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CONTROLLABILITY OF NONLINEAR THIRD-ORDER
DISPERSION INCLUSIONS WITH INFINITE DELAY

MEILI LI, XIAOXIA WANG, HAIQING WANG

Abstract. This article shows the controllability of nonlinear third-order dis-

persion inclusions with infinite delay. Sufficient conditions are obtained by
using a fixed-point theorem for multivalued maps. Particularly, the compact-

ness of the operator semigroups is not assumed in this article.

1. Introduction

In 1895, Korteweg and de Vries considered the following equation as a model for
propagation of small amplitude long waves in a uniform channel [16]
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(1.1)

where η is the surface elevation above the equilibrium level l, α is a small constant
related to the uniform motion of the liquid, g is the gravitational constant, and
σ = l3

3 −
Tl
ρg with surface capillary tension T and density ρ. When posed on the

whole real line R or on a periodic domain, (1.1) can always be reduced by certain
variable transformations to its standard form

xt + xxξ + xξξξ = 0

where x ≡ x(ξ, t) is a real valued function of two real variables ξ and t and sub-
script is the corresponding partial derivatives. It is well known that many physical
phenomena can be described by the KDV equation. This equation arises in many
physical contexts as a model equation incorporating the effects of dispersion, dis-
sipation and nonlinearity. In particular, the equation is now a fundamental model
of the weakly nonlinear waves in the weakly dispersive media and has been stud-
ied extensively by researchers in various aspects (see [18, 25] and references cited
therein).

As one of the fundamental concepts in mathematical control theory, controlla-
bility plays an important role in control theory and engineering. Roughly speak-
ing, controllability generally means that it is possible to steer a dynamical control
system from an arbitrary initial state to an arbitrary final state using the set of
admissible controls. For the controllability problem, there are different methods for
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various types of nonlinear systems and the details can be found in various papers
[6, 15, 24, 26].

Many authors have studied on the controllability problems of third-order dis-
persion equation. In 1993, Russell and Zhang [22] discussed the controllability and
stabilizability of the third-order linear dispersion equation on a periodic domain.
They discussed the exponential decay rates with distributed controls of restricted
form and for the equation with boundary dissipation. Later on, George, Chalishajar
and Nandakumaran [8] discussed the exact controllability of nonlinear third-order
dispersion equation. They established the controllability results using two standard
types of nonlinearities, namely, Lipschitzian and monotone. Chalishajar [3] stud-
ied the exact controllability of nonlinear integro-differential third-order dispersion
system by using the Schaefer fixed-point theorem. Recently, Sakthivel, Mahmudov
and Ren [27] focused on the approximate controllability for the nonlinear third-
order dispersion equation. They discussed the approximate controllability under
the assumption that the corresponding linear control system is approximately con-
trollable. More recently, Muthukumar and Rajivganthi [19] studied the approxi-
mate controllability of stochastic nonlinear third-order dispersion equation by using
fixed-point theory, infinite dimensional semigroup properties, stochastic analysis
techniques.

It has been widely argued and accepted [10, 28] that for various reasons, time
delay should be taken into consideration in modeling. Obviously, the KDV equation
with time delay has more actual significance. Zhao and Xu [30] have studied the
existence of solitary waves for KDV equation with time delay. Li and Wang [17]
have discussed the controllability of nonlinear third-order dispersion equation with
infinite distributed delay.

In recent years the corresponding parts of multivalued analysis were applied to
obtain various controllability results for systems governed by semilinear differential
and functional differential inclusions in infinite dimensional Banach spaces (refer to
[1, 4, 20, 23] and others). The attention of researchers to such systems is caused by
the fact that many control processes arising in mathematical physics may be nat-
urally presented in this form (refer to [14]). Specially, it should be point out that
Obukhovski and Zecca [20] investigated the controllability problems for a system
governed by a semilinear differential inclusion in a Banach space with a noncom-
pact semigroup and as application they considered the controllability for a system
governed by a perturbed wave equation.

In this paper, we establish sufficient conditions for the controllability of nonlinear
third-order dispersion inclusions with infinite delay by using a fixed-point theorem
for multivalued maps combined with a noncompact operator semigroup. To the best
of the author’s knowledge, the controllability of nonlinear third-order dispersion
inclusions has not been studied yet in the literature.

