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Abstract. Nowadays, the growing demand for group-oriented services over

mobile devices has lead to the definition of new communication standards

and multimedia applications in cellular systems. In this article we study the
use of game theoretic solutions for these services to model and perform a

trade-off analysis between fairness and efficiency in the resources allocation.

More precisely, we model bargaining solutions for the multicast data services
provisioning and introduce the analytical resolution for the proposed solutions.

1. Introduction and statement of the problem

Game theory uses mathematics to identify some appropriate strategies in order
to describe the behavior of specific situations (games) in which the success of an
individual’s choices is directly linked to the choices of others. Games are charac-
terized by a number of players or decision makers who interact, possibly threaten
each other and form coalitions, take actions under uncertain conditions, and finally
receive some benefit or reward or possibly some punishment or monetary loss. As
we outline the contents of this text, we introduce some of the key words and ter-
minology used in game theory. First there is the number of players which will be
denoted by n. Let us label the players with the integers 1 to n, and denote the set of
players by N = {1, 2, . . . , n}. In the game a player has a winning strategy and the
other players have not a winning strategy, or some of the players have a common
winning strategy, or else neither player has a winning strategy in the game. In the
last case the game is said to be undetermined.

Since the end of the previous century game theoretic solutions have been used
to solve some diagonalization problems in general topology. In particular, many
authors have described the behavior of some combinatorial scheme, called selection
principle in terms of games (see [11, 1]).

In this article we study a concrete and technical problem adopting some different
optimization strategies. Specifically, the effectiveness of any adopted policy for the
delivery of multicast data services in modern cellular systems depends on a good
trade-off between the total utility and the fairness. Game theoretic bargaining
solutions are suitable solutions to be adopted to this scope [6], [7]. An interesting
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way to provide multicast services foresees to split the multicast destinations into
different subgroups, according to the User Equipments’ (UEs) channel quality, and
implement a subgroup based Adaptive Modulation and Coding (AMC) scheme.

Let us consider a general study case where the multicast group is composed of
N UEs. Let c be the channel quality indicator (CQI) associated to a generic user
in the cellular system, where c can vary from 1 to a maximum value nc, which
depends on the adopted cellular standard. For a given CQI value, the attainable
data throughput depends on the number of assigned network resources, which in
general can vary from 1 to R and is defined by the specific standard adopted as
cellular system.

Let V = {v1, v2, . . . , vnc
} be the vector containing the number of UEs per CQI

level, where
∑nc

c=1 vc = N . Being G a generic bargaining solution to be adopted,
the proposed framework is implemented as follows:

• Be S̃ the set of all the possible multicast subgroup configurations. Let
S ⊆ S̃ be the subset of all potential configurations, which ensure, according
to the V vector, that all UEs of the multicast group are served, that each
UE supports the CQI it is associated to and that only subgroups with a
CQI value reported by at least one of the UEs are considered.
• For each subgroup configuration s ∈ S, the generic UE with CQI value c is

assigned to the subgroup j associated to the closest CQI supported by the
user (with j = 1, . . . , Js and Js representing the total number of enabled
subgroups in configuration s). Let V s

j be the number of UEs served by the
subgroup j in the configuration s;
• For every subgroup configuration s ∈ S, the resource allocation is performed

based on a selected game theoretic bargaining solution G, which meets the
constraint that all UEs in the system must be served;
• The subgroup configuration st ∈ S that maximizes a performance index P is

selected. st determines the subgroups to be activated with their respective
modulation and coding schemes (MCSs) and the resources allocated to each
group according to the bargaining solution G.

We define the P index as the Aggregate Utility (AU) for the system. In terms
of Game Theory, we will model each subgroup as a player of the game; thus, the
utility (or payoff) assigned to each player is computed as the total data throughput
for the subgroup. In particular, the total utility for a generic player j of the generic
subgroup configuration s is strictly related to the number of associated UEs and
the number of assigned RBs:

us
j = V s

j · gj , (1.1)

where gj represents the throughput assigned by the base station to the j-th sub-
group and varies as a function of the MCS and the resources RB (i.e., 1 ≤ RBj ≤ R)
assigned to the j -th subgroup by the game theoretic solution G. With this util-
ity definition, the Aggregate Utility for the subgroup configuration s is defined as:
AUs =

∑Js

j=1 u
s
j , where Js is the total number of enabled subgroups.

