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EXISTENCE OF SOLUTIONS FOR EIGENVALUE PROBLEMS
WITH NONSTANDARD GROWTH CONDITIONS

SAMI AOUAOUI

Abstract. We prove the existence of weak solutions for some eigenvalue prob-

lems involving variable exponents. Our main tool is critical point theory.

1. Introduction and statement of main results

In this article, we are concerned with the quasilinear problem

− div(|∇u|p(x)−2∇u) + |u|p(x)−2u = λϕ(x)|u|α(x)−2u+ h, in RN , (1.1)

where N ≥ 3, p and α ∈ {v ∈ C(RN ,R) ∩ L∞(RN ), infx∈RN v(x) > 1}, ϕ ∈
C(RN ,R), ϕ(x) > 0 for all x ∈ RN , λ is a positive parameter and h is a function
which belongs to the dual of the Sobolev space with variable exponent W 1,p(·)(RN ).

The study of eigenvalue problems involving variable exponents growth conditions
has been an interesting topic of research in last years. We can for example refer to
[6, 9, 12, 13, 14, 15, 16]. A first contribution in this sense is due to Fan, Zhand and
Zhao [9] who studied the problem

−div(|∇u|p(x)−2∇u) = λ|u|p(x)−2u in Ω
u = 0 on ∂Ω,

(1.2)

where Ω ⊂ RN is a bounded domain with smooth boundary, p : Ω → (1,∞) is
a continuous function and λ is a real number. In [9], the authors established the
existence of infinitely many eigenvalues for problem (1.2). Denoting Λ the set of
all nonnegative eigenvalues, it was proved in [9] that sup(Λ) = +∞. It was also
proved that only under special conditions concerning the monotony of the variable
exponent p(·), we have inf(Λ) > 0 which is in contrast with the case when p is a
constant. Mihǎilescu and Rǎdulescu [13] studied the problem

−div(|∇u|p(x)−2∇u) = λ|u|q(x)−2u in Ω
u = 0 on ∂Ω,

(1.3)

where Ω ⊂ RN is a bounded domain with smooth boundary, p, q : Ω → (1,+∞)
are two continuous functions and λ is a real number. Using Ekeland’s variational
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principle, they proved that under the assumption

min
x∈Ω

q(x) < min
x∈Ω

q(x) < max
x∈Ω

q(x), max
x∈Ω

q(x) < N, q(x) <
Np(x)
N − p(x)

∀x ∈ Ω,

there exists a continuous family of eigenvalues which lies in a neighborhood of the
origin. The case when maxx∈Ω p(x) < minx∈Ω q(x) was treated by Fan and Zhang
[8] using the Mountain-Pass Theorem. Finally, in the case when maxx∈Ω p(x) <
minx∈Ω q(x) and by combining results of [8] and [14], it is easy to see that there
exists two positive constants λ∗ and λ∗∗ such that any λ ∈ (0, λ∗)∪ (λ∗∗,+∞) is an
eigenvalue of the problem. Another important eigenvalue problem is the following

−div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) = λ|u|q(x)−2u in Ω
u = 0 on ∂Ω,

(1.4)

where Ω ⊂ RN is a bounded domain with smooth boundary. Provided that p1, p2, q :
Ω → (1,+∞) are continuous functions such that q has a sub-critical growth with
respect to p2 and the following condition is verified

1 < p2(x) < min
Ω
q ≤ max

Ω
q < p1(x) ∀x ∈ Ω,

problem (1.4) was discussed in [15] and it was shown that there exist two positive
constants λ0 and λ1 with λ0 ≤ λ1 such that any λ ∈ [λ1,+∞) is an eigenvalue
of the problem (1.4) while for any λ ∈ (0, λ0), problem (1.4) does not admit any
nontrivial solution. The novelty in this article lies in the fact that we divide RN
into three parts

Ω1 = {x ∈ RN : α(x) < p(x)}, Ω2 = {x ∈ RN : α(x) > p(x)},
Ω3 = {x ∈ RN : α(x) = p(x)}.

We assume that meas(Ω3) = 0 where “meas” denotes the Lebesgue measure in RN .
In this work, we are interested in the case when meas(Ω1) > 0 and meas(Ω2) > 0.
Thus, possibly we could have meas(Ω1) = +∞ and meas(Ω2) = +∞. We have
to notice that this possibility to divide RN into Ω1,Ω2 and Ω3 is so related to
quasilinear equations involving variable exponents because we cannot find such a
phenomenon when treating quasilinear equations with constant exponents. On the
other hand, in the majority of works dealing with nonlinear equations involving
variable exponents, a precise comparison between the extrema of involved variable
exponents is provided. So, the situation that we are treating is rather new.

Throughout this paper, we denote

α−Ω1
= inf
x∈Ω1

α(x), α−Ω2
= inf
x∈Ω2

α(x),

p−Ω1
= inf
x∈Ω1

p(x), p+
Ω1

= sup
x∈Ω1

p(x),

p−Ω2
= inf
x∈Ω2

p(x), p+
Ω2

= sup
x∈Ω2

p(x),

p+ = supx∈RN p(x), ‖h‖−1 is the norm of h in the dual of W 1,p(·)(RN ). Set

E =
{
u ∈W 1,p(·)(RN ),

∫
RN

ϕ(x)|u|α(x)dx < +∞
}
.

