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EXISTENCE OF POSITIVE BOUNDED SOLUTIONS FOR
NONLINEAR ELLIPTIC SYSTEMS

FATEN TOUMI

Abstract. In this article, we study a class of nonlinear elliptic systems in

regular domains of Rn(n ≥ 3) with compact boundary. More precisely, we
prove the existence of bounded positive continuous solutions to the system

∆u = λf(., u, v), ∆v = µg(., u, v), subject to some Dirichlet conditions. Our
approach is essentially based on properties of functions in a Kato class K∞(D)

and the Schauder fixed point theorem.

1. Introduction

The study of elliptic equations has strong motivations. In fact, such equations
model many phenomena in biology, ecology, combustion theory [6, 12], chemical
reactions, population genetics [13] etc. For instance, many steady state problems
arise in the description of physics phenomena such as fluid dynamics [2], wave phe-
nomena, nonlinear field theory [7] etc. As consequence, the study of the existence
of positive solutions and their asymtotic behaviour of such problems are of interest.
A typical model example of these is the nonlinear eigenvalue problem

∆u = λf(u) in D,

where λ is a positive parameter. For an extensive review on the existence results
of positive solutions of the above problem we refer the reader to the work of Lions
[18].

Recently, many researchers extended the study of nonlinear elliptic scalar equa-
tions to nonlinear elliptic systems. For some recent results, we give a short account.

Lair and Wood [17] studied the existence of entire nonnegative solutions for the
semilinear elliptic system

∆u = p(|x|)vr,
∆v = q(|x|)us,

in Rn, where r > 0 and s > 0. The authors proved the existence of entire bounded
solutions and large ones in the sublinear and superlinear cases, provided that the
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potentials p and q satisfy either∫ ∞
0

tp(t)dt <∞ and
∫ ∞

0

tq(t)dt <∞

or ∫ ∞
0

tp(t)dt =∞ and
∫ ∞

0

tq(t)dt =∞.

Cirstea and Radulescu [9] studied the semilinear elliptic system

∆u = p(x)f1(v),

∆v = q(x)f2(u),

in Rn (n ≥ 3), where the functions f1 and f2 are nonincreasing on (0,∞) and p and
q are radially symmetric functions in Rn. In particular, the authors established the
existence of positive solutions provided that the function x→ f(cg(x)) is sublinear
at infinity and superliner at 0, for each c > 0. Moreover, the authors gave the
behavior of solutions, that is, bounded solutions or blow-up ones depending upon
some additional conditions related essentially to the potentials p and q. Motivated
by this work [9], Ghanmi et al [16] considered the system

∆u = λp(x)f1(v) in D,

∆v = µq(x)f2(u) in D,

u
∣∣
∂D

= aϕ, v
∣∣
∂D

= bψ,

lim
|x|→+∞

u(x) = α, lim
|x|→+∞

v(x) = β (if D is unbounded),

(1.1)

where the potentials p and q belong to the Kato class K∞(D) defined below (See
Definition 1.5), the functions f1 and f2 are monotone. Indeed, the authors estab-
lished two existence results for the problem (1.1) as f1 and f2 are nondecreasing
or nonincreasing. They used a variant of monotone iteration and the properties
of the Green function and potentials belonging to K∞(D). We note that the au-
thors extended the results of Toumi and Zeddini [21] and Ahtreya [4] to systems of
equations. Garćıa-Melián and Rossi [14] considered the elliptic system

∆u = upvq in Ω

∆v = urvs in Ω

where p, s > 1, q, r > 0 and Ω ⊂ Rn is a smooth bounded domain, subject to
different types of Dirichlet boundary conditions:

(C1) u = α, v = β,
(C2) u = v = +∞ and
(C3) u = +∞, v = α on ∂D, where α, β > 0.

Under several hypotheses on the parameters p, q, r, s, they showed the existence
and nonexistence, uniqueness and nonuniqueness of positive solutions. We mention
that the proofs in [14] were based on the method of sub and super- solutions and
the maximum principle. We remark that numerous works treating nonlinear ellip-
tic systems adopted many techniques employed in the study of scalar equations,
namely, the method of sub and super- solutions, variational method, topology de-
gree, fixed point index theory, see [1, 10, 11, 15, 16] for more details and references
therein.