2. Preliminaries

The purpose of this paper is to study the controllability of the nonlinear third-
order dispersion inclusions with infinite delay

∂x

∂t
(ξ, t) +

∂3x

∂ξ3
(ξ, t) ∈ (Gu)(ξ, t) + F (t, xt(ξ, ·)) (2.1)
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on the domain t ∈ J , 0 ≤ ξ ≤ 2π,with periodic boundary conditions

∂kx

∂ξk
(0, t) =

∂kx

∂ξk
(2π, t), k = 0, 1, 2, (2.2)

and initial condition

x(ξ, θ) = x0(ξ, θ), −∞ < θ ≤ 0, 0 ≤ ξ ≤ 2π, (2.3)

where J = [0, b], F is a multivalued continuous function. x0 : [0, 2π]× (−∞, 0]→ R
are continuous functions. xt(ξ, θ) = x(ξ, t + θ), −∞ < θ ≤ 0. u is the control
function and the operator G is defined by

(Gu)(ξ, t) = g1(ξ)
{
u(ξ, t)−

∫ 2π

0

g1(s)u(s, t)ds
}
. (2.4)

Then G is a bounded linear operator and g1(ξ) is a piece-wise continuous nonneg-
ative function on [0, 2π] such that

[g1] :=
∫ 2π

0

g1(s)ds = 1.

The state x(·, t) takes values in a Banach space X = L2(0, 2π) with the norm ‖ · ‖
and inner product 〈·, ·〉. The control function u(·, t) is given in L2(J, U), a Banach
space of all admissible control functions, with U = L2(0, 2π) as a Banach space.
Define an operator A on X with domain D = D(A) given by

D(A) =
{
x ∈ H3(0, 2π) :

∂kx

∂ξk
(0) =

∂kx

∂ξk
(2π); k = 0, 1, 2

}
,

such that

Ax = −∂
3x

∂ξ3
.

It follows from Lemma 8.5.2 and Korteweg-de Vries equation of Pazy [21] that A is
the infinitesimal generator of a C0-group of isometry on X. Let {T (t)}t≥0 be the
C0-group generated by A. Obviously, one can show for all x ∈ D(A),

〈Ax, x〉L2(0,2π) = 0.

Also, there exists a constant M > 0 such that

sup{‖T (t)‖ : t ∈ J} ≤M.

To study system (2.1)-(2.3), we assume that the histories xt : (−∞, 0] → X,
xt(θ) = x(t+ θ) belong to some abstract phase space B, which is defined axiomat-
ically. In this article, we will employ an axiomatic definition of the phase space
introduced by Hale and Kato [9] and follow the terminology used in [12]. Thus,
B will be a linear space of functions mapping (−∞, 0] into X endowed with a
seminorm ‖ · ‖B. We will assume that B satisfies the following axioms:

(A1) If x : (−∞, σ+a)→ X, a > 0, is continuous on [σ, σ+a) and xσ ∈ B, then
for every t ∈ [σ, σ + a) the following conditions hold:
(i) xt is in B;
(ii) ‖x(t)‖ ≤ H‖xt‖B;
(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B.
Here H ≥ 0 is a constant, K,M : [0,+∞)→ [1,+∞), K is continuous, M
is locally bounded, and H,K,M are independent of x(·).
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(A2) For the function x(·) in (A1), xt is a B-valued continuous function on [σ, σ+
a].

(A3) The space B is complete.

Example 2.1. The phase space Cr × Lp(ρ1, X). Let r ≥ 0, 1 ≤ p < ∞ and
let ρ1 : (−∞,−r) → R be a non-negative measurable function which satisfies the
conditions (g-5), (g-6) in the terminology of [12]. In other words, this means that ρ1

is locally integrable and there exists a non-negative, locally bounded function δ on
(−∞, 0] such that ρ1(µ+ν) ≤ δ(µ)ρ1(ν), for all µ ≤ 0 and ν ∈ (−∞,−r)\Nµ, where
Nµ ⊆ (−∞,−r) is a set with Lebesgue measure zero. The space Cr × Lp(ρ1, X)
consists of all classes of functions φ : (−∞, 0] → X such that φ is continuous on
[−r, 0], Lebesgue-measurable, and ρ1‖φ‖p is Lebesgue integrable on (−∞,−r). The
seminorm in Cr × Lp(ρ1, X) is defined by

‖φ‖B = sup{‖φ(ν)‖ : −r ≤ ν ≤ 0}+
( ∫ −r
−∞

ρ1(ν)‖φ(ν)‖pdν
)1/p

.