We equip the functional space E with the norm

‖u‖E = ‖u‖W 1,p(·)(RN ) + |(ϕ(·))
1
α(·)u|Lα(·)(RN ).
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Definition A function u ∈ E is said to be a weak solution of the problem (1.1) if
it satisfies ∫

RN
|∇u|p(x)−2∇u∇vdx+

∫
RN
|u|p(x)−2uvdx

= λ

∫
RN

ϕ(x)|u|α(x)−2uvdx+
∫

RN
hvdx, ∀v ∈ E.

This article is divided into two parts. In the first part, we will study problem
(1.1) under the following hypotheses:

(H1)
∫

Ω1
(ϕ(x))

p(x)
p(x)−α(x) dx < +∞;

(H2) p(x) < N for all x ∈ Ω2, and there exists r ∈ C+(Ω2) such that ϕ ∈
Lr(·)(Ω2) and

p(x) ≤ α(x)r(x)
r(x)− 1

≤ p∗(x) ∀x ∈ Ω2, where p∗(x) =
Np(x)
N − p(x)

;

(H3) There exists ψ ∈W 1,p(·)(RN ) such that
∫

RN h(x)ψ(x) > 0.
The main result of this first part is given by the following theorem.

Theorem 1.1. Assume that (H1), (H2) hold. Assume also that α−Ω2
≥ p+

Ω2
. Then,

we have: if (H3) holds, or h = 0, then there exists λ∗ > 0 such that for all 0 < λ <
λ∗, there exists ηλ > verifying that: if ‖h‖−1 < ηλ, then problem (1.1) admits at
least one nontrivial weak solution u0,λ. Moreover, if h = 0, then u0,λ → 0 strongly
in W 1,p(·)(RN ) when λ→ 0.

In the second part of this article, we will remove the assumptions (H1) and (H2)
and we will study (1.1) under the following hypotheses:

(H4) The exponent p(·) is log-Hölder continuous; i.e., there exists a positive
constant D > 0 such that

|p(x)− p(y)| ≤ D

−log(|x− y|)
, for every x, y ∈ RN with |x− y| ≤ 1/2;

(H5) infx∈RN α(x) = α− > 2.

Theorem 1.2. Assume that (H4), (H5) hold. If h = 0, then there exists 0 < λ∗∗
such that for every 0 < λ < λ∗∗, then problem (1.1) admits at least one nontrivial
weak solution.

Remark 1.3. The importance of the hypothesis (H4) lies in the fact that if p
verifies the logarithmic Hölder continuity condition (also called the Dini-Lipschitz
condition), the space C∞0 (RN ) is dense in W 1,p(·)(RN ) (see [4, 19]).

2. Preliminaries

First, we give some background facts from the variable exponent Lebesgue and
Sobolev spaces. For details, we refer to the books [2, 17] and the papers [3, 7, 11, 20].
Assume Ω ⊂ RN is a (bounded or unbounded) open domain. Set C+(Ω) = {h ∈
C(Ω) ∩ L∞(Ω), h(x) > 1, ∀x ∈ Ω}. For any p ∈ C+(Ω), we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).
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For each p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(·)(Ω) = {u; u : Ω→ R measurable such that
∫

Ω

|u(x)|p(x)dx < +∞}.

This space becomes a Banach space with respect to the Luxemburg norm,

|u|Lp(·)(Ω) = inf{µ > 0 :
∫

Ω

|u(x)
µ
|p(x)dx ≤ 1}.

Moreover, Lp(·)(Ω) is a reflexive space provided that 1 < p− ≤ p+ < +∞. De-
noting by Lp

′(·)(Ω) the conjugate space of Lp(·)(Ω) where 1
p(x) + 1

p′(x) = 1; for any

u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) we have the following Hölder type inequality

|
∫

Ω

uvdx| ≤ 2|u|Lp(·)(Ω)|v|Lp′(·)(Ω). (2.1)

Now, we introduce the modular of the Lebesgue-Sobolev space Lp(·)(Ω) as the
mapping ρp(·) : Lp(·)(Ω)→ R defined by

ρp(·)(u) =
∫

Ω

|u|p(x)dx, u ∈ Lp(·)(Ω).

Here, we give some relations which could be established between the Luxemburg
norm and the modular. If (un)n, u ∈ Lp(·)(Ω) and 1 < p− ≤ p+ < +∞, then the
following relations hold:

|u|Lp(·)(Ω) > 1⇒ |u|p
−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ |u|p

+

Lp(·)(Ω)
, (2.2)

|u|Lp(·)(Ω) < 1⇒ |u|p
+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ |u|p

−

Lp(·)(Ω)
, (2.3)

|un − u|Lp(·)(Ω) → 0⇔ ρp(·)(un − u)→ 0. (2.4)

Next, we define W 1,p(·)(Ω) as the space

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)}
and it can be equipped with the norm ‖u‖1,p(·) = |u|Lp(·)(Ω)+|∇u|Lp(·)(Ω). The space
W 1,p(·)(Ω) is a Banach space which is reflexive under condition 1 < p− ≤ p+ < +∞.

Let p, q ∈ C+(Ω). If we have p(x) ≤ q(x) ≤ p∗(x) for all x ∈ Ω, where

(p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N ;

then there is a continuous embedding W 1,p(·)(Ω) ↪→ Lq(·)(Ω). This last embedding
is compact provided that Ω is bounded in RN and that q(x) < p∗(x) for all x ∈ Ω.