In the present article, we consider a C1,1-domain D in Rn(n ≥ 3) with compact
boundary ∂D. We fix two nontrivial nonnegative continuous functions ϕ and ψ on
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∂D and we will deal with the existence and the asymptotic behaviour of bounded
solutions (in the sense of distributions) to the nonlinear elliptic system

∆u = λf(., u, v) in D,

∆v = µg(., u, v) in D,

u
∣∣
∂D

= aϕ, v
∣∣
∂D

= bψ,

lim
|x|→+∞

u(x) = α, lim
|x|→+∞

v(x) = β (if D is unbounded),

(1.2)

where the nonnegative constants a, b, α and β are such that a+ α > 0, b+ β > 0.
For this aim, we will use a fixed point argument to give two existence results for

problem (1.2). We are essentially inspired by the work [16].
Hereinafter, we denote by HDϕ the bounded continuous solution of the Dirichlet

problem
∆u = 0 in D,

u = ϕ on ∂D,

lim
|x|→+∞

u(x) = 0, if D is unbounded,
(1.3)

where ϕ is a nontrivial nonnegative continuous function on ∂D. Morerover, we
denote

h = 1−HD1 (1.4)
and we remark that h = 0 when D is bounded.

For a nonnegative measurable function f , we denote by V f the potential function
defined in D by

V f(x) =
∫
D

GD(x, y)f(y)dy,

where GD is the Green function of the Laplace operator ∆ in D with Dirichlet
conditions.

Throughout this article, we fix a nontrivial nonnegative continuous function Φ
on ∂D and we will use combinations of the following hypotheses

(H1) f and g are nonnegative measurable functions on D× (0,∞)× (0,∞) such
that for each x ∈ D the function (u, v) 7→ (f(x, u, v), g(x, u, v)) is continu-
ous on (0,∞)× (0,∞).

(H2) For all 0 < u ≤ u1, 0 < v ≤ v1 and x ∈ D,

f(x, u, v) ≤ f(x, u1, v1), g(x, u, v) ≤ g(x, u1, v1).

(H3) For all c1, c2 > 0, the functions f(., c1, c2) and g(., c1, c2) are in K∞(D).
(H4) For ω := aHDϕ+ αh and θ := bHDψ + βh, we have

λ0 = inf
x∈D

ω(x)
V f(., ω, θ)(x)

> 0, (1.5)

µ0 = inf
x∈D

θ(x)
V g(., ω, θ)(x)

> 0. (1.6)

(H5) For all 0 ≤ u ≤ u1, 0 ≤ v ≤ v1 and x ∈ D,

f(x, u1, v1) ≤ f(x, u, v) and g(x, u1, v1) ≤ g(x, u, v).

(H6) For h0 = HDΦ. The functions x 7→ p̃(x) := f(x,h0(x),h0(x))
h0(x)

and x 7→ q̃(x) :=
g(x,h0(x),h0(x))

h0(x)
belong to K∞(D).
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Remark 1.1. Let τ(x) := δ(x) if D is bounded and τ(x) := δ(x)
(1+|x|)n−1 if D is

unbounded. Note that under hypothesis (H5) the condition: “For all c1, c2 > 0,
f(x, c1τ(x), c2τ(x))

τ(x)
and

g(x, c1τ(x), c2τ(x))
τ(x)

belong to K∞(D)” implies (H6). Indeed, from [3, 22], there exists c > 0 such
that for each x ∈ D,h0(x) ≥ cτ(x). Using (H5), we obtain that f(x,h0(x),h0(x))

h0(x)
≤

f(x,cτ(x),cτ(x))
cτ(x) ∈ K∞(D). Similarly, we obtain that g(x,h0(x),h0(x))

h0(x)
∈ K∞(D) and

so (H6) is satisfied.

Our paper is organized as follows. In Section 2, we give the first existence result
concerning problem (1.2). More precisely we prove the following result.