The space Cr×Lp(ρ1, X) satisfies axioms (A1), (A2), (A3). Moreover, if r = 0 and
p = 2,the phase space Cr × Lp(ρ1, X) is reduced to B = C0 × L2(ρ1, X). We can
take H = 1, M(t) = δ(−t)1/2, and K(t) = 1 +

( ∫ 0

−t ρ1(ν)dν
)1/2 for t ≥ 0. We refer

the reader to [12] for details.

Next, we introduce definitions, notation and preliminary facts from multivalued
analysis which are used throughout this paper.

Let C(J,X) be the Banach space of continuous functions from J to X with the
norm ‖x‖J = sup{‖x(t)‖ : t ∈ J}. B(X) denotes the Banach space of bounded
linear operators from X into itself. A measurable function x : J → X is Bochner
integrable if and only if ‖x‖ is Lebesgue integrable (For properties of the Bochner
integral see Yosida [29]). L1(J,X) denotes the Banach space of Bochner integrable
functions x : J → X with norm ‖x‖L1 =

∫ b
0
‖x(t)‖dt for all x ∈ L1(J,X).

For a metric space (X, d), we introduce the following symbols:

P (X) = {y ∈ 2X , Y 6= ∅}, Pcl(X) = {y ∈ P (X) : y is closed},
Pb(X) = {y ∈ P (X) : y is bounded}, Pcp(X) = {y ∈ P (X) : y is compact},

Pb,cl(X) = {y ∈ P (X) : y is bounded and closed}.
We define Hd : P (X)× P (X)→ R+ ∪ {∞} by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where
d(A, b) = inf

a∈A
d(a, b), d(a,B) = inf

b∈B
d(a, b).

Then, (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized (complete)
metric space.

In what follows, we briefly introduce some facts on multivalued analysis. For
more details, one can see [7, 13].
• Γ has a fixed point if there is x ∈ X such that x ∈ Γ(x). The set of fixed points

of the multivalued operator Γ will be denoted by FixΓ.
• A multivalued map Γ : J → Pcl(X) is said to be measurable, if for each x ∈ X,

the function Y : J → R, defined by

Y (t) = d(x,Γ(t)) = inf{‖x− z‖ : z ∈ Γ(t)},
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belongs to L1(J,R).

Definition 2.2. A multivalued operator Γ : X → Pcl(X) is called:
(a) γ-Lipschitz if there exists γ > 0 such that

Hd(Γ(x),Γ(y)) ≤ γd(x, y), for each x, y ∈ X;

(b) a contraction if it is γ-Lipschitz with γ < 1.

Our main results are based on the following lemma.

Lemma 2.3 ([5]). Let (X, d) be a complete metric space. If Γ : X → Pcl(X) is a
contraction, then Fix Γ 6= ∅.

By the variation of constant formula, we can write a mild solution of (2.1)-(2.3)
as

x(ξ, t) = T (t)x(ξ, 0) +
∫ t

0

T (t− s)(Gu)(ξ, s)ds+
∫ t

0

T (t− s)f(s)(ξ)ds, (2.5)

where f ∈ SF,x = {f ∈ L1(J,X) : f(t)(ξ) ∈ F (t, xt(ξ, ·)), for a.e. t ∈ J, ξ ∈
[0, 2π]}.

Definition 2.4. System (2.1)-(2.3) is said to be exactly controllable on the in-
terval J , if for any given xb ∈ X with [xb] = 0, there exists a control u ∈
L2(0, b;L2(0, 2π)) = L2(J, U) such that the mild solution x(., t) of (2.1)-(2.3) sat-
isfies x(., b) = xb.