3. Proof of Theorem 1.1

Here, we notice that since α(·) satisfies the conditions (H1) and (H2), it is easy
to see that E = W 1,p(·)(RN ). In this first part, we will equip E with the norm

‖u‖ = ‖u‖W 1,p(·)(Ω1) + ‖u‖W 1,p(·)(Ω2)

which is clearly equivalent to the norm ‖ · ‖E or ‖ · ‖W 1,p(·)(RN ).
Let Jλ : W 1,p(·)(RN )→ R be the energy functional given by

Jλ(u) =
∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx− λ

∫
RN

ϕ(x)
α(x)

|u|α(x)dx−
∫

RN
hudx.
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Using inequality (2.1) and hypotheses (H1) and (H2), it is easy to see that the
functional Jλ is well defined on W 1,p(·)(RN ). Moreover, by classical arguments we
have that Jλ ∈ C1(W 1,p(·)(RN ),R) and

〈J ′λ(u), v〉 =
∫

RN
|∇u|p(x)−2∇u∇vdx+

∫
RN
|u|p(x)−2uvdx

− λ
∫

RN
ϕ(x)|u|α(x)−2uvdx−

∫
RN

hvdx, ∀u, v ∈ E.

Hence, in order to obtain weak solutions of the problem (1.1) we will look for critical
points of the functional Jλ. Now, we have to note that since meas(Ω2) 6= 0, then
one cannot show that the functional Jλ is coercive and consequently we cannot find
a global minimum of the functional Jλ. The existence of a first critical point should
be established using the Ekeland’s variational principle.

Lemma 3.1. Under the assumptions of Theorem 1.1, there exists λ∗ > 0 such that
for any 0 < λ < λ∗, there exists γλ > 0 and ηλ > 0 such that

Jλ(u) ≥ γλ for ‖u‖ =
1
2

provided that ‖h‖−1 < ηλ.

Proof. Let u ∈ W 1,p(·)(RN ) be such that ‖u‖ < 1. By (2.1), (2.2) and (2.3) we
have ∫

Ω1

ϕ(x)
α(x)

|u|α(x)dx ≤ 2|ϕ(·)|
L

p(·)
p(·)−α(·) (Ω1)

||u|α(·)|
L
p(·)
α(·) (Ω1)

≤ c1(|u|
α+

Ω1
Lp(·)(Ω1)

+ |u|
α−Ω1
Lp(·)(Ω1)

)

≤ c2‖u‖
α−Ω1
W 1,p(·)(Ω1)

,

(3.1)

and∫
Ω2

ϕ(x)
α(x)

|u|α(x)dx ≤ 2|ϕ(·)|Lr(·)(Ω2)||u|α(·)|
L

r(·)
r(·)−1 (Ω2)

≤ c3‖u‖
α−Ω2
W 1,p(·)(Ω2)

. (3.2)

Using again (2.2) and (2.3), and taking (3.1) and (3.2) into account, we obtain

Jλ(u) ≥ 1
p+

(‖u‖
p+

Ω1
W 1,p(·)(Ω1)

+ ‖u‖
p+

Ω2
W 1,p(·)(Ω2)

)

− λc2‖u‖
α−Ω1
W 1,p(·)(Ω1)

− λc3‖u‖
α−Ω2
W 1,p(·)(Ω2)

− ‖h‖−1‖u‖

≥ ‖u‖
p+

Ω2
W 1,p(·)(Ω2)

(
1
p+
− λc3‖u‖

α−Ω2
−p+

Ω2
W 1,p(·)(Ω2)

)

+
1
p+
‖u‖

p+
Ω1
W 1,p(·)(Ω1)

− λc2‖u‖
α−Ω1
W 1,p(·)(Ω1)

− ‖h‖−1‖u‖.

(3.3)

For λ ≤ 1
2p+c3

, we have

1
p+
− λc3‖u‖

α−Ω2
−p+

Ω2
W 1,p(·)(Ω2)

≥ 1
p+
− λc3 ≥

1
2p+

.

Putting that inequality in (3.3), it yields

Jλ(u) ≥ c4‖u‖sup(p+
Ω1
, p+

Ω2
) − c2λ‖u‖α

−
Ω1 − ‖h‖−1‖u‖. (3.4)

Set
λ∗ = inf(

1
2p+c3

,
c4
c2

(
1
2

)sup(p+
Ω1
, p+

Ω2
)−α−Ω1 ).
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For 0 < λ < λ∗, set

γλ = c4(
1
2

)sup(p+
Ω1
, p+

Ω2
) − c2λ(

1
2

)α
−
Ω1 − ‖h‖−1

2
,

ηλ = 2(c4(
1
2

)sup(p+
Ω1
,p+

Ω2
) − c2λ(

1
2

)α
−
Ω1 ).

The claimed result can be deduced from (3.4). �

Lemma 3.2. Let (un)n ⊂W 1,p(·)(RN ) be a bounded sequence such that J ′λ(un)→
0. Then, (un)n is relatively compact.