Theorem 1.2. Assume that (H1)–(H4) are satisfied. Then for each λ ∈ [0, λ0)
and µ ∈ [0, µ0), problem (1.2) has a positive continuous bounded solution (u, v)
satisfying on D

(1− λ

λ0
)ω(x) ≤ u(x) ≤ ω(x)

(1− µ

µ0
)θ(x) ≤ v(x) ≤ θ(x).

As a consequence of Theorem 1.2, we will prove the following result.

Corollary 1.3. Let ξ1, ξ2 : (0,+∞) → (0,+∞) be two continuous functions. As-
sume that (H1)–(H4) hold. Then for each λ ∈ [0, λ0) and µ ∈ [0, µ0), the problem

∆u+ ξ1(u)|∇u|2 = λf(., u, v) in D,

∆v + ξ2(v)|∇v|2 = µg(., u, v) in D,

u
∣∣
∂D

= aϕ, v
∣∣
∂D

= bψ,

lim
|x|→+∞

u(x) = α, lim
|x|→+∞

v(x) = β (if D is unbounded).

(1.7)

has a positive continuous bounded solution (u, v).

Section 3 is dedicated to the second existence result for system (1.2) for a = b = 1
and λ = µ = 1. So for a fixed nontrivial nonnegative continuous function Φ on ∂D,
we prove the second result of this work.

Theorem 1.4. Assume (H1), (H5), (H6) are satisfied. Then there exists a constant
c > 1 such that if ϕ ≥ cΦ and ψ ≥ cΦ on ∂D, problem (1.2), with a = 1 and b = 1,
has a positive continuous solution (u, v). Moreover, for each x ∈ D, (u, v) satisfies

αh(x) +HDΦ(x) ≤ u(x) ≤ αh(x) +HDϕ

βh(x) +HDΦ(x) ≤ v(x) ≤ βh(x) +HDψ.

In the remainder of this section we will recall some notation and results needed
in the rest of this paper.
B(D) is the set of Borel measurable functions in D and C0(D) is the set of

continuous ones vanishing continuously on ∂D∪{∞}. The exponent + means that
only the nonnegative functions are considered.

We note that C(D ∪ {∞}) and C(D ∪ {∞}) × C(D ∪ {∞}) are two Banach
spaces endowed with uniform norm ‖u‖∞ = supx∈D∪{∞} |u(x)| and ‖(u, v)‖∞ =
max(‖u‖∞, ‖v‖∞), respectively.
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If f ∈ L1
loc(D) and V f ∈ L1

loc(D), then we have ∆(V f) = −f in D (in the sense
of distributions) see [8].

Definition 1.5 ([5, 19]). A Borel measurable function p in D belongs to the class
K∞(D) if p satisfies

lim
α→0

(
sup
x∈D

∫
D∩B(x,α)

ρ(y)
ρ(x)

GD(x, y)|p(y)|dy
)

= 0, (1.8)

and

lim
M→+∞

(
sup
x∈D

∫
D∩(|y|≥M)

ρ(y)
ρ(x)

GD(x, y)|p(y)|dy
)

= 0 (if D is unbounded), (1.9)

where ρ(x) = min(1, δ(x)) and δ(x) is the Euclidean distance between x and ∂D.

Proposition 1.6. Let p be a nonnegative function in K∞(D), then

(i) The function x 7→ ρ(x)
1+|x|n−1 p(x) ∈ L1(D).

(ii) αp = supx,y∈D
∫
D
GD(x,z)GD(z,y)

GD(x,y) p(z)dz <∞.
(iii) For any nonnegative superharmonic function h in D we have∫

D

GD(x, y)h(y)p(y)dy ≤ αph(x),∀x ∈ D. (1.10)

(iv) The potential V p ∈ C0(D).
(v) If h0 is a positive harmonic function in D, continuous and bounded in D,

then the family of functions

Fp =
{∫

D

GD(., y)h0(y)v(y)dy : |v| ≤ p
}

is relatively compact in C0(D).

Proof. These properties were proved in [19] for C1,1-bounded domains in Rn and in
[5, 21] for C1,1-unbounded domains with compact boundary. �

2. Proof of Theorem 1.2

In this section, we are concerned with the first existence result for the system
(1.2). More precisely, we will give proofs of Theorem 1.2 and Corollary 1.3. More-
over, we will give some examples to illustrate Theorem 1.2.