For θ ≤ 0, ξ ∈ [0, 2π] and φ ∈ B, we define

x(t)(ξ) = x(ξ, t), F (t, φ)(ξ) = F (t, φ(ξ, ·)), φ(θ)(ξ) = φ(ξ, θ) = x0(ξ, θ). (2.6)

Russell and Zhang [22] studied the exact controllability of a corresponding linear
system (i.e. with F ≡ 0 in (2.1)-(2.3)). In their analysis, they considered controls
which conserve the quantity [x(·, t)], which corresponds to the volume. The follow-
ing is their controllability result for the linear system.

Theorem 2.5 ([22]). Let b > 0 be given and let g1 ∈ C0[0, 2π] be associated with
G in (2.4). Given any final state xb ∈ X with [xb] = 0, there exists a control
u ∈ L2(J, U) such that the solution x of

∂x

∂t
(ξ, t) +

∂3x

∂ξ3
(ξ, t) = (Gu)(ξ, t) (2.7)

together with boundary conditions

∂kx

∂ξk
(0, t) =

∂kx

∂ξk
(2π, t), k = 0, 1, 2, (2.8)

and initial condition
x(ξ, 0) = 0 (2.9)

satisfies the terminal condition x(·, b) = xb in X. Moreover, there exist a positive
constant C1 independent of xb such that

‖x‖L2(J,X) ≤ C1‖xb‖X . (2.10)

The main purpose of this paper is to obtain sufficient conditions on the perturbed
nonlinear term F which will preserve the exact controllability. Usually authors
assume the compactness of semigroup while studying the controllability. Here we
drop this assumption and prove the controllability result.
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3. Controllability

We assume the following conditions hold:
(H1) F : J × B → Pcp(X) : (·, φ)→ F (·, φ) is measurable for each φ ∈ B.
(H2) Hd(F (t, φ1), F (t, φ2)) ≤ l(t)‖φ1−φ2‖B,for each t ∈ J and φ1, φ2 ∈ B, where

l ∈ L1(J,R+) and d(0, F (t, 0)) ≤ l(t),for a.e. t ∈ J .
Denote

Γb0 =
∫ b

0

T (b− s)GG∗T ∗(b− s)ds.

Note that the linear system (2.7)-(2.9) is exactly controllable if and only if there
exists a ζ > 0 such that

〈Γb0x, x〉 ≥ ζ‖x‖2, for all x ∈ X,
Then Γb0 is invertible and

‖(Γb0)−1‖ ≤ 1
ζ
.

Theorem 3.1. Assume that conditions (H1)–(H2) and [xb] = 0 are satisfied. Then
the nonlinear third-order dispersion inclusions (2.1)-(2.3) is controllable on J pro-
vided

(1 +
1
ζ
M2M2

Gb)MLKb < 1, (3.1)

where MG = ‖G‖, L =
∫ b
0
l(s)ds, Kb = sup{K(t) : t ∈ J}.

Proof. Define the control function

u(ξ, t) = G∗T ∗(b− t)(Γb0)−1
(
xb − T (b)x(ξ, 0)−

∫ b

0

T (b− s)f(s)(ξ)ds
)
, (3.2)

where f ∈ SF,x. Let Zb = {x(ξ, t) ∈ C((−∞, b];X) : x0(ξ, θ) = φ(ξ, θ), φ ∈ B}.
Set ‖ · ‖b be a seminorm in Zb defined by

‖x(ξ, t)‖b = ‖x0(ξ, t)‖B + sup
s∈J
‖x(ξ, s)‖, x(ξ, t) ∈ Zb.

Now, we shall show that, when using the control (3.2), the operators Γ : Zb → 2Zb

defined by

(Γx)(ξ, t) =
{
w(ξ, t) ∈ Zb : w(ξ, t) = T (t)x(ξ, 0) +

∫ t

0

T (t− s)(Gu)(ξ, s)ds

+
∫ t

0

T (t− s)f(s)(ξ)ds, t ∈ J, f ∈ SF,x
}

has a fixed point. This fixed point is then a mild solution of (2.1)-(2.3). Obviously,
xb ∈ (Γx)(·, b).

Let x̂(ξ, t) ∈ C((−∞, b], X) be the function defined by

x̂(ξ, t) =

{
x0(ξ, t), t ∈ (−∞, 0],
T (t)x(ξ, 0), t ∈ J.