Proof. Let u be the weak limit of (un)n in W 1,p(·)(RN ). We claim that, up to a
subsequence, (un)n is strongly convergent to u in W 1,p(·)(RN ). For t > 0, denote
Bt = {x ∈ RN : |x| < t}. We have∫

Ω2\Bt
ϕ(x)|un − u|α(x)dx ≤ 2||un − u|α(·)|

L
r(·)
r(·)−1 (RN )

|ϕ(·)|Lr(·)(Ω2\Bt). (3.5)

Now, since ϕ ∈ Lr(·)(Ω2), it follows that |ϕ(·)|Lr(·)(Ω2\Bt) → 0 as t→ +∞. Taking
into account that (un)n is bounded in W 1,p(·)(RN ), it follows from (3.5) that for
all ε > 0 there exists tε > 0 large enough such that∫

Ω2\Btε
ϕ(x)|un − u|α(x)dx <

ε

2
. (3.6)

On the other hand, we have∫
Ω2∩Btε

ϕ(x)|un − u|α(x)dx ≤ sup
x∈Btε

|ϕ(x)|
∫

Ω2∩Btε
|un − u|α(x)dx. (3.7)

Since α(x) < α(x)r(x)
r(x)−1 ≤ p∗(x) for all x ∈ Ω2 and (Ω2 ∩ Btε) is a bounded open set

of Ω2, we obtain

lim
n→+∞

∫
Ω2∩Btε

|un − u|α(x)dx = 0.

Having in mind that ϕ is continuous, then supx∈Btε |ϕ(x)| < +∞ and consequently
we deduce from (3.7) that

lim
n→+∞

∫
Ω2∩Btε

ϕ(x)|un − u|α(x)dx = 0.

This implies that there exists n0(ε) ≥ 1 such that for all n ≥ n0(ε), we have∫
Ω2∩Btε

ϕ(x)|un − u|α(x)dx <
ε

2
. (3.8)

Combining (3.6) and (3.8), it yields∫
Ω2

ϕ(x)|un − u|α(x)dx < ε ∀n ≥ n0(ε).

Hence,

lim
n→+∞

∫
Ω2

ϕ(x)|un − u|α(x)dx = 0. (3.9)
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Next, if we replace r(·) by p(·)
p(·)−α(·) and r(·)

r(·)−1 by p(·), proceeding as previously (i.e.
for the open set Ω2), we can so easily infer

lim
n→+∞

∫
Ω1

ϕ(x)|un − u|α(x)dx = 0. (3.10)

On the other hand, since J ′λ(un)→ 0, we have∫
RN
|∇un|p(x)−2∇un∇(un − u)dx+

∫
RN
|un|p(x)−2un(un − u)dx

−
∫

RN
ϕ(x)|un|α(x)−2un(un − u)dx−

∫
RN

h(un − u)dx→ 0,
(3.11)

as n→ +∞. Having in mind that un ⇀ u weakly in W 1,p(·)(RN ), we deduce from
(3.11), (3.10) and (3.9) that

0 ≤
∫

RN
(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)∇(un − u)dx

+
∫

RN
(|un|p(x)−2un − |u|p(x)−2u)(un − u)dx→ 0, as n→ +∞.

(3.12)

Observe now that (see [1, 8, 10]), we have the following relations satisfied for ξ and
η in RN ,

[(|ξ|p−2ξ − |η|p−2η)(ξ − η)]
p
2 (|ξ|p + |η|p)

2−p
2 ≥ (p− 1)|ξ − η|p (3.13)

for 1 < p < 2 and

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ 2−p|ξ − η|p, p ≥ 2. (3.14)

Divide RN into two parts:

D1 = {x ∈ RN , p(x) < 2}, D2 = {x ∈ RN , p(x) ≥ 2}.

By (3.12), (3.14) and (2.4), it yields

lim
n→+∞

∫
D2

(|∇un −∇u|p(x) + |un − u|p(x))dx = 0. (3.15)

On the other hand, by (3.13) we have∫
D1

|∇un −∇u|p(x)dx

≤ (
1

p− − 1
)
∫
D1

(p(x)− 1)|∇un −∇u|p(x)dx

≤ (
1

p− − 1
)
∫
D1

((|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u))
p(x)

2

× (|∇un|p(x) + |∇u|p(x))
2−p(x)

2 dx.

Using (3.12) and (2.4) and having in mind that (un)n is bounded in E, we deduce∫
D1

|∇un −∇u|p(x)dx→ 0, as n→ +∞.

Similarly, we obtain ∫
D1

|un − u|p(x)dx→ 0, as n→ +∞.
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Thus, ∫
D1

(|∇un −∇u|p(x) + |un − u|p(x))dx→ 0, as n→ +∞. (3.16)

From (3.15), (3.16) and (2.4), we conclude that un → u strongly in W 1,p(·)(RN ). �

Completion of the proof of Theorem 1.1. Let

mλ = inf{Jλ(u), u ∈W 1,p(·)(RN ) and ‖u‖ ≤ 1
2
}.

The set
B
W 1,p(·)(RN )
1/2 (0) = {u ∈W 1,p(·)(RN ), ‖u‖ ≤ 1

2
}

is a complete metric space with respect to the distance

dist(u, v) = ‖u− v‖, u, v ∈W 1,p(·)(RN ).