Proof of Theorem 1.2. We shall use a fixed point argument. Let λ0, µ0 be the
constants given by (1.5) and (1.6). Let λ ∈ [0, λ0) and µ ∈ [0, µ0). Recall that
ω = aHDϕ + αh and θ = bHDψ + βh. Consider the non-empty closed convex set
Λ given by

Λ =
{

(u, v) ∈ C(D∪{∞})×C(D∪{∞}) : (1− λ

λ0
)ω ≤ u ≤ ω, (1− µ

µ0
)θ ≤ v ≤ θ

}
.

Let T be the integral operator defined on Λ by

T (u, v) = (ω − λ
∫
D

GD(., y)f(y, u(y), v(y))dy, θ − µ
∫
D

GD(., y)g(y, u(y), v(y))dy)

= (T1(u, v), T2(u, v)).
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We shall prove that the family T (Λ) is relatively compact in C(D ∪ {∞})× C(D ∪
{∞}). Let (u, v) ∈ Λ. It is obvious to see that T1(u, v) ≤ ω and T2(u, v) ≤ θ. Then
for each x ∈ D ∪ {∞},

‖T1(u, v)‖∞ ≤ ‖ω‖∞ ≤ α+ a‖ϕ‖∞ := c1,

‖T2(u, v)‖∞ ≤ ‖θ‖∞ ≤ β + b‖ψ‖∞ := c2.

So
‖T (u, v)‖∞ ≤ max(c1, c2).

Hence T (Λ) is uniformly bounded.
Next, by hypotheses (H2) and (H3), it follows that for each (u, v) ∈ Λ,

f(., u, v) ≤ f(., c1, c2) =: q1 ∈ K∞(D), (2.1)

g(., u, v) ≤ g(., c1, c2) =: q2 ∈ K∞(D). (2.2)

Therefore,

A1 :=
{∫

D

GD(., y)f(y, u(y), v(y))dy : (u, v) ∈ Λ
}
⊆ Fq1 ,

A2 :=
{∫

D

GD(., y)g(y, u(y), v(y))dy : (u, v) ∈ Λ
}
⊆ Fq2 .

Now, by Proposition 1.6 (v), the families Fq1 and Fq2 are relatively compact in
C0(D). Therefore A1 and A2 are equicontinuous in D ∪ {∞}. Now, since the
functions ω and θ belong to C(D ∪ {∞}), we deduce that T1(Λ) and T2(Λ) are
equicontinuous in D ∪ {∞}. Hence, T (Λ) is equicontinuous in D ∪ {∞}. Using
Arzela-Ascoli theorem, we obtain that T (Λ) is relatively compact in C(D∪{∞})×
C(D ∪ {∞}).

Now, we claim that the operator T maps Λ to itself. Indeed, since T (Λ) is
equicontinuous on D ∪ {∞}, it follows that for each (u, v) ∈ Λ, T (u, v) ∈ C(D ∪
{∞})× C(D ∪ {∞}). On the other hand, using hypothesis (H2), we conclude that
for each x ∈ D,

T1(u, v)(x) ≥ ω(x)− λ
∫
D

GD(x., y)f(y, ω(y), θ(y))dy.

So by (1.5), it follows that

T1(u, v)(x) ≥ (1− λ

λ0
)ω(x). (2.3)

Similarly, we have

T2(u, v)(x) ≥ (1− µ

µ0
)θ(x). (2.4)

Then, by (2.3) and (2.4), we deduce by that T (Λ) ⊂ Λ.
Next, let us prove that T is a continuous mapping in the supremum norm. Let

{(uk, vk)}k be a sequence in Λ which converges uniformly to a function (u, v) in Λ.
Then, for each x ∈ D, we have

|T1(uk, vk)(x)− T1(u, v)(x)| ≤
∫
D

GD(x, y)|f(y, uk(y), vk(y))− f(y, u(y), v(y))|dy.