Set x(ξ, t) = y(ξ, t) + x̂(ξ, t), t ∈ (−∞, b]. It is easy to see that y satisfies

y(ξ, t) = 0, t ∈ (−∞, 0],

y(ξ, t) =
∫ t

0

T (t− s)(Gu)(ξ, s)ds+
∫ t

0

T (t− s)f(s)(ξ)ds, t ∈ J,
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where f ∈ SF,y = {f ∈ L1(J,X) : f(t)(ξ) ∈ F (t, yt(ξ, ·) + x̂t(ξ, ·)), for a.e. t ∈
J, ξ ∈ [0, 2π]}.

Let Z0
b = {y(ξ, t) ∈ Zb : y(ξ, t) = 0, t ∈ (−∞, 0]}. For each y(ξ, t) ∈ Z0

b ,
let ‖y(ξ, t)‖b = sups∈J ‖y(ξ, s)‖, thus (Z0

b , ‖ · ‖b) is a Banach space. Consider the
operator Γ1 : Z0

b → 2Z
0
b defined by

(Γ1y)(ξ, t) =
{
v(ξ, t) ∈ Z0

b : v(ξ, t) =
∫ t

0

T (t− s)(Gu)(ξ, s)ds

+
∫ t

0

T (t− s)f(s)(ξ)ds, t ∈ J, f ∈ SF,y
}
.

Next, we shall show that Γ1 satisfy the hypotheses of Lemma 2.3. The proof will
be given in two steps.
Step 1. We show that (Γ1y)(ξ, t) ∈ Pcl(Z0

b ). Indeed, let y(n)(ξ, t) → y∗(ξ, t),(
vn(ξ, t)

)
n≥0
∈ (Γ1y)(ξ, t) such that vn(ξ, t) → v∗(ξ, t) in Z0

b . Then v∗(ξ, t) ∈ Z0
b

and there exists fn ∈ SF,y(n) such that, for each t ∈ J ,

vn(ξ, t) =
∫ t

0

T (t− s)(Guy(n))(ξ, s)ds+
∫ t

0

T (t− s)fn(s)(ξ)ds, t ∈ J,

where

uy(n)(ξ, t) = G∗T ∗(b− t)(Γb0)−1
(
xb − T (b)x(ξ, 0)−

∫ b

0

T (b− s)fn(s)(ξ)ds
)
.

Using the fact that F has compact values and (H2) holds, we may pass to a subse-
quence if necessary to obtain that fn converges to f∗ in L1(J,X); hence, f∗ ∈ SF,y∗ .
Then, for each t ∈ J ,

vn(ξ, t)→ v∗(ξ, t) =
∫ t

0

T (t− s)(Guy∗)(ξ, s)ds+
∫ t

0

T (t− s)f∗(s)(ξ)ds, t ∈ J,

where

uy∗(ξ, t) = G∗T ∗(b− t)(Γb0)−1
(
xb − T (b)x(ξ, 0)−

∫ b

0

T (b− s)f∗(s)(ξ)ds
)
.

So, v∗(ξ, t) ∈ (Γ1y)(ξ, t) and, in particular, (Γ1y)(ξ, t) ∈ Pcl(Z0
b ).

Step 2. We show that (Γ1y)(ξ, t) is a contractive multivalued map for each y(ξ, t) ∈
Z0
b . Let y(ξ, t), y(ξ, t) ∈ Z0

b and let v(ξ, t) ∈ (Γ1y)(ξ, t). Then there exists f ∈ SF,y
such that

v(ξ, t) =
∫ t

0

T (t− s)(Gu)(ξ, s)ds+
∫ t

0

T (t− s)f(s)(ξ)ds

=
∫ t

0

T (t− η)GG∗T ∗(b− η)(Γb0)−1
(
xb − T (b)x(ξ, 0)

−
∫ b

0

T (b− s)f(s)(ξ)ds
)
dη +

∫ t

0

T (t− s)f(s)(ξ)ds.