The functional Jλ is lower semi-continuous and bounded from below in the set

B
W 1,p(·)(RN )
1/2 (0). Note, that inf‖v‖<1/2 Jλ(v) ≤ Jλ(0) = 0 and inf‖v‖=1/2 Jλ(v) ≥

γλ > 0 (provided that ‖h‖−1 < ηλ). Let

0 < ε < inf
‖v‖=1/2

Jλ(v)− inf
‖v‖<1/2

Jλ(v).

Applying Ekeland’s variational principle (see [5]), we can find uε ∈ BW
1,p(·)(RN )

1/2 (0)
such that

Jλ(uε) < mλ + ε, Jλ(uε) < Jλ(w) + ε‖w − uε‖, ∀w 6= uε.

Since, Jλ(uε) ≤ mλ + ε ≤ inf‖v‖<1/2 Jλ(v) + ε < inf‖v‖=1/2 Jλ(v), it follows that

uε ∈ BW
1,p(·)(RN )

1/2 (0) = {u ∈W 1,p(·)(RN ), ‖u‖ < 1
2
}.

Define Iελ : BW
1,p(·)(RN )

1/2 (0) → R by Iελ(u) = Jλ(u) + ε‖u − uε‖. Obviously, uε is a
minimum of Iελ. Then

Iελ(uε + tv)− Iελ(uε)
|t|

≥ 0, ∀0 < |t| < 1 and v ∈ BW
1,p(·)(RN )

1/2 (0),

which implies
Jλ(uε + tv)− Jλ(uε)

|t|
+ ε‖v‖ ≥ 0.

Let t→ 0+, it follows that 〈J ′λ(uε), v〉+ ε‖v‖ ≥ 0. Next, let t→ 0−; it follows that
−〈J ′λ(uε), v〉+ ε‖v‖ ≥ 0. Consequently, we obtain that ‖J ′λ(uε)‖ ≤ ε. Hence, there

exists a sequence (un)n ⊂ BW
1,p(·)(RN )

1/2 (0) such that

Jλ(un)→ mλ, J ′λ(un)→ 0.

Observing that (un)n is bounded in W 1,p(·)(RN ) and using Lemma 3.2, we have
that (un)n is strongly convergent to its weak limit denoted, for example, by u0,λ ∈
W 1,p(·)(RN ). Moreover, since Jλ ∈ C1(W 1,p(·)(RN ),R), it yields Jλ(u0,λ) = mλ

and J ′λ(u0,λ) = 0. Hence, u0,λ is a weak solution of the problem (1.1). Now, we
claim that mλ < 0. We distinguish two cases.

* If (H3) holds. Let ψ be as in (H3). For 0 < t < 1, we have

Jλ(tψ) ≤ tinf(p−Ω1
,p−Ω2

)
∫

RN
(|∇ψ|p(x) + |ψ|p(x))dx− t

∫
RN

h(x)ψ(x)dx.
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Since inf(p−Ω1
, p−Ω2

) > 1, we deduce that there exists 0 < t0 < inf(1, 1
2‖ψ‖ ) such

that Jλ(t0ψ) < 0. Taking into account that t0ψ ∈ BW
1,p(·)(RN )

1/2 (0), it follows that
mλ < 0.

* Assume that h = 0. Let a0 ∈ Ω1 and r0 > 0 small enough be such that
Br0(a0) ⊂ Ω1 and p0 = inf

x∈Br0 (a0)
p(x) > α0 = sup

x∈Br0 (a0)
α(x). Consider

ξ ∈ C∞0 (Br0(a0)), ξ 6= 0. For 0 < t < 1, we have

Jλ(tξ) ≤ tp0

∫
Ω1

(
|∇ξ|p(x) + |ξ|p(x)

)
dx− λtα0

∫
Ω1

ϕ(x)
α(x)

|ξ|α(x)dx

≤ c8tp0 − c9λtα0

≤ tα0(c8tp0−α0 − c9λ).

Since, p0 − α0 > 0, there exists 0 < t1(λ) < inf(1, 1
2‖ξ‖ ) such that Jλ(t1(λ)ξ) < 0.

Hence, mλ ≤ Jλ(t1(λ)ξ) < 0. In this last case, by (3.1) and (3.2), we have∫
RN

(|∇u0,λ|p(x) + |u0,λ|p(x))dx = λ
(∫

Ω1

ϕ(x)|u0,λ|α(x)dx+
∫

Ω2

ϕ(x)|u0,λ|α(x)dx
)

≤ λ
(
c10‖u0,λ‖

α−Ω1
W 1,p(·)(Ω1)

+ c11‖u0,λ‖
α−Ω2
W 1,p(·)(Ω2)

)
≤ λ

(
c10(

1
2

)α
−
Ω1 + c11(

1
2

)α
−
Ω2

)
.

Using this inequality, it follows that limλ→0 ‖u0,λ‖ = 0. This completes the proof
of Theorem 1.1.

4. Proof of Theorem 1.2

Here, clearly E 6= W 1,p(·)(RN ). Moreover, the arguments used in the proof of
Theorem 1.1 are no longer valid. In fact, we cannot establish the existence of weak
solution as a global neither a local minimum for the energy functional corresponding
to the problem (1.1) and the Mountain-Pass is not useful as well. Hence, some new
ideas have to be introduced and some new tools have to be employed. We shall
adapt arguments used in [21].

