remark h is S*-almost automor-
phic.
In view of ¢(-) < gt < p~ < p(-), it follows from Corollary that,

PM{A>O:K Hw Hq%1<1H
§4bm{x>o:/¢ H¢;)pwwx§1H.
t

Using the fact that ¢ € Sﬁéﬁl (X) and the previous inequality it follows that

S B (@) e
qjgnooﬁ/_T1nf{A>O:/t |29z < 1}ar =0

that is, ¢ € Sgéil (X). Therefore, f € Sz’aqa(w (X). O

Proposition 4.13. Let p > 1 be a constant and let ¢ € CL(R). If f € PAA(X),
then f is SP9*) _pseudo-almost automorphic.

Proof. Let f € PAA(X), that is, there exist two functions h,p : R — X such
that f = h + ¢ where h € AA(X) and ¢ € PAA)(X). Now from remark
h € AA(X) C S?,(X). The proof of ¢ € Sg,(j,i)g (X) was given in [11]. However for
the sake of clarity, we reproduce it here. Using (e)-(f) of Proposition and the
usual Hélder inequality, it follows that

/ inf { >0 / D D gy < 1Y
<[ / it + )¢ d)” d
-T 0
T 1 v
<[ [ ([ et ) dz) a
-T 0

<er| [ i (/ ottt o1 de) ]

<@ (lele+1) T [[ ([ et anas)a]’
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= (ot +1) T [[ ([ et o) as]
= 0)(lgll +1)q+”1 [/01 (5 /i It + )] dr) da] .

_ { if ol < 1,

L if ] > 1.

Using the fact that PAA(X) is translation invariant and the (usual) Dominated
Convergence Theorem, it follows that

1 (,D-'L"f’t q(z+t)
Tlgnooﬁ/ inf {2 >0 / L2 < 1 e

< (Il +1) [/01 (Tlggc;T/i it + ) ) dz] " = 0.

Using similar argument as in [22], the following Lemma can be established.

where

Lemma 4.14. Let p,q > 1 be a constants. If f = h+ ¢ € SB1(X) such that
h* € AA(LP((0,1),X)) and ¢ € PAAy(L((0,1),X)), then
{h(t+.):teR}C{f(t+.):teR}, inSPIX).
Proof. We prove it by contradiction. Indeed, if this is not true, then there exist a
to € R and an € > 0 such that
||h(t() + ) - f(t + ‘)”Sp,q Z 28, t e R.
Since h® € AA(L*((0,1),X)) and (BSP(X), || - |ls») — (BSPUX), || - |lsra), fix

to € R,e > 0 and write, B, := {7 € R; ||h(to + 7+ ) — g(to + -)||sr.« <e}. By [22,
Lemma 2.1], there exist s1,..., Sy € R such that

UZT-ZI(SZ‘ + BS) =R.

Write
Si=si—ty (1<i<m), 77—11<nzix [3;]-
For T € R with |T'| > n; we put
BY = [-T+n—38,T—n—-&|N(te+B.), 1<i<m,
one has U™ 1(81+B(Z)) [T +n,T —n.
Using the fact that Bi)T C[-T.7T)N (to + B:), i = 1,...,m, we obtain

2(T —n) = meas([-T +n,T — 1))

< Zmeas S + BéZ)T)

=1
imeas B( Y

<m max { meas(B( 9 )}
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< m meas([-T,T] N (to + Be)),
On the other hand, by using the Minkowski inequality, for any ¢ € ty 4+ B., one has

ot +)llsa = It + )|l sp.a
=[f(t+) = At +)llsra
> ||h(to+ ) — f(t+)lsra — [|h(E+ ) = hlto + ) ||spa > €.

Then
L et s> i+ o dt
P Nigadt > —— )sa
2T J_r 2T Ji—1 1) (to+B2)
>e(T—n)(mT) ™t —em™, asT — co.
This is a contradiction, since ¢* € PAAq(L?((0,1),X)). O

Theorem 4.15. Let p,q > 1 be constants. The space SZI,’&‘{I(X) equipped with the
norm || - ||sr.a is a Banach space.

