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OSCILLATION OF SOLUTIONS TO SECOND-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS OF GENERALIZED

EULER TYPE

ASADOLLAH AGHAJANI, DONAL O’REGAN, VAHID ROOMI

Abstract. We are concerned with the oscillatory behavior of the solutions
of a generalized Euler differential equation where the nonlinearities satisfy

smoothness conditions which guarantee the uniqueness of solutions of initial

value problems, however, no conditions of sub(super) linearity are assumed.
Some implicit necessary and sufficient conditions and some explicit sufficient

conditions are given for all nontrivial solutions of this equation to be oscillatory

or nonoscillatory. Also, it is proved that solutions of the equation are all
oscillatory or all nonoscillatory and cannot be both.

1. Introduction

The Euler equation arises in some practical problems in physics and engineering.
In particular there are many results in the literature on the existence of oscillatory,
periodic and almost periodic solutions of Euler equation.

The oscillation problem for second-order nonlinear differential equations has been
studied in many papers; see the references in this article. In this article, we consider
the second-order nonlinear differential equation of generalized Euler type

t2ü+ f(u)tu̇+ g(u) = 0 t > 0, (1.1)

and give some implicit necessary and sufficient conditions and some explicit suffi-
cient conditions for all nontrivial solutions of this equation to be oscillatory. Here,
f(u) and g(u) satisfy smoothness conditions which guarantee the uniqueness of
solutions of initial value problems and

ug(u) > 0 if u 6= 0. (1.2)

We suppose that all solutions of (1.1) are continuable in the future. A nontrivial
solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros. Other-
wise, the solution is said to be nonoscillatory. For brevity, equation (1.1) is called
oscillatory (respectively nonoscillatory) if all nontrivial solutions are oscillatory (re-
spectively nonoscillatory). Because of Sturm’s separation theorem, the solutions of
second order linear differential equations are either all oscillatory or all nonoscilla-
tory, but not both. Thus, we can classify second order linear differential equations
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into two types. However, the oscillation problem for (1.1) is not easy, because g(u)
and f(u) are nonlinear.

If we let f(u) = 0 and g(u) = λu, then (1.1) is called Euler differential equation.
In this case, the number 1/4 is called the oscillation constant and it is the lower
bound for all nontrivial solutions of (1.1) to be oscillatory. In fact, it is well known
that if λ > 1/4, then all nontrivial solutions of (1.1) are oscillatory and otherwise
they are nonoscillatory. Other results on the oscillation constant for linear differ-
ential equations can be found in [12, 13, 14, 15, 17, 19] and the references cited
therein.

Several authors consider oscillation of solutions of second-order ordinary differ-
ential equations and some results can be found in [11, 12, 18, 20, 27]. Wong [27]
studied the equation

u′′ + a(t)g(u) = 0, t > 0, (1.3)
which includes the Emden Fowler differential equation. He used Sturm’s comparison
theorem and proved the following two theorems:

Theorem 1.1. Assume that a(t) is continuously differentiable and satisfies

t2a(t) ≥ 1, (1.4)

for t sufficiently large, and that there exists a λ with λ > 1/4 such that
g(u)
u
≥ 1

4
+

λ

(log |u|)2
, (1.5)

for |u| sufficiently large. Then all nontrivial solutions of (1.3) are oscillatory.

Theorem 1.2. Assume that a(t) is continuously differentiable and satisfies

0 ≤ t2a(t) ≤ 1, (1.6)

for t sufficiently large and

A(t) :=
a′(t)

2a
3
2 (t)

+ 1 = o(t) as t→∞. (1.7)

If, in addition, A(t) ≤ 0 and there exists a λ with 0 < λ ≤ 1/16 such that
g(u)
u
≤ 1

4
+

λ

(log |u|)2
, (1.8)

for u > 0 or u < 0, |u| sufficiently large, then all nontrivial solutions of (1.3) are
nonoscillatory.

The oscillation problem for (1.1) (when f(u) = 0) has been solved when

lim sup
|u|→∞

g(u)
u

<
1
4
or lim inf

|u|→∞

g(u)
u

>
1
4
.