Lemma 4.1. There is λ∗∗ > 0 such that if 0 < λ < λ∗∗, then there exists a
nonnegative and nontrivial function Uλ ∈ E ∩ L∞(RN ) satisfying∫

RN
|∇Uλ|p(x)−2∇Uλ∇w dx+

∫
RN

(Uλ)p(x)−1w dx ≥ λ
∫

RN
ϕ(x)(Uλ)α(x)−1w dx,

for every w ∈ E with w ≥ 0. (Uλ is called a weak super-solution of (1.1)).

Proof. For λ > 0, define Uλ : RN → R by

Uλ(x) =


1 if |x| < 1
2− |x| if 1 ≤ |x| ≤ 2
0 if |x| > 2.

For 1 ≤ j ≤ N , we have

∂Uλ
∂xj

(x) =

{
0 if |x| < 1 or |x| > 2
−xj/|x| if 1 ≤ |x| ≤ 2,
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where x = (x1, · · · , xN ). Thus,

|∇Uλ(x)| =

{
0 if |x| < 1 or |x| > 2
1 if 2 ≤ |x| ≤ 2.

Hence,

− div(|∇Uλ|p(x)−2∇Uλ) = −
N∑
j=1

∂

∂xj

(
|∇Uλ|p(x)−2 ∂Uλ

∂xj

)

=

{
0 if |x| < 1 or |x| > 2
N−1
|x| if 1 ≤ |x| ≤ 2.

Set
λ∗∗ = min

( 1
max|x|<1 ϕ(x)

,
N − 1

max1≤|x|≤2(2α(x)ϕ(x))

)
.

Then, for every 0 < λ < λ∗∗, we have

1 ≥ λϕ(x) if |x| < 1
N − 1
|x|

≥ λϕ(x)(2− |x|)α(x)−1 if 1 ≤ |x| ≤ 2.

Therefore,

−div(|∇Uλ|p(x)−2∇Uλ) + (Uλ)p(x)−1 ≥ λϕ(x)(Uλ)α(x)−1.

This completes the proof. �

Completion of the proof of Theorem 1.2. For 0 < λ < λ∗∗, set

fλ(x, s) = λ ϕ(x)|s|α(x)−2s, x ∈ RN , s ∈ R.

Note that there exists Lλ > 0 such that, for every s ∈ [−1, 1] and x ∈ B(0, 2) =
{x ∈ RN , |x| ≤ 2}, we have

|∂fλ
∂s

(x, s)| ≤ Lλ.

Thus, (x, s) 7−→ fλ(x, s) is Lλ−Lipschitz continuous with respect to s ∈ [−1, 1]
uniformly for x ∈ B(0, 2); i.e., we have

fλ(x, s1)− fλ(x, s2) ≤ Lλ(s2 − s1), (4.1)

for any s1, s2 ∈ [−1, 1] with s1 ≤ s2 and x ∈ B(0, 2). Now, define

f̃λ(x, s) =


−f(x, Uλ(x))− LλUλ(x) if s ≤ −Uλ(x)
fλ(x, s) + Lλs if − Uλ(x) < s ≤ Uλ(x)
fλ(x, Uλ(x)) + LλUλ(x) if s > Uλ(x),

and F̃λ(x, s) =
∫ s

0
f̃λ(x, t)dt. If s ≤ −Uλ(x), we have

F̃λ(x, s) ≤ (−s)(fλ(x, Uλ(x)) + LλUλ(x)).

If 0 ≤ s ≤ Uλ(x), using (4.1) and the fact that ‖Uλ‖∞ = supx∈RN |Uλ(x)| = 1, we
have

F̃λ(x, s) ≤ (fλ(x, s) + Lλs)s ≤ (fλ(x, Uλ(x)) + LλUλ(x))s.
If −Uλ(x) < s < 0, we have

F̃λ(x, s) ≤ (fλ(x, s) + Lλs)s ≤ (fλ(x,−Uλ(x))− LλUλ(x))s
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≤ (fλ(x, Uλ(x)) + LλUλ(x))(−s).

If s > Uλ(x), we have

F̃λ(x, s) =
∫ Uλ(x)

0

(fλ(x, t) + Lλt)dt+
∫ s

Uλ(x)

(fλ(x, Uλ(x)) + LλUλ(x))dt

≤ (fλ(x, Uλ(x)) + LλUλ(x))Uλ(x) + (fλ(x, Uλ(x)) + LλUλ(x))(s− Uλ(x))

≤ (fλ(x, Uλ(x)) + LλUλ(x))s.

Therefore, for all (x, s) ∈ RN × R,

F̃λ(x, s) ≤ (fλ(x, Uλ(x)) + LλUλ(x))|s|. (4.2)

Next, we introduce the functional space X = W 1,p(·)(RN )∩L2(RN ) equipped with
the norm

‖u‖X = ‖u‖W 1,p(·)(RN ) + |u|L2(RN ).

For any u ∈ X, we define

J̃λ(u) =
∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx+

Lλ
2

∫
RN

u2dx−
∫

RN
F̃λ(x, u)dx.

Set ψλ(x) = (fλ(x, Uλ(x)) + LλUλ(x)). Clearly, ψλ ∈ L2(RN ) and it becomes easy
to verify that J̃λ ∈ C1(X,R). By (4.2), for ε > 0, there exists cε > 0 such that

J̃λ(u) ≥
∫

RN

|∇u|p(x) + |u|p(x)

p(x)
dx+

Lλ
2

∫
RN

u2dx− ε
∫

RN
u2dx− cε

∫
RN

(ψλ(x))2dx.