Proof. 1t is sufficient to prove that SP:¢ (X) is a closed subspace of BS?4(X). Let
fn = hn + ¢@n be a Cauchy sequence in SF? (X) with (RS )nen C AA(LP((0,1),X))
and (p%)nen C PAAG(L%((0,1),X)) such that ||f, — fllspe — 0 as n — co. By

Lemma [£.14] one has
{hn(t+.):teR}C{fu(t+.): t € R},

and hence

||hn||5'p = th||SP~<1 S ||fn||5‘p,q for all n € N.
Consequently, there exists a function h € S, (X) such that ||h, —h|jsr — 0 as n —
oo. Using the previous fact, it easily follows that the function ¢ := f —h € BS?(X)

and that ||on — ¢llse = |[(fn — hn) — (f — h)||s« — 0 as n — oo. Using the fact
that o = (¢ — @n) + @n it follows that

1 7 ! 1/q
oT T(/O ||<p(7'+t)\|qd7') dt

<1T(fn<+w -+ t)lar) a
~ ©\T — On\T T
2T J_r N\ Jo

Tt 0 )
— n t t
357 [ (] teutr+ar)

1 T 1 1/q
< lon — @llsa + 7/ (/ lon (T + t)||qd7) dt.
2T J_r \Jo

Letting T — oo and then n — oo in the previous inequality, we obtain that ©® €
PAAG(LY((0,1),X)); that is, f = h+ ¢ € 551 (X). O

Using similar arguments as in the proof of [I5, Theorem 3.4], we obtain the next
theorem.

Theorem 4.16. If u € SP;1 (Y) and if C € B(Y,X), then the function t — Cul(t)
belongs to SP:4 (X).

paa
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Definition 4.17. Let p > 1 and ¢ € CL(R). A function F : R x Y — X with
F(.,u) € BSPI=)(X) for each u € Y, is said to be SP9%) -pseudo-almost auto-
morphic in t € R uniformly in uw € Y if t — F(t,u) is S5P:a(®) _pseudo-almost
automorphic for each u € B where B C Y is an arbitrary bounded set. This
means, there exist two functions G, H : R x Y — X such that F = G + H, where
G® € AA(Y,L?((0,1),X)) and H® € PAA((Y, L ®)((0,1),X)); that is,

. 1 [T ) 1 H(x 4+ t,u) | q(z+t) B
Tll—r’réOﬁ/mef{A>0‘/o Hf“ dxﬁl}dt—(),

uniformly in uw € B where B C Y is an arbitrary bounded set. The collection of
such functions will be denoted by S,’;&%(w) (Y, X).

Let Lip” (Y, X) denote the collection of functions f : R x Y — X satisfying: there
exists a nonnegative function Ly € L"(R) such that
1t u) — ft,v)|| < Ly@®)|lu—v|y forallu,ve, teR.
Now, we recall the following composition theorem for S?, functions.

Theorem 4.18 ([I7]). Let p > 1 be a constant. We suppose that the following
conditions hold:

(a) feSP(Y,X)N Lip"(Y,X) with r > max{p, 1%},
(b) ¢ € SP(X) and there exists a set E C R such that K := {¢(t) : t € R\ E}
18 compact in X.

Then there exists m € [1,p) such that f(-,¢(-)) € SIt(X).

To obtain a composition theorem for SP:? functions, we need the following
lemma.

Lemma 4.19. Let p,q > 1 be a constants. Assume that f = g+ h € SP (R x

X) with g* € AAR x L*((0,1),X)) and h® € PAAy(R x L((0,1),X)). If f €
LipP(R,X), then g satisfies

([ ot + svut6) — ota-+ .0)175) " < sl vl
for all u,v € Y and t € R, where c is a nonnegative constant.
Proof. Let f = g+h € SHl™ (RxX) with g (-, u) € AA(LP((0,1),X)) and h?(-,u) €
PAA(L((0,1),X)) for each u € Y. Using Lemma it follows that
{gt+ - u):teR}C{f(t+-u):teR} in SPIUX)

for each u € Y.
Since f € LipP(R,X) and (BSP(X),|| - [ls») < (BSPY(X), | - [lsr.a), it follows
that

([ ot scuteh) = gt + 5, 06617 5) ™ < a0 - gt o)l

= llg(-,u) = g(,v)l[sp.a
<NFCw) = FC0)llspa
<ellf(u) = £ 0)llse
<l Lyllsellu—wvlly-

for all u,v € Y and t € R. O
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Theorem 4.20. Let p,q > 1 be a constants such that p < q. Assume that the
following conditions hold:
(a) f=g+he LR xX) with g € S5,(R x X)) and h € 52, (R x X).
Moreover, f,g € Lip" (R, X) with r > max{p, %};
(b) ¢ = a+ 8 € SHL(Y) with a € SE,(Y) and B € S}, (Y), and K =

{a(t) : t € R} is compact in Y.
Then there exists m € [1,p) such that f(-,¢(-)) € ST (R x X).

paa
Proof. First of all, write
FP0°()) = 6" a’() + 20" () = (0 () + (0 ().