On the other hand, by (H2), we have

|f(y, uk(y), vk(y))− f(y, u(y), v(y))| ≤ 2f(y, c1, c2) = 2q1(y) ∈ K∞(D).
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Since, by Proposition 1.6 (iv), the function V q1 is bounded, we deduce by (H1) and
the dominated convergence theorem that for all x ∈ D,

T1(uk, vk)(x)→ T1(u, v)(x) as k → +∞.
Similarly,

T2(uk, vk)(x)→ T2(u, v)(x) as k → +∞.
Therefore,

T (uk, vk)(x)→ T (u, v)(x) as k → +∞.
As T (Λ) is relatively compact in C(D ∪ {∞})× C(D ∪ {∞}), we conclude that the
pointwise convergence implies the uniform convergence; that is,

‖T (uk, vk)− T (u, v)‖u → 0 as k → +∞.
Hence T is a compact mapping on from Λ to itself. By the Schauder fixed point
theorem, there exists (u, v) ∈ Λ such that T (u, v) = (u, v). That is,

u(x) = w(x)− λ
∫
D

GD(x, y)f(y, u(y), v(y))dy, (2.5)

v(x) = θ(x)− µ
∫
D

GD(x, y)f(y, u(y), v(y))dy. (2.6)

Now, let us prove that (u, v) is a solution of the problem (1.2). Since q1, q2 ∈
K∞(D), it follows by Proposition 1.6 (i), that q1, q2 ∈ L1

loc(D). Using (2.1) and
(2.2), we deduce that f(., u, v), g(., u, v) ∈ L1

loc(D) and V f(., u, v), V g(., u, v) ∈
C0(D). Thus applying ∆ on both sides of (2.5) and (2.6) respectively, we obtain
that (u, v) satisfies the elliptic system (in the sense of distributions)

∆u = λf(., u, v) in D,

∆v = µg(., u, v) in D.

Moreover, since the functions V f(., u, v) and V g(., u, v) are in C0(D), we conclude
that

lim
x→z∈∂D

u(x) = aϕ(z), lim
|x|→∞

u(x) = α,

lim
x→z∈∂D

v(x) = bψ(z), lim
|x|→∞

v(x) = β.

This completes the proof. �

Proof of Corollary 1.3. Let i ∈ {1, 2} and ρi(t) =
∫ t
0

exp(
∫ s
0
ξi(r)dr)ds. Then ρi

is a C2− diffeomorphism from (0,+∞) to itself. Put u1 = ρ1(u) and v1 = ρ2(v).
Then (u1, v1) satisfies

∆u1 = λρ′1(ρ−1
1 (u1))f(., ρ−1

1 (u1), ρ−1
2 (v1)) in D,

∆v1 = µρ′2(ρ−1
2 (v1))g(., ρ−1

1 (u1), ρ−1
2 (v1)) in D,

u1/∂D = ρ1(aϕ), v1/∂D = ρ2(bψ)

lim
|x|→+∞

u1(x) = ρ1(α), lim
|x|→+∞

v1(x) = ρ2(β) (if D is unbounded).

(2.7)

Put

F (., u1, v1) := ρ′1(ρ−1
1 (u1))f(., ρ−1

1 (u1), ρ−1
2 (v1)),

G(., u1, v1) := ρ′2(ρ−1
2 (v1))g(., ρ−1

1 (u1), ρ−1
2 (v1)).
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Then F and G satisfy (H1)–(H4). Thus by Theorem 1.2, problem (2.7) admits a
positive bounded solution (u1, v1). So, it is easy to verify that (ρ−1

1 (u1), ρ−1
2 (v1)) is

a positive bounded solution of the problem (Qa,b). This completes the proof. �

Example 2.1. Let D be a C1,1-bounded domain in Rn(n ≥ 3). Let ϕ and ψ be two
nontrivial nonnegative continuous functions on ∂D. Let p, q be two nonnegative
functions in Lk(D), k > n

2 and suppose that m1,m2 < 1− n
k . Let r1, r2, s1, s2 > 0.