Choosing ε > 0 such that Lλ
2 − ε > 0, we infer that J̃λ is coercive. Let (un)n be

a minimizing sequence of J̃λ, i.e. (un)n ⊂ X and J̃λ(un) → infv∈X J̃λ(v) > −∞.
Since J̃λ is coercive, then (un)n is bounded and there exists u ∈ E such that un ⇀ u
weakly in X. By the mean value theorem, there exists some θn between 0 and 1
such that

|
∫

RN
(F̃λ(x, un)− F̃λ(x, u))dx| = |

∫
RN

f̃λ(x, θn(un − u))(un − u)dx|

≤
∫

RN
ψλ(x)|un − u|dx.

(4.3)

Let A be a measurable subset of RN . Using Hölder’s inequality we have∫
A

ψλ(x)|un − u|dx ≤ 2|ψλ(·)|L2(A)|un − u|L2(RN ).

Since (un−u)n is bounded in L2(RN ) and ψλ ∈ L2(RN ), it follows that the integral∫
A
ψλ(x)|un − u|dx is small uniformly in n when the measure of A is small.

On the other hand, for R > 0, we have∫
RN\BR

ψλ(x)|un − u|dx ≤ 2|un − u|L2(RN )|ψλ(·)|L2(RN\BR).

Since ψλ(·) ∈ L2(RN ),
lim

R→+∞
|ψλ(·)|L2(RN\BR) = 0.
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This fact together with the boundedness of the sequence (|un − u|L2(RN ))n implies
that for every ε > 0, there exists Rε > 0 large enough such that∫

RN\BRε
ψλ(x)|un − u|dx < ε.

Therefore, we get the equi-integrability of the sequence (ψλ(·)|un − u|)n. By the
virtue of Vitali’s Theorem, we obtain

lim
n→+∞

∫
RN

ψλ(x)|un − u|dx = 0.

By (4.3), we deduce that

lim
n→+∞

∫
RN

F̃λ(un)dx =
∫

RN
F̃λ(u)dx.

This implies
inf
v∈X

J̃λ(v) ≤ J̃λ(u) ≤ lim inf
n→+∞

J̃λ(un).

Consequently, J̃λ(u) = infv∈X J̃λ(v) and we have∫
RN
|∇u|p(x)−2∇u∇w dx+

∫
RN
|u|p(x)−2uw dx+ Lλ

∫
RN

uw dx

=
∫

RN
f̃λ(x, u)w dx, ∀w ∈ X.

(4.4)

Now take w = (u − Uλ)+ = max(u − Uλ, 0) in (4.4), and having in mind the
definition of Uλ, we get∫

RN
|∇Uλ|p(x)−2∇Uλ∇(u− Uλ)+dx+

∫
RN

(Uλ)p(x)−1(u− Uλ)+dx

+ Lλ

∫
RN

Uλ(u− Uλ)+dx

≥
∫

RN
(fλ(x, Uλ) + LλUλ)(u− Uλ)+dx

≥
∫

RN
f̃λ(x, u)(u− Uλ)+dx

≥
∫

RN
|∇u|p(x)−2∇u∇(u− Uλ)+dx+

∫
RN
|u|p(x)−2u(u− Uλ)+dx

+ Lλ

∫
RN

u(u− Uλ)+dx.

Thus, ∫
RN

(|∇u|p(x)−2∇u− |∇Uλ|p(x)−2∇Uλ)∇(u− Uλ)+dx

+
∫

RN
(|u|p(x)−2u− |Uλ|p(x)−2Uλ)(u− Uλ)+dx

+ Lλ

∫
RN

((u− Uλ)+)2dx ≤ 0.

Taking into account that the terms∫
RN

(|∇u|p(x)−2∇u− |∇Uλ|p(x)−2∇Uλ)∇(u− Uλ)+dx
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and ∫
RN

(|u|p(x)−2u− |Uλ|p(x)−2Uλ)(u− Uλ)+dx

are nonnegative, then u ≤ Uλ a.e. in RN . On the other hand, define −Uλ = Vλ,
and take w = (Vλ − u)+ = max(Vλ − u, 0) in (4.4), we obtain∫

RN
|∇Vλ|p(x)−2∇Vλ∇(Vλ − u)+dx+

∫
RN
|Vλ|p(x)−2Vλ(Vλ − u)+dx

+ Lλ

∫
RN

Vλ(Vλ − u)+dx

≤
∫

RN
(fλ(x, Vλ) + LλVλ)(Vλ − u)+dx

≤
∫

RN
f̃λ(x, u)(Vλ − u)+dx

≤
∫

RN
|∇u|p(x)−2∇u∇(Vλ − u)+dx+

∫
RN
|u|p(x)−2u(Vλ − u)+dx

+ Lλ

∫
RN

u(Vλ − u)+dx.

Thus, ∫
RN

(|∇Vλ|p(x)−2∇Vλ − |∇u|p(x)−2∇u)∇(Vλ − u)+dx

+
∫

RN
(|Vλ|p(x)−2Vλ − |u|p(x)−2u)(Vλ − u)+dx

+ Lλ

∫
RN

((Vλ − u)+)2dx ≤ 0.