From (H2), it follows that, for each t ∈ J ,

Hd(F (φ1), F (φ2)) ≤ l(t)‖φ1 − φ2‖B, φ1, φ2 ∈ B.
Hence, there exists ω(t)(ξ) ∈ F (t, yt(ξ, ·) + x̂t(ξ, ·)) such that

‖f(t)− ω(t)‖ ≤ l(t)‖yt − yt‖B.
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Consider Ω : J → 2X ,given by

Ω(t) = {ω(t) ∈ X : ‖f(t)− ω(t)‖ ≤ l(t)‖yt − yt‖B}.
Since the multivalued operator W (t) = Ω(t)∩F (t, yt+ x̂t) is measurable [2, Propo-
sition III.4], there exists a function f(t), which is a measurable selection for W . So,
f(t)(ξ) ∈ F (yt(ξ, ·) + x̂t(ξ, ·)) and

‖f(t)− f(t)‖ ≤ l(t)‖yt − yt‖B, for each t ∈ J.
For each t ∈ J , we define

v(ξ, t) =
∫ t

0

T (t− s)(Gu)(ξ, s)ds+
∫ t

0

T (t− s)f(s)(ξ)ds

=
∫ t

0

T (t− η)GG∗T ∗(b− η)(Γb0)−1
(
xb − T (b)x(ξ, 0)

−
∫ b

0

T (b− s)f(s)(ξ)ds
)
dη +

∫ t

0

T (t− s)f(s)(ξ)ds.

Then, for t ∈ J , we obtain

‖v(ξ, t)− v(ξ, t)‖

= ‖
[ ∫ t

0

T (t− η)GG∗T ∗(b− η)(Γb0)−1
(
xb − T (b)x(ξ, 0)

−
∫ b

0

T (b− s)f(s)(ξ)ds
)
dη +

∫ t

0

T (t− s)f(s)(ξ)ds
]

−
[ ∫ t

0

T (t− η)GG∗T ∗(b− η)(Γb0)−1
(
xb − T (b)x(ξ, 0)

−
∫ b

0

T (b− s)f(s)(ξ)ds
)
dη +

∫ t

0

T (t− s)f(s)(ξ)ds
]

≤ ‖
∫ t

0

T (t− η)GG∗T ∗(b− η)(Γb0)−1

∫ b

0

T (b− s)[f(s)(ξ)− f(s)(ξ)]dsdη‖

+ ‖
∫ t

0

T (t− s)[f(s)(ξ)− f(s)(ξ)]ds‖

≤ (1 +
1
ζ
M2M2

Gb)M
∫ b

0

l(s)‖ys − ys‖Bds

≤ (1 +
1
ζ
M2M2

Gb)MLKb‖y − y‖b

Then
‖v − v‖b ≤ (1 +

1
ζ
M2M2

Gb)MLKb‖y − y‖b.

By an analogous relation, obtained by interchanging the roles of v and v, it follows
that

Hd((Γ1y)(ξ, t), (Γ1y)(ξ, t)) ≤ (1 +
1
ζ
M2M2

Gb)MLKb‖y − y‖b.

In view of (3.1), we conclude that Γ1 is contractive. As a consequence of Lemma 2.3,
we deduce that Γ1 have a fixed point y∗(ξ, t) ∈ Z0

b . Let x(ξ, t) = y∗(ξ, t)+x̂(ξ, t), t ∈
(−∞, b]. Then x is a fixed point of the operator Γ which is a mild solution of problem
(2.1)-(2.3). �
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Remark 3.2. We say system (2.1)-(2.3) is approximately controllable on J if for
any given xb ∈ X and ε > 0, there exists a control u ∈ L2(J, U) such that the mild
solution x(·, t) of (2.1)-(2.3) satisfies ‖x(·, b)−xb‖ < ε. Actually we may also discuss
the approximate controllability for system (2.1)-(2.3) under weaker conditions, more
precisely, it is possible to formulate and prove sufficient conditions for approximate
controllability of nonlinear third-order dispersion inclusions with infinite delay by
suitably using techniques similar to those presented in [11, 23, 27]. We will go on
to do it as a subsequent work.

Conclusion. We have considered controllability problems of nonlinear third-order
dispersion inclusions with infinite delay. By using a fixed-point theorem for con-
traction multivalued maps due to Covitz and Nadler, sufficient conditions have
been given without compactness condition for the semigroup generated by the lin-
ear part of the system. In the future research, the controllability of stochastic
nonlinear third-order dispersion inclusions may be considered. In addition, it is
interesting to investigate the case with both delays and impulsive effects.
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