Then, the system

∆u = λ
p(x)

(δ(x))m1
ur1vs1 in D,

∆v = µ
q(x)

(δ(x))m2
ur2vs2 in D, u

∣∣
∂D

= ϕ,

v
∣∣
∂D

= ψ.

has a positive bounded continuous solution. Indeed, from [20, Proposition 2.3], the
functions p1(x) := p(x)/(δ(x))m1 , and q1(x) := q(x)/(δ(x))m2 belong to K∞(D)
and so (H3) is satisfied. From [20, Proposition 2.7(iii)], there exists a constant
c > 0 such that we have for each x ∈ D

V p1(x) ≤ cδ(x).

So, for f(x, u, v) = p1(x)ur1vs1 , we have

V f(., HDϕ,HDψ)(x) ≤ c‖ϕ‖r1∞‖ψ‖s1∞δ(x).

In addition, since the function ϕ is nontrivial nonnegative on ∂D, then there exists
a constant c1 > 0 such that we have on D

HDϕ(x) ≥ c1δ(x).

Thus,

λ0 = inf
x∈D

HDϕ(x)
V f(., HDϕ,HDψ)(x)

>
c1

c‖ϕ‖r1∞‖ψ‖s1∞
> 0.

Similarly, we prove that µ0 > 0 and so assumption (H4) is satisfied.

Example 2.2. Let D = B(0, 1)
c

be the exterior of the unit ball in Rn (n ≥ 3).
Suppose that γ, σ > n. Let r1, r2, s1, s2 > 0. Then, the problem

∆u = λ
1

|x|σ−γ(|x| − 1)γ
ur1vs1 in D,

∆v = µ
1

|x|σ−γ(|x| − 1)γ
ur2vs2 in D,

u
∣∣
∂D

= ϕ, v
∣∣
∂D

= ψ,

lim
|x|→+∞

u(x) = α, lim
|x|→+∞

v(x) = β.

has a positive continuous solution. In fact, from [5] the functions p(x) := 1
|x|σ and

q(x) := 1
|x|γ belong to K∞(D). Morerover, from [5, Proposition 3.5], there exists a

constant c > 0 such that

V p(x) ≤ c |x| − 1
|x|n−1

.
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So, for f(x, u, v) := p(x)ur1vs1 , ω = HDϕ+ αh and θ = HDψ + βh, there exists a
constant c1 > 0 such that

V f(., ω, θ)(x) ≤ c1
|x| − 1
|x|n−1

.

On the other hand, from [3, page 258] there exists a constant c2 > 0 such that on
D we have

ω(x) ≥ c2
|x| − 1
|x|n−1

.

It follows that λ0 = infx∈D
ω(x)

V f(.,ω,θ)(x) ≥
c2
c1

> 0. Similarly, we prove that µ0 =

infx∈D
θ(x)

V g(.,ω,θ)(x) > 0, for g(x, u, v) := q(x)ur2vs2 . Thus, the assumption (H4) is
satisfied.

3. Proof of Theorem 1.4

In this section, we will be interested in (1.2) with a = b = λ = µ = 1; that is, we
will study the problem

∆u = f(., u, v) in D,

∆v = g(., u, v) in D,

u
∣∣
∂D

= ϕ, v
∣∣
∂D

= ψ,

lim
|x|→+∞

u(x) = α, lim
|x|→+∞

v(x) = β (if D is unbounded).

(3.1)

where α, β ≥ 0. So, we recall that Φ is a fixed nontrivial nonnegative continuous
function on ∂D and we put h0 = HDΦ. First, we give the proof of Theorem 1.4.
Then we give an example of application to illustrate Theorem 1.4.

Proof of Theorem 1.4. Let αep and αeq be the constants defined in Proposition 1.6
(ii) associated to the functions p̃ and q̃ given in hypothesis (H6). Put c = 1+αep+αeq
and suppose that

ϕ(x) ≥ ch0(x), ψ(x) ≥ ch0(x),∀x ∈ ∂D.
Then, by the maximum principle, we have

HDϕ(x) ≥ ch0(x), HDψ(x) ≥ ch0(x),∀x ∈ D. (3.2)

Now, let Γ be the non-empty closed bounded convex set given by

Γ = {(w, z) ∈ C(D ∪ {∞})× C(D ∪ {∞}) : h0 ≤ w ≤ HDϕ, h0 ≤ z ≤ HDψ}.
Consider the operator L defined on Γ by

L(w, z) = (L1(w, z), L2(w, z)),

where

L1(w, z)(x) = HDϕ(x)−
∫
D

GD(x, y)f(y, w(y) + αh(y), z(y) + βh(y))dy,

L2(w, z)(x) = HDψ(x)−
∫
D

GD(x, y)g(y, w(y) + αh(y), z(y) + βh(y))dy.