In [7] the authors gave sufficient conditions for all nontrivial solutions of (1.1)
to be oscillatory (when f(u) = 0) which can be applied in the case:

lim inf
|u|→∞

g(u)
u
≤ 1

4
≤ lim sup
|u| →∞

g(u)
u

.

In the next section, we will introduce a Liénard system which is equivalent to (1.1).
To study the oscillation problem for (1.1) the significant point is to find conditions
for deciding whether all orbits intersect the vertical isocline y = F (u) and the y-axis
in the equivalent Liénard system.
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2. Equivalent Liénard System and Property of (X+)

The change of variable t = es reduces (1.1) to the equation

ü+ u̇(f(u)− 1) + g(u) = 0, s ∈ R, (2.1)

where ˙ = d
ds . Equation (2.1) is usually studied by means of an equivalent plane

differential system. The most common one is

u̇ = y − F (u)

ẏ = −g(u),
(2.2)

where F (u) =
∫ u
0
f(η)dη − u. This system is of Liénard type. Hereafter we denote

s by t again.

Definition 2.1. System (2.2) has property (X+) in the right half plane (resp. in
the left half plane), if for every point P = (u0, y0) with y0 > F (u0) and u0 ≥ 0
(resp. y0 < F (u0) and u0 ≤ 0), the positive semitrajectory of (2.2) passing through
P denoted by γ+(P ) := {(u(t), y(t))|t > t0, (u(t0), y(t0)) = P} crosses the vertical
isocline y = F (u).

Several interesting sufficient conditions for property (X+) have been presented
in [2, 5, 6, 7, 13, 14, 15, 25]. To study the oscillation problem for (1.1) we must find
conditions for deciding whether all orbits intersect the vertical isocline y = F (u) in
the equivalent Liénard system (2.2) or not. Let

G(u) =
∫ u

0

g(ξ)dξ.

Recently, in [6] the authors presented some sufficient conditions for property
(X+) in the right and left half-plane for system (2.2).

Theorem 2.2 ([2, Theorem 2.3]). Assume that G(+∞) = +∞. Then, system
(2.2) has property (X+) in the right half-plane if

lim sup
u→+∞

(∫ u

b

( F (η)g(η)
(2G(η))3/2

+
g(η)
G(η)

)
dη +

F (u)√
2G(u)

)
= +∞, (2.3)

for some b > 0.

Theorem 2.3 ([2, Theorem 4.3]). Assume that G(−∞) = +∞. Then, system
(2.2) has property (X+) in the left half-plane if

lim inf
u→−∞

∫ b

u

(
− F (η)g(η)

(2G(η))3/2
+
g(η)
G(η)

)
dη +

F (u)√
2G(u)

= −∞, (2.4)

for some b < 0.

The following theorem, which is a modification of Theorem 2.4 in [5], gives a
necessary and sufficient condition for system (2.2) to have property (X+) in the
right half-plane.

Theorem 2.4 ([14]). System (2.2) fails to have property (X+) in the right half-
plane if and only if there exist a constant b ≥ 0 and a function ϕ ∈ C1([b,+∞))
such that ϕ(u) > 0 for u ≥ b and

g(u) ≤ −ϕ(u)(F ′(u) + ϕ′(u)), for u ≥ b. (2.5)
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Similarly, the following analogous result is obtained with respect to property
(X+) in the left half-plane for system (2.2).

Theorem 2.5. System (2.2) fails to have property (X+) in the left half-plane if
and only if there exist a constant b ≤ 0 and a function ϕ ∈ C1((−∞, b]) such that
ϕ(u) > 0, for u ≤ b and

g(u) ≥ −ϕ(u)(−F ′(u) + ϕ′(u)), for u ≤ b. (2.6)

Definition 2.6. Equation (1.1) has property (X+) in the right half plane (resp.
in the left half plane), if system (2.2), which is equivalent with (1.1), has property
(X+) in the right half plane (resp. in the left half plane).

Thus we have the following two theorems.