From Lemma[4.19] one has g € S, (R x X). Now using the theorem of composition
of SP-almost automorphic functions (Theorem [4.18]), it is easy to see that there

. 111 m
exists m € [1,p) with = = -+  such that g°(-,a’(-)) € AAR x L™((0,1),X)).

Set ®°(-) = fo(-,0%()) — f°(-,a’(:)). Clearly, ®® € PAA (R x L™((0,1),X)).
Now, for T' > 0,

T 41 1/m
g [ ([ 19"

’ t+1 1/m
:% _T</t 1£(s,6"(s)) = /(5,0 (s))|"ds) " at

1 T

<5/ (] () w)
<1l [ [ ([ wrekas) el

<1 (o [ ([ 1) a).

Using the fact that 3° € PAAG(L((0,1),Y)), it follows that ®* € PAA(R x
L™((0,1), X)).
On the other hand, since f,g € Lip"(R,X) C Lip? (R, X), one has

(/01 |h(t+ s,u(s)) — h(t + 57”(5))Hmds)1/m

< ([ 156+ 0600 = e topiras)
- (/01 lat+ 5.u(s)) = gt + s,v()"ds) "
= (/01 (Lt +)lfuts) - v(s)HY)’”ds)” "
- (/01 (Lot + 5 u(s) - U(3)||Y)md3)1/m

< (IEsllse + g5 ) luts) = v(s) -

Since K := {a(t) : t € R} is compact in Y, then for each € > 0, there exists a
finite number of open balls By, = B(xy,¢), centered at x) € K with radius ¢ such
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that
{a(t) : t e R} C Uy, By.
Therefore, for 1 <k < m, the set Uy, ={t € R: o € By} is open and R = U}" , Uj.
Now, for 2 < k < m, set Vy = Uy — UF-'U; and Vi = U;. Clearly, V; N'V; = () for
all i # j. Define the step function T : R — Y by Z(t) = a,t € Vi, k=1,2,...,m.
It easy to see that
la(s) —Z(s)|ly <&, forallseR.

which yields

1 T t+1 . l/m

7 [ ([ Insatmas)
— t

1 /7 /m

<on [ ([ s - ns o) a
+% _TT ( /t i ||h(s,f(s))||mds)1/ " it

1 1/m
< (IZslls + 1 Lgllsr )e + 57 / [h(s,Z(s)I™ds)  dt
( / g ) 2T _T(kz—:l Vet 41] )

S,.)Hi ) (Zm:/ |\h(8,f(s))||qu>l/th.

< (4]
! 2T J_r Ni= vt

sr+ [ Lg|

Since ¢ is arbitrary and h’ € PAA(R x L%((0,1),X)), it follows that the function
Rb(-,a®(-)) belongs to PAAy(R x L™((0,1),X)). O

Remark 4.21. A general composition theorem in ngcl(:c)(R x X) is unlikely as

compositions of elements of Sﬁg‘g(””) (R x X) may not be well-defined unless ¢(-) is
the constant function.

5. EXISTENCE OF PSEUDO-ALMOST AUTOMORPHIC SOLUTIONS

Let p,q > 1 be constants such that p < ¢. In this section, we discuss the
existence and uniqueness of pseudo-almost automorphic solutions to the first-order
linear differential equation and to the semilinear equation . For that, we
make the following assumptions:

(H1) The family of closed linear operators A(t) satisfy Acquistapace—Terreni con-
ditions.

(H2) The evolution family (U(t,s)):>s generated by A(t) has an exponential
dichotomy with constants M > 0,6 > 0, dichotomy projections P(t),t € R,
and Green’s function I'(¢, s).

(H3) T'(t,s) € bAA(R x R, B(X)).

(H4) B : X Xis a bounded linear operator and let ||B||gx) = c.

(H5) F =G+ H € S8 (R x X) N C(R x X, X) with G* € AA(R x L((0,1), X))

and H® € PAA((R x L9((0,1),X)). Moreover, F,G € Lip"(R,X) with

rzmax{p,i}.
p—1
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Let us also mention that (H1) was introduced in the literature by Acquistapace
and Terreni in [2, B]. Among other things, from [I, Theorem 2.3] (see also [3]
24), 25]), assumption (H1) does ensure that the family of operators A(t) gener-
ates a unique strongly continuous evolution family on X, which we will denote by

(U(t;8))e=s-

Definition 5.1. Under (H1), if f: R — X is a bounded continuous function, then
a mild solution to (1.1)) is a continuous function u : R — X satisfying

u(t) = Ut s)u(s) + / Ult,0)f(o)do (5.1)

for all (t,s) € T:={(t,s) eRxR: t>s}.