We shall prove that the operator L admits a fixed point in Γ. Let (w, z) ∈ Γ. Then
using (H5) and (H6), it follows that

f(., w + αh, z + βh)(x) ≤ f(., h0, h0)(x) = h0(x)p̃(x), (3.3)
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g(., w + αh, z + βh)(x) ≤ g(., h0, h0)(x) = h0(x)q̃(x). (3.4)

Now, using (3.3), (3.4) and (H6), it follows that

G1 :=
{∫

D

GD(., y)f(y, (w + αh)(y), (z + βh)(y))dy : (w, z) ∈ Γ
}
⊆ Fep,

G2 :=
{∫

D

GD(., y)g(y, (w + αh)(y), (z + βh)(y))dy : (w, z) ∈ Γ
}
⊆ Feq.

By Proposition 1.6 (v), G1 and G2 are equicontinuous in D ∪ {∞}. Thus, as in
the proof of Theorem 1.2, we conclude that L(Γ) is equicontinuous in D ∪ {∞}.
Moreover, L(Γ) is uniformly bounded.

By Ascoli-Arzela theorem, we conclude that the family L(Γ) is relatively compact
in C(D ∪ {∞}) × C(D ∪ {∞}). Next, let us prove that L maps Γ to itself. Let
(w, z) ∈ Γ, since L(Γ) is relatively compact in C(D∪{∞})×C(D∪{∞}), it follows
that L(w, z) ∈ C(D ∪ {∞})× C(D ∪ {∞}). On the other hand, by Proposition 1.6
(iii) and (3.3), we obtain

V f(., w + αh, z + βh)(x) ≤ αeph0(x). (3.5)

So, by (3.2) and (3.5), we obtain

L1(w, z)(x) ≥ (1 + αeq)h0(x) ≥ h0(x) > 0. (3.6)

Similarly, we prove that
L2(w, z)(x) ≥ h0(x) > 0. (3.7)

Thus, L(Γ) ⊂ Γ.
Now, we proceed as in the proof of Theorem 1.2 and using hypothesis (H5), we

prove the continuity of the operator L in the supremum norm. Thus, we conclude
that L is a compact operator mapping from Γ to itself. Hence, the Schauder fixed
point theorem ensures the existence of (w, z) ∈ Γ such that

w(x) = HDϕ(x)−
∫
D

GD(x, y)f(y, w(y) + αh(y), z(y) + βh(y))dy,

z(x) = HDψ(x)−
∫
D

GD(x, y)g(y, w(y) + αh(y), z(y) + βh(y))dy.

Put u := w + αh and v := z + αh. It is easy to verify that (u, v) is a positive
continuous bounded solution of (3.1). �

Example 3.1. Let D be a C1,1− domain in Rn(n ≥ 3) with compact boundary.
Let h0 be a positive harmonic bounded function in D and τ be the function defined
in Remark 1 and r1, r2, s1, s2 > 0. Suppose that p and q are two nonnegative
functions such that p̃(x) := (τ(x))−(r1+s1+1)p(x) and q̃(x) := (τ(x))−(r2+s2+1)q(x)
belong to K∞(D). Then there exists a constant c > 1 such that if ϕ ≥ ch0 and
ψ ≥ ch0 on ∂D, the system

∆u = p(x)u−r1v−s1 in D,

∆v = q(x)u−r2v−s2 in D,

u
∣∣
∂D

= ϕ, v
∣∣
∂D

= ψ,

lim
|x|→+∞

u(x) = α, lim
|x|→+∞

v(x) = β.

has a positive bounded continuous solution on D.
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