Theorem 2.7. Equation (1.1) fails to have property (X+) in the right half-plane
if and only if there exist a constant b ≥ 0 and a function ϕ ∈ C1([b,+∞)) such that
ϕ(u) > 0 for u ≥ b and

g(u) ≤ −ϕ(u)(f(u)− 1 + ϕ′(u)), for u ≥ b. (2.7)

Theorem 2.8. Equation (1.1) fails to have property (X+) in the left half-plane if
and only if there exist a constant b ≤ 0 and a function ϕ ∈ C1((−∞, b]) such that
ϕ(u) > 0, for u ≤ b and

g(u) ≥ −ϕ(u)(1− f(u) + ϕ′(u)), for u ≤ b. (2.8)

3. Explicit Conditions for Property of (X+)

In this section we present some explicit sufficient conditions for equation (1.1)
having property (X+) in the right half-plane.

Corollary 3.1. Suppose that G(+∞) = +∞ and lim infu→∞ f(u) > 1. Then
equation (1.1) has property (X+) in the right half-plane.

Proof. By way of contradiction, we suppose that equation (1.1) fails to have prop-
erty (X+) in the right half-plane. Therefore by Theorem 2.7 there exist a constant
b ≥ 0 and a function ϕ ∈ C1([b,+∞)) such that ϕ(u) > 0 for u ≥ b and

g(u) ≤ −ϕ(u)(f(u)− 1 + ϕ′(u)). (3.1)

However, since lim infu→∞ f(u) > 1 there exists b′ > 0 such that f(u) > 1 for
u > b′. Now from (3.1) for u > max{b, b′} = b′′ we have

−g(u) ≥ ϕ(u)ϕ′(u).

By integration we have

−G(u) +G(b′′) ≥ ϕ2(u)
2
− ϕ2(b′′)

2
,

for u sufficiently large. This is a contradiction since G(+∞) = +∞ and the proof
is complete. �

Corollary 3.2. Suppose that lim supu→∞ f(u) = λ < 1. Then equation (1.1) fails
to have property (X+) in the right half-plane if

lim sup
u→∞

g(u)
u

<
(1− λ)2

4
. (3.2)
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Proof. By (3.2) there exist β with λ < β < 1 and b > 0 such that

g(u)
u

<
(1− β)2

4
for u ≥ b.

However, since lim supu→∞ f(u) = λ there exists a b′ > 0 such that f(u) < β for
u > b′. Now let ϕ(u) = (1−β

2 )u. For u ≥ max{b, b′} we have

−ϕ(u)(f(u)− 1 + ϕ′(u))
u

= − (1− β)
2

(
− 1 + f(u) +

1− β
2
)

≥ − (1− β)
2

(
− 1 + β +

1− β
2
)

=
(1− β)2

4
>
g(u)
u

.

From Theorem 2.7 this equation fails to have property (X+) in the right half-
plane. �

Example 3.3. Consider (1.1) with

f(u) = β sinu+
1

u2 + 1
, β < 1,

g(u) = uγ tan−1 u+ αu, α <
(1− β)2

4
, 0 < γ < 1.

Since lim supu→∞ f(u) = β < 1 and

lim sup
u→∞

g(u)
u

= lim sup
u→∞

tan−1u

u1−γ + α = α <
(1− β)2

4
,

by Corollary 3.2 this equation does not have property (X+) in the right half-plane.

Corollary 3.4. Suppose that lim supu→∞ f(u) < β < 1. Then (1.1) fails to have
property (X+) in the right half-plane, if there exist λ with 0 ≤ λ < (1−β)2/16 and
a k > 0 such

g(u)
u
≤ (1− β)2

4
+

λ

(log(ku))2
, (3.3)

for u sufficiently large.

Proof. Define ϕ(u) = 1−β
2 u + αu

log(ku) where k > 0 and α is a constant such that

λ < 1−β
2 α − α2 < (1−β)2

16 , (notice that maxα∈R( 1−β
2 α − α2) = (1−β)2

16 ). For u
sufficiently large we have

−ϕ(u)(f(u)− 1 + ϕ′(u))
u

=
(1− β

2
+

α

log(ku)

)(
1− 1− β

2
− α log(ku)− α

(log(ku))2
− f(u)

)
≥
(1− β

2
+

α

log(ku)

)(
1− 1− β

2
− α log(ku)− α

(log(ku))2
− β

)
=

(1− β)2

4
+

1−β
2 α− α2

(log(ku))2
+

α2

(log(ku))3

>
(1− β)2

4
+

λ

(log(ku))2
≥ g(u)

u
.
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From Theorem 2.7 this equation fails to have property (X+) in the right half-
plane. �

Corollary 3.5. Suppose that lim supu→∞ f(u) = 0. Then (1.1) fails to have prop-
erty (X+) in the right half-plane, if there exist λ with 0 < λ < 1/16, and a k > 0
such that

g(u)
u
≤ 1

4
+

λ

(log(ku))2
, (3.4)

for u sufficiently large.