2. Game Theoretic Bargaining Solutions

A game is defined as G = 〈K, A, {ui}〉 where K = {1, 2, . . . ,K} is the set of
players which compete for the resources assignment, Ai is the set of actions available
to player i, A = A1 × · · · × AK and ui is the objective function, also called the
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utility function, player i wishes to maximize. A vector of such utilities is denoted
by u = (u1, . . . , uK) and we define U = {u(a)|a ∈ A} as the set of achievable
utilities for all players [12]-[8].

Further terminology and notations for the bargaining game are:

• a disagreement point is an action vector a ∈ A expected to be the result of
non-cooperative play given a failure of the bargaining process;
• an agreement point is an action vector a ∈ A that is a possible outcome of

a bargaining process where the utility obtained by every player has to be
at least as much as the utility obtained at the disagreement point;
• we say that u ∈ U is Pareto optimal if 6 ∃u′ ∈ U such that u′i ≥ ui,∀i ∈ K

and u′i > ui for some index i. When the inequality is strict, u is weak
Pareto optimal. We define PO(U) as the set of Pareto optimal points of
U and WPO(U) as the set of weak Pareto optimal points of U , where
PO(U) ⊆WPO(U);
• a vector containing a utility space and a disagreement point for a game is

a bargaining problem;
• a bargaining solution φ, defined on a class of bargaining problems Σ, is a

map that associates with each problem (U , u0) ∈ Σ a unique point in U ,
where u0 = u(a0) is the utility achieved at the disagreement point a0.

The conditions that apply on the utility space U are: U ⊂ RK is upper-bounded,
closed and convex and there exists u ∈ U such that u0 < u.

2.1. Nash Bargaining Solution. Nash proposed the following axioms:

(1) Individual Rationality : φ(U , u0) > u0.
(2) Pareto Optimality : φ(U , u0) ∈ PO(U).
(3) Invariance to affine transformations: if ψ : RK → RK , ψ(u) = u′ with

u′i = ciui +di, ci, di ∈ R, ci > 0,∀i ∈ K, then φ(ψ(U), ψ(u0)) = ψ(φ(G, u0)).
(4) Independence of irrelevant alternatives: if u′ ∈ G ⊂ U and u′ = φ(U , u0)

then φ(G, u0) = u′.
(5) Symmetry : if U is symmetric with respect to i and j, u0

i = u0
j , and u′ =

φ(U , u0), then u′i = u′j .

Axioms 1-2 represent the binding conditions for any agreement point given by a
bargaining solution, while axioms 3-5 are the so-called fairness axioms. In particu-
lar, the invariance to affine transformations states that the solution is invariant if
scaled in an affine manner. The independence of irrelevant alternatives states that
if the domain is reduced to a subset of the domain that contains the bargaining
solution, then the solution remains the same. Finally, the symmetry axiom states
that the solution does not depend on the labels, i.e., if the players have the same
disagreement point and the same set of feasible utility, then they will achieve the
same utility at the solution.

Definition 2.1. Nash Bargaining Solution (NBS). φ(U , u0) is the NBS if and
only if it satisfies all axioms 1-5.

When U is convex [5], Nash showed that the unique NBS is the maximizer of the
Nash Product:

arg max
u>u0

K∏
i=1

(ui − u0
i ). (2.1)
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The intuitive idea is that, after a minimal requirement is satisfied for all players,
the remaining resources are allocated according to the conditions of each player.
The presented optimization problem is equivalent to the following optimization:

arg max
u>u0

K∑
i=1

ln(ui − u0
i ). (2.2)