Hence, (Vλ − u)+ = 0, which implies −Uλ ≤ u a.e. in RN . Therefore, f̃λ(x, u) =
fλ(x, u) + Lλu and by (4.4), for all w ∈ X we have∫

RN
|∇u|p(x)−2∇u∇w dx+

∫
RN
|u|p(x)−2uw dx =

∫
RN

fλ(x, u)w dx.

Now, without loss of generality, we could assume that 0 ∈ Ω1. Taking into account
that Ω1 is an open set, one can find 0 < r < 1 small enough such that Br(0) ⊂ Ω1

and p1 = inf
x∈Br(0)

p(x) > α1 = sup
x∈Br(0)

α(x). Let ϑ ∈ C∞0 (Br(0)) be such that
ϑ 6= 0 and ϑ ≥ 0. Take 0 < t < 1 such that tϑ(x) ≤ 1, for all x ∈ Br(0). We have
F̃λ(x, tϑ(x)) =

∫ tϑ(x)

0
f̃λ(x, s)ds. For x /∈ Br(0), F̃λ(x, tϑ(x)) = 0. For x ∈ Br(0),

0 ≤ tϑ(x) ≤ Uλ(x) and F̃λ(x, tϑ(x)) = λϕ(x)
α(x) t

α(x)|ϑ(x)|α(x) + Lλ
2 t

2(ϑ(x))2. Thus,
we have

J̃λ(tϑ) ≤ tp1

∫
Br(0)

(|∇ϑ|p(x) + |ϑ|p(x))dx− λtα1

∫
Br(0)

ϕ(x)
α(x)

|ϑ|α(x)dx

≤ tα1(c12t
p1−α1 − λc13).

Since p1 − α1 > 0, then there exists 0 < t(λ) < 1 small enough such that
J̃λ(t(λ)ϑ) < 0. Therefore, J̃λ(u) = infv∈X J̃λ(v) < 0 and u 6= 0. Now, note
that u satisfies∫

RN
|∇u|p(x)−2∇u∇w dx+

∫
RN
|u|p(x)−2uw dx =

∫
RN

fλ(x, u)w dx,
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for all w ∈ C∞0 (RN ). On the other hand, since |u| ≤ Uλ, then u ∈ E. Having
in mind that p(·) satisfies the logarithmic Hölder inequality, we could immediately
deduce that C∞0 (RN ) is dense in E and we infer

∫
RN
|∇u|p(x)−2∇u∇w dx+

∫
RN
|u|p(x)−2uw dx = λ

∫
RN

ϕ(x)|u|p(x)−2uw dx,

for all w ∈ E. This competes the proof of Theorem 1.2.
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[15] M. Mihǎilescu, V. Rǎdulescu; Continuous spectrum for a class of nonhomogeneous differen-

tial operators, Manuscripta Math., 125 (2008) 157-167.
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Corrigendum posted on September 12, 2013

The author would like to make the following corrections to the proof of Theorem
1.2. The choice of the function

Uλ(x) =


1 if |x| < 1
2− |x| if 1 ≤ |x| ≤ 2
0 if |x| > 2

as a super-solution of the problem (1.1) is not appropriate since the identity

−div
(
|∇Uλ|p(x)−2∇Uλ

)
=

{
0 if |x| < 1 or |x| > 2
N−1
|x| if 1 ≤ |x| ≤ 2

is wrong. Some Dirac measures appear when computing −div
(
|∇Uλ|p(x)−2∇Uλ

)
,

in the sense of distributions. Thus, we have to change the choice of this function.
For this purpose, we add the following assumption to Theorem 1.2,

(H6) There exists a nonnegative and nontrivial function e in the space L∞(RN )∩
W−1,p′(·)(RN ) (where W−1,p′(·)(RN ) is the dual space of W 1,p(·)(RN )) such
that

e(x) ≥ ϕ(x), ∀x ∈ RN .
Concerning the construction of a super-solution of problem (1.1), we note that the
problem

− div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2u = e

has a nontrivial and nonnegative weak solution Ue ∈W 1,p(·)(RN ); i.e., Ue satisfies∫
RN
|∇Ue|p(x)−2∇Ue∇wdx+

∫
RN

(Ue)
p(x)−1

wdx =
∫

RN
e(x)w(x)dx,

for all w ∈ W 1,p(·)(RN ). Moreover, it is easy to see that Ue ∈ L∞(RN ) and that
Ue ∈ E. Let

λ∗∗ =
1

‖Ue‖α
+−1
∞ + ‖Ue‖α

−−1
∞

.

If 0 < λ < λ∗∗, we have e(x) ≥ ϕ(x) ≥ λϕ(x) (Ue)
α(x)−1. By the definition of Ue,

it follows immediately that Ue is a super-solution of the problem (1.1) provided
that h = 0 and 0 < λ < λ∗∗. Therefore, in the proof of Theorem 1.2 we can take
Uλ = Ue, for all 0 < λ < λ∗∗. Consequently, we can easily find a constant Lλ
such that fλ(x, s) is Lλ-Lipschitz continuous with respect to s ∈ [−‖Ue‖∞, ‖Ue‖∞]
uniformly for x ∈ RN .

End of corrigendum.
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