Definition 5.2. Suppose (H1) and (H4) hold. If F : R x X — X is a bounded
continuous function, then a mild solution to (1.2)) is a continuous function u : R — X
satisfying

u(t) = U(t, s)u(s) +/ U(t,o)F (o, Bu(o))do (5.2)
for all (¢,s) € T.

Theorem 5.3. Let p > 1 be a constant and let ¢ € CL(R). Suppose that (H1)—

(H3) hold. If f € Sf,’,’ffl(x) (X)NC(R,X), then the (L.1) has a unique pseudo-almost
automorphic solution given by

+o00o
u(t) = / L(t,0)f(o)do, teR. (5.3)

—00

Proof. Define the function u : R +— X by

t —+o0
u(t) == / U(t,o)P(o)f(o)do — /t Ug(t,o)Q(o)f(o)do, teR.

— 00

Let us show that w satisfies (5.1)) for all ¢ > s, all t,s € R. Indeed, applying
U(t,s) for all t > s, to both sides of the expression of u, we obtain,

U(t, s)u(s) = /

— 00

S

“+oo
U(t,0)P(0) f(o)do — / Uo(t,)Q(0) f(0)do

- / U(t,0)P(0) f(o)do — / U(t,0)P(0) f(o)do

— 00

+0oo t
_ /t Uo(t,)Q(0) f (0)dor — / Uo(t,)Q(0) f(0)do

= u(t) —/ U(t,o)f(o)do

and hence v is a mild solution to .

Let us show that u € PAA(X). Indeed, since f € Sgﬂl(m) (X) N C(R,X), then
f =g+, where g € AA(LP((0,1),X)) and @® € PAAG(L? ™ ((0,1),X)). Then
u can be decomposed as u(t) = X (t) + Y (t), where

t

X(t) = / U(t, 5)P(s)g(s)ds + / Uo(t, 5)Q(s)g(s)ds,

—00 —+o0
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t

t
Y(t) = / U(t,s)P(s)p(s)ds + [ Ugq(t, s)Q(s)p(s)ds.
—0o0 “+ o0
The proof that X € AA(X) is obvious and hence is omitted. To prove that
Y € PAA(X), we define for all n = 1,2,..., the sequence of integral operators

t+n

t—n—+1
V(1) : = /t_ U, 5)P(s)e(s)ds + /H | Ul )Q(s)e(s)ds

_ /:1 U(t,t — s)P(t — 8)p(t — s)ds + /

n—

Ug(t,t+ s)Q(t + s)p(t + s)ds
1

for each t € R.
Let d € m(R) such that ¢~'(z) + d~!(z) = 1. From exponential dichotomy of
(U(t, 5))t>s and Holder’s inequality (Theorem [3.8), it follows that

+n

t—n+1 t
1Yn ()] < M/ e [o(s)||ds + M ) 7 o(s)| ds
t—n t+n—
t—n+1 efﬁ(tfs)

gM(di_+qi_)[inf{A>0:/t (— )d(S)dsgl}}

—n

< [t {2 >0: /t”“ |00 < 1]]
t—n
e+ Dfmirsos [ () <)

< [inf {2 >0 / | £ as < 11].
/t—n+1 | % s - /t‘"“ [etemrenn]
t—n t—n

< /tm+1 M s <1

—n

IA

Now since

it follows that

tntl o —5(t—s)

() )

o e a0 |
t

-n
which shows that
t=n+l  —§(t—s)

[inf {/\ >0: /t ( 5 )d(S)ds < 1}} < e (-1

—n

Consequently,
1 1. s 11 .
I¥al)ll < M (o= + =)e= Dl gater + M (o= + )0~ gl o
d q d q
1 1
<2M(—— )e 2 o]l gacen -

=" q
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Since the series >0 | e=9("~1) converges, we deduce from the well-known Weier-
strass test that the series Y -, Y, (¢) is uniformly convergent on R. Furthermore,

t

V() = / U, 5)P(s)e(s)ds + / Ual(t,5)Q(s)p(s)ds = 3 Vi

—oC +o0 n=1

Y € C(R,X), and

[’} 1 1 [e’e) st
YOI <D 1Y@l <2M (= + =) > e Pllellse-
n=1

n=1

Next, we will show that

1 T
lim —/ |Y (s)]| ds = 0.
-7

T—oo 2T
Indeed,
1 T
— Y, (t)| dt
3T 7TH @)l
11 1 (7 e p(s) 1a6)
<2M——_5("_1)—/'f/\ 0:/ H ds < 1.
<M=+ o)e [QT ,Tm{ SR A Y §= H

Since p? € PAAG(LY ®)((0,1),X)), the above inequality leads to Y, € PAAy(X).
Using the following inequality

1 /T 00 < 4 T
o | elas< o [ e IO LRI 3 NEACIER

we deduce that the uniform limit Y'(-) = Y07 | ¥,,(-) € PAA((X). Therefore u €
PAAX).