2.2. Problem resolution with the NBS. The utilities ui for the players are
defined according to equation (1.1), and the utility set U collects the possible util-
ities assigned to each activated subgroup. In details, for any considered subgroup
configuration, the number of nodes and the minimum rate per activated subgroup
are actually constant values; the only variable is the number of RBs assigned to
each subgroup. Thus, the set A for the bargaining problem is the set of possible RB
assignments to each player. This set is actually not a convex set in RK because only
integer values of RB can be assigned to each subgroup. Many real problems have a
non-convex definition set, and several approaches have been proposed in the liter-
ature to extend bargaining solutions to these cases. In this paper we will approach
the problem by studying it on the smallest convex set that contains A, the convex
hull denoted by Conv(A) (consequently also the utility set U becomes Conv(U)).
Obviously, considering the convex hull of A is a relaxation of the problem and in
general this yields suboptimal solutions. In fact, a final step will be introduced
to approximate the bargaining solutions, defined on the convex hull set, to integer
values of RBs and to the corresponding utilities. This final step, will make us ap-
proximate the bargaining result to the closest point that can be implemented in
real environments.

The problem resolution can be performed by calculating the NBS directly on the
unknowns of the problem instead of the utilities ui [4].

Proposition 2.2. Consider a strategies set

A′ := {a ∈ RK : amin
i ≤ ai ≤ amax

i ,∀i ∈ K},

and a set of weights associated to the players Ω = {ω1, . . . , ωK}, with 0 < ωi < 1,
for every i ∈ K. Further, let

J := {j ∈ K : ∃a ∈ A s.t. uj > u0
j},

to be the set of players J able to achieve a performance strictly superior to their
disagreement point. Then there exists a unique NBS which is the solution of the
optimization problem

max
∑
j∈J

ωj ln(aj − amin
j ). (2.3)

Proof. A′ is a convex compact subset of RK , the power functions (aj − amin
j )ωj

defined on A′ are concave, upper-bounded and injective on A′ and they are used as
the utility functions. Substituting these function in equation (2.2) it yields:

max
∑
j∈J

ln((aj − amin
j )ωj − u0

j ). (2.4)

Note that u0
j = (amin

j − amin
j )ωj = 0, so the solution proposed in equation (2.3) is

found. �
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Referring to the problem formulation presented in section 1, for any subgroup
configuration s, the unknowns of the problem aj are the number of RB allocated
to subgroup j. Let us define a set Ω of weights ωj [4], where both the number of
users in the group and the channel quality are considered:

ωj =
V s

j · bsj∑
t∈J V

s
t · bst

, (2.5)

where bsj and bst are the throughput achieved with 1 RB assigned to the MCS related
to the subgroups j and t respectively.

For an easier notation we will hereafter focus on a generic subgroup configuration
s with J being the set of players (i.e. the subgroups considered in configuration s).
From Proposition 1, we can find the NBS by resolving the following constrained
optimization problem:

max
∑
j∈J

ωj ln(aj − amin
j )

aj > amin
j ,∀j ∈ J

aj ≤ amax
j ,∀j ∈ J∑

j∈J

aj = R.

(2.6)

The properties of the logarithmic function guarantee the function to be strictly
concave and, under the assumption of studying the problem on the convex hull, the
problem has a unique solution. Being amax

j = R, for all j ∈ J , the conditions on
the minimum value coupled with the condition on the sum of values, make actually
aj ≤ amax

j a superfluous condition for the problem. We can thus map the problem
to a combinatorial problem with linear constraints. The Lagrangian for the problem
is denoted as follows:

L(a, λ) =
∑
j∈J

ωj ln(aj − amin
j ) + λ

∑
j∈J

(aj −R). (2.7)

Taking the derivative of the Lagrangian function, we obtain the Karush-Kuhn-
Tucker (KKT) [2] sufficient and necessary conditions:

aj

( ωj

aj − amin
j

+ λ
)

= 0, ∀j ∈ J, (2.8)

λ
∑
j∈J

(aj −R) = 0, ∀j ∈ J. (2.9)

From (2.8), being aj > 0 we obtain
ωj

aj − amin
j

+ λ = 0. (2.10)

Hence, we can obtain aj as a function of λ:

aj = amin
j − ωj

λ
. (2.11)

By (2.9), considering λ > 0, we obtain the original condition for the problem∑
j∈J

aj = R. (2.12)
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Substituting the value of aj we obtain∑
j∈J