Corollary 3.6. Suppose that there exists a constant b > 0 such that g(u) is in
C1([b,+∞)). Then (1.1) fails to have property (X+) in the right half-plane, if

g′(u) ≤ −f(u),

for u sufficiently large.

Proof. For u sufficiently large let ϕ(u) = g(u). Note that from (1.2), g′(u) ≤ −f(u)
implies g(u) ≤ −g(u)(f(u)− 1 + g′(u)), so

g(u) ≤ −ϕ(u)(f(u)− 1 + ϕ′(u)),

for u sufficiently large. Thus, if g′(u) ≤ −f(u) by Theorem 2.7 this equation fails
to have property (X+) in the right half-plane. �

In [5] the authors proved the following lemma.

Lemma 3.7. Let λ > 1/16 and k > 0. Then there does not exist a function ϕ(u)
such that ϕ ∈ C1(R), ϕ(u) > 0 for u sufficiently large, and

ϕ(u)(1− ϕ′(u)) ≥ 1
4
u+

λu

(log(ku))2
, (3.5)

for u sufficiently large.

From the above lemma, immediately we have the following result.

Lemma 3.8. Let λ > 1/16, k > 0 and f(u) ≥ 0 for u sufficiently large. Then there
does not exist a function ϕ(u) such that ϕ ∈ C1(R), ϕ(u) > 0 for u sufficiently large,
and

ϕ(u)(1− f(u)− ϕ′(u)) ≥ 1
4
u+

λu

(log(ku))2
, (3.6)

for u sufficiently large.

Corollary 3.9. Let λ > 1
16 , k > 0 and f(u) ≥ 0 for u sufficiently large. Then

equation (1.1) has property (X+) in the right half-plane if
g(u)
u
≥ 1

4
+

λ

(log(ku))2
, (3.7)

for u sufficiently large.

Remark 3.10. Corollaries 3.1, 3.2, 3.4, 3.5, 3.6 and 3.9 can be formulated for
property (X+) in the left half-plan.

We say that system (2.2) has property (Z+
1 ) (resp., (Z+

3 )) if there exists a point
P (u0, y0) with y0 = F (u0) and u0 ≥ 0 (resp., u0 ≤ 0) such that the positive semi-
trajectory of (2.2) starting at P approaches the origin through only the first (resp.,
third) quadrant. Now we consider the following theorem and corollary concerning
property (Z+

1 ) which was established in [4].
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Theorem 3.11 ([4]). Suppose that there exists a δ > 0 such that F (u) > 0 for
0 < u < δ. If for every k ∈ [0, 1] there exists a constant γk > 0 such that

lim inf
u→0+

( ∫ u
0

g(η)
F (η)dη

(1− k + γk)(k + γk)F (u)

)
> 1, (3.8)

then (2.2) fails to have property (Z+
1 ).

Corollary 3.12 ([4]). Suppose that there exists a δ > 0 such that F (u) > 0 for
0 < u < δ. If there exists a ξ with 1 < ξ ≤ 2 such that

lim inf
u→0+

(∫ u
0

g(η)
F (η)dη

ξF (u)

)
> 1, (3.9)

then the system (2.2) fails to have property (Z+
1 ).

Using Theorem 3.11, we prove the following lemma about the asymptotic behav-
ior of system (2.2).

Lemma 3.13. For each point P (p, F (p)) with p > 0, the positive semitrajectory
of (2.2) starting at P crosses the negative y-axis if one of the following conditions
hold.

(i) There exists a δ > 0 such that F (u) < 0 for 0 < u < δ or F (u) has an
infinite number of positive zeroes clustering at u = 0.