It remains to prove the uniqueness of u as a mild solution. This has already
been done by Diagana [0, 10]. However, for the sake of clarity let us reproduce
it here. Let w,v be two bounded mild solutions to . Setting w = u — v,
one can easily see that w is bounded and that w(t) = U(¢, s)w(s ) for all (¢,s) € T.
Now using property (i) from exponential dichotomy (Definition [2.11)) it follows that
Pt)w(t) = P(t)U(t,s)w(s) = U(t, s)P(s)w(s), and hence

IP@Ow®)] = U s)P(s)w(s)] < Me™? = flw(s)| < Me™™ ]

for all (¢,s) € T.

Now, given ¢t € R with ¢ > s, if we let s — —o0, we then obtain that P(t)w(t) =
that is, P(t)u(t) = P(t)v(t). Since ¢ is arbltrary it follows that P(t)w(t) = 0 for
all t > s. Similarly, from w(t) = U(¢, s)w(s) for all t > s and property (i) from ex-
ponential dichotomy (Definition [2.11)) it follows that Q(t)w(t) = Q(t)U(t, s)w(s) =
U(t, s)Q(s)w(s), and hence Ug(s,t)Q(t)w(t) = Q(s)w(s) for all t > s. Moreover,

1Q(s)w(s)ll = [Ug(s, ) Qt)w(®)]| < Me*~ uw]o

for all ¢t > s.

Now, given s € R with ¢ > s, if we let ¢ — 400, we then obtain that Q(¢)w(t) = 0,

that is, Q(s)u(s) = Q(s)v(s). Since s is arbitrary it follows that Q(s)w(s) = 0 for
all t > s. O

Using Theorem one easily proves the following theorem.
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Theorem 5.4. Let p,q > 1 be constants such that p < q. Under assumptions
(H1)—(H5), then (1.2) has a unique solution whenever |Lg|s- is small enough.
And the solution satisfies the integral equation

t —+o0
u(t) = / U(t, 0)P(0) F(o, Bu(o))do — /t Uo(t,)Q(0) F(o, Bu(o))do, t € R.

— 00

Proof. Define = : PAA(X) — PAA(X) as

t —+oo
(Eu)(t) = / U(t,o)P(0)F (o, Bu(c))do — / Ug(t,0)Q(0)F (0, Bu(o))do
o ¢
Let u € PAA(X) C S0:0 (X). From (H4) and Theorem it is clear that Bu(.) €
Spa2 (X). Using the composition theorem for SP;% functions, we deduce that there
exists m € [1,p) such that F(., Bu(.)) € Spy,"(X). applying the proof of Theorem
to f(.) = F(.,Bu(.)), one can easily see that the operator = maps PAA(X)

into its self. Moreover, for all u,v € PAA(X), it is easy to see that
[(Eu)(t) = (Ev)(@)]
< /R I0( = $)[[[[F'(s, Bu(s)) — F(s, Bu(s))| ds

t —+o0
< / cMe 9= Lp(s) ds|lu — v]|oo —|—/ eMe® =) Lp(s) ds||u — v]|oo
¢

— 00

oo t—n+1
< Z/ Me= =L (s) ds|lu — o]l
t

n=1vt""

o0 t+n
+ Z/ eMeP =) L (s) ds|lu — v] oo

n=1Jttn—1

e} t—n+1 1
<eMy ( / e ds) ™ | Lo lu — v
n=1 t—n
0 1
eeMr 30 ([ e ) s o]
n=1 t+n—1
0 efro(nfl)é — e~ Tond %
<2y ( o )T ILE s llu = vl

1
< 2eM “ Z*"5||LF|

ST ’U”OOa

for each ¢ € R, where 1 + % = 1. Hence whenever |[Lp||s- is small enough, that is,

” 1+e n
2cM Z SLp|sr <1,

then = has a unique fixed point, Wthh 0bV10usly is the unique pseudo-almost au-
tomorphic solution to ([1.2)). |
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