(ii) If there exists a δ > 0 such that F (u) > 0 for 0 < u < δ and the conditions
of Theorem 3.11 hold.

Proof. Suppose that there exists a point P (p, F (p)) with p > 0 such that the
positive semitrajectory of (2.2) starting at P does not intersect the negative y-
axis. Let (u(t), y(t)) be a solution of (2.2) defined on an interval [t0,∞) with
(u(t0), y(t0)) = P . Then the solution (u(t), y(t)) corresponds to the positive semi-
trajectory of (2.2) starting at P . At t = t0 we have

u̇(t0) = 0, ẏ(t0) = −g(p) < 0.

So, this positive trajectory enters the region D := {(u, y) : y < F (u), u > 0}.
Taking into account the vector field of (2.2) we have

u̇ < 0 in D.

Thus, by the assumption that this trajectory does not intersect the negative y-axis
we have

0 < u(t) ≤ u(t0) for t ≥ t0.
On the other hand, ẏ < 0 in D. So, if y(t) does not approach −∞ it must tends to
0 (note that the origin is the only equilibrium point of (2.2)), which is impossible
in both cases (i) and (ii). Therefore,

y(t)→ −∞ as t→ +∞.

Hence, it follows from the first equation of (2.2) that

u̇(t)→ −∞ as t→∞,

and therefore, there exists a t1 > t0 such that

u̇(t) ≤ −1 for t ≥ t1.
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Integration leads to

−u(t1) < u(t)− u(t1) ≤ t1 − t→ −∞ as t→∞.
This is a contradiction, the proof is complete. �

Turning our attention to the left half-plane and using the change of variables
(u, y)→ (−u,−y), we can formulate Theorem 3.11 and Corollary 3.12 for property
(Z+

3 ) as follows.

Theorem 3.14. Suppose that there exists a δ > 0 such that F (u) < 0 for −δ <
u < 0. If for every k ∈ [0, 1] there exists a constant γk > 0 such that

lim inf
u→0−

( ∫ u
0

g(η)
F (η)dη

(1− k + γk)(k + γk)F (u)

)
> 1, (3.10)

then the system (2.2) fails to have property (Z+
3 ).

Corollary 3.15. Suppose that there exists a δ > 0 such that F (u) < 0 for −δ <
u < 0. If there exists a ξ with 1 < ξ ≤ 2 such that

lim inf
u→0−

(∫ u
0

g(η)
F (η)dη

ξF (u)

)
> 1, (3.11)

then (2.2) fails to have property (Z+
3 ).

Lemma 3.16. For each point P (−p, F (−p)) with p > 0, the positive semitrajectory
of (2.2) starting at P crosses the positive y-axis if one of the following conditions
hold.

(i) There exists a δ > 0 such that F (u) > 0 for −δ < u < 0 or F (u) has
infinite number of negative zeroes clustering at u = 0.

(ii) If there exists a δ > 0 such that F (u) < 0 for −δ < u < 0 and the conditions
of Theorem 3.14 hold.

4. Oscillation Theorems

In this section we present implicit necessary and sufficient condition for all non-
trivial solutions of this system to be oscillatory or nonoscillatory. To do this, we
need the following two lemmas. In the proof of these lemmas we follow the ideas
used in [22, Lemmas 4.1 and 4.2].

Lemma 4.1. Every solution of (2.2) is unbounded, except the zero solution, if
uF (u) < 0.

Proof. By way of contradiction, we suppose that there exists a bounded solution
(u(ζ), y(ζ)) of (2.2) initiating at ζ = ζ0 > 0; that is,

|u(ζ)|+ |y(ζ)| ≤ A for ζ ≥ ζ0, (4.1)

with A > 0. Then the solution (u(ζ), y(ζ)) circles clockwise around the origin. Let
ζi > ζ0 and bi > 0 with

(u(ζi), y(ζi)) = (0, bi) for i = 1, 2.

Define a Liapunov function

V (u, y) =
1
2
y2 +G(u).
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From uF (u) < 0 and (1.2), we have

V̇(2.2)(u, y) = −F (u)g(u) > 0 if u 6= 0.

If ζ1 < ζ2, then b1 < b2. In fact, we have
1
2
b21 = V (u(ζ1), y(ζ1)) < V (u(ζ2), y(ζ2)) =

1
2
b22.

Thus, if this solution starts at a point (0, b1) on the y-axis, it circles clockwise
around the origin and intersects the y-axis again at a point (0, b2) with b2 > b1.
Thus, it can not tend to the origin. Now by Poincare-Bendixson theorem [10] its
ω-limit set is a periodic orbit. Therefore, we can conclude that, there exists a simple
closed curve C surrounding the origin such that

dist
{

(u(ζ), y(ζ)), C
}
→ 0 as ζ →∞. (4.2)

Let δ0 > 0 be sufficiently small and define

M = max
{
g(u) : δ0 ≤ u ≤ A

}
, m = min

{
− F (u)g(u) : δ0 ≤ u ≤ A

}
.

By (4.2) the solution (u(ζ), y(ζ)) does not stay in
{

(u, y) : |u| < δ0
}

. Hence, using
the fact that (u(ζ), y(ζ)) circles clockwise around the origin and tends to C, there
exist sequences {tn} and {t′n} with ζ0 < tn < t′n < tn+1 and tn → ∞ as n → ∞
such that

u(tn) = u(t′n) = δ0, y(tn) > δ0, y(t′n) < −δ0
and u(ζ) > δ0 for tn < ζ < t′n. We have

−2δ0 > y(t′n)− y(tn) = −
∫ t′n

tn

g(u(ζ))dζ ≥ −M(t′n − tn),

and therefore, for ζ > t′n,

V (u(ζ), y(ζ))− V (u(ζ0), y(ζ0)) = −
∫ ζ

ζ0

F (u(η))g(u(η))dη

≥
n∑
k=1

∫ t′k

tk

−F (u(ζ))g(u(ζ))dζ

≥ m
n∑
k=1

(t′k − tk) ≥ 2mδ0
M

n,

which tends to ∞ as n → ∞. Thus, V (u(ζ), y(ζ)) → +∞ as ζ → +∞. This
contradicts (4.1) and completes the proof. �

Consider the Liapunov function

V (u, y) =
1
2
y2 +G(u)

and consider the curve
V (u, y) = V (u0, y0),

where u0 > 0.
It is obvious that if uF (u) < 0, F ′(u) ≤ 0 and from (1.2) that V (u, F (u)) is

increasing for u > 0 and decreasing for u < 0, and V (0, 0) = 0. Thus, the equation

V (u, F (u)) = V (u0, y0)
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has exactly two roots. Therefore, there exist two points of intersection of this curve
with the curve y = F (u).

Let (−a, F (−a)) and (−b, F (−b)) be the intersection points, where a > 0 and
b > 0. Define

S =
{

(u, y) : −a ≤ u ≤ c, V (u, y) ≤ V (u0, y0)
}

in which c = max{b, u0}. Then it is clear that S is a bounded set. Lemma 4.1
shows that every solution of (2.2) starting in S \ {0} does not remain in S. Note
that

V̇(2.2)(u, F (u)) = −F (u)g(u) > 0 if u 6= 0.

Then we also see that every solution of (2.2) starting in Sc, the complement of S
in R2, stays in Sc for all future time. Therefore, we have the following lemma.

Lemma 4.2. Suppose
uF (u) < 0, F ′(u) ≤ 0. (4.3)

Then every solution of (2.2) starting in S \ {0} enters Sc which is a positive in-
variant set with respect to (2.2).

Remark 4.3. Lemma 4.2 holds even if the condition F ′(u) ≤ 0 is replaced by
F ′(u) < −g(u)

F (u) .

The main theorem of this section is as follows.

Theorem 4.4. Suppose (3.8) holds. All nontrivial solutions of (2.2) are nonoscil-
latory if there exist a constant R > 0 and a function ϕ ∈ C1(R − (−R,R)) such
that

ϕ(|u|) > 0, and
g(u)
u
≤ −ϕ(|u|)(F ′(u) + ϕ′(|u|))

|u|
, (4.4)

for u > R or u < −R. Otherwise, all nontrivial solutions of (2.2) are oscillatory.
Therefore, the solutions of second-order nonlinear differential equation (1.1) are all
oscillatory or all nonoscillatory and cannot be both.

Proof. First suppose that (4.4) does not hold. Then (2.2) which is equivalent to
(1.1) has property (X+) in the right and left half-plan. Thus, it follows from Lem-
mas 3.13 and 3.16 that every solution of (2.2) keeps on rotating around the origin
except the zero solution. Hence, all nontrivial solutions of (1.1) are oscillatory.

Now suppose that (4.4) holds. Then by Theorems 2.4 or 2.5, system (2.2) fails
to have property (X+) in the right or left half-plane. We consider only the case
that (2.2) fails to have property (X+) in the right half-plane, because the proof
in the other case is similar. Hence, there exists a point P0(u0, y0) with u0 ≥ 0
and y0 > F (u0) such that positive semitrajectory of (2.2) runs to infinity without
intersecting the curve y = F (u).

Suppose (2.2) has an oscillatory solution. Let γ+(Q) be the positive semitrajec-
tory which corresponds to the oscillatory solution of (1.1) starting from point Q.
By virtue of Lemma 4.2 we see that γ+(Q) eventually goes around the set S infin-
itely many times. Therefore, it crosses the half-line {(u, y) : u = u0 and y > y0}
at a point P1(u0, y1) with y1 > y0. From the uniqueness of solution for the initial
value problem, it turns out that

(i) γ+(Q) coincides with γ+(P1) except for the arc QP1

(ii) γ+(P1) lies above γ+(P0)
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Hence, γ+(Q) runs to infinity without crossing the curve y = F (u). This contradicts
the fact that γ+(Q) circles the set S and completes the proof. �

Example 4.5. Consider (2.2) with

F (u) = −u3 − u sin2 u, g(u) = α|u|m sgn(u) + sinu,

for |u| sufficiently large with α > 1 and m ∈ R. It is obvious that F (u) satisfies
(4.3) and for u > 0,

g(u)
u

= αum−1 +
sinu
u

.

On the other hand, for u > 0 by choosing ϕ(u) = uβ with β < 3 we have

−ϕ(|u|)(F ′(u) + ϕ′(|u|))
|u|

= 3uβ+1 + uβ−1 sin2 u+ uβ sin 2u− βu2β−2.

Therefore, if m < β + 2 or if m = β + 2 and α < 3, then there exist a constant
R > 0 such that for u > R condition (4.4) holds. Thus by Theorem 4.4 all nontrivial
solutions of this system are nonoscillatory.

Remark 4.6. Theorem 4.4 holds even if the condition F ′(u) ≤ 0 replaced by
F ′(u) < −g(u)/F (u).

The following result follows from the above theorem.

Theorem 4.7. All nontrivial solutions of (1.1) are nonoscillatory if there exist a
constant R > 0 and a function ϕ ∈ C1(R− (−R,R)) such that

ϕ(|u|) > 0 and
g(u)
u
≤ −ϕ(|u|)((f(u)− 1) + ϕ′(|u|))

|u|
, (4.5)

for u > R or u < −R. Otherwise, all nontrivial solutions of (1.1) are oscillatory.
Therefore, the solutions of second-order nonlinear differential equation (1.1) are all
oscillatory or all nonoscillatory and cannot be both.

Remark 4.8. Corollaries 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 can be formulated for the
solutions of equation (1.1) to be nonoscillatory or oscillatory.

The following corollaries of Theorems 4.4 and 4.7 are very useful in applications.

Corollary 4.9. Suppose that all nontrivial solutions of (1.1) with g1 are oscillatory
(resp. nonoscillatory). If

g2(u)
u

>
g1(u)
u

, (resp.
g2(u)
u

<
g1(u)
u

,)

for |u| > R with a sufficiently large R, then all nontrivial solutions of (1.1) with g2
are oscillatory (resp. nonoscillatory).

Corollary 4.10. Suppose that all nontrivial solutions of (1.1) with f1 are oscilla-
tory (resp. nonoscillatory). If

f1(u) > f2(u), (resp. f1(u) < f2(u),)

for |u| > R with a sufficiently large R, then all nontrivial solutions of (1.1) with f2
are oscillatory (resp. nonoscillatory).
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