(
amin

j − ωj

λ

)
= R. (2.13)

Reorganizing the function, we can isolate λ being equal to:

λ =

∑
j∈J ωj∑

j∈J a
min
j −R

. (2.14)

Substituting the obtained formulation of λ in expression (2.11) we obtain

aj = 1 +
ωj∑

j∈J ωj

(
R−

∑
j∈J

amin
j

)
. (2.15)

With equation (2.15) we can compute the exact RB association to each of the
activated CQI levels (subgroups). Note that since the problem is studied on the
convex hull for the problem, the found aj values will likely be real values. In
order to use the found solutions in a real environment we need to introduce a
further step such that only integer values are adopted. The simple solution we
adopt, hereafter called integer procedure, is to use the floor function to take only
the integer part of all aj values. The remaining resources will then be distributed
among the players following a descending order of the (aj − floor(aj)) difference.
One RB is associated to each player according to the mentioned order until all the
RB are associated and

∑
j∈J aj = R. This procedure, which will be equally applied

for any of the considered bargaining solutions, permits to minimize the distance
from the solutions found on the convex hull and the solutions that can be applied
in practice.

For the specific problem we will consider a disagreement point u0 assigning the
minimum of one RB to each single player in order to meet the service requirement
of serving all UEs, thus amin

j = 1. Nevertheless, the formulation is valid for any
value of amin

j .

2.3. Kalai-Smorodinsky Solution. Axiom 4 proposed by Nash has suffered some
criticism [14] because it is not taking into account how much other players have
given up. For this reason, another interesting fairness criterion was introduced by
modifying this axiom, namely the Kalai-Smorodinsky solution, whereby utilities are
proportional to their maximum possible values. In particular, axiom 4 proposed by
Nash was replaced by the Restricted Monotonicity axiom:

Restricted Monotonicity : if G ⊂ U and h(U , u0) = h(G, u0) then φ(U , u0) ≥
φ(G, u0), where h(U , u0) is the so called utopia point and is defined as:

h(U , u0) = (max
u>u0

u1(u), . . . ,max
u>u0

uK(u)).

For the reference problem, the utopia point is considered as the point where all
R available RBs are assigned to one player, that is to a single multicast subgroup.

Definition 2.3 (Kalai-Smorodinsky Solution (KSS)). We say that φ(U , u0) is the
KSS if the Individual Rationality, the Pareto Optimality, the Invariance to affine
transformations, the Symmetry and the Restricted Monotonicity axioms are satis-
fied.

Let Λ be set of points in the line containing u0 and h(U , u0). The unique KSS
is WPO(U) ∩ Λ, which can be expressed as [12]:
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max
{
u > u0| 1

θi
(ui − u0

i ) =
1
θj

(uj − u0
j ),∀i, j ∈ K

}
,

where θi = hi(U , u0
i ) − u0

i . Max is computed with respect to the partial order of
RK .

The restricted monotonicity property implies that if in a subgroups configuration
s ∈ S the worst performing player improves the CQI level, its utility would be
increased without any reduction for the other players. In particular, the KSS assigns
as the bargaining solution the point in the Pareto set intersecting the line connecting
the disagreement point and the utopia point.

An alternative formulation for the KSS can be given in the form of a weighted
max-min fairness solution [9]:

φ(U , u0) = arg max
u∈U

min
( u1 − u0

1

h1(U , u0
1)− u0

1

, . . . ,
uK − u0

K

hK(U , u0
K)− u0

K

)
. (2.16)

For the exact analytical computation of the KSS the approach we follow is based
on the bisection search method [3]. This method enables us to converge to the
intersection point of the feasibility set and the segment connecting the disagreement
point to the utopia point. In this paper, as in [10], we can apply this method by
mapping the problem onto a one variable problem. Knowing the upper and lower
bound for the utility of the players, rearranging the condition for the KSS definition,
we can define the utility of a generic player j as a function of utility of the first
player, player 1:

uj =
( u1 − u0

1

h1(U , u0
1)− u0

1

)
(hj(U , u0

j )− u0
j ) + u0

j ,∀j ∈ K. (2.17)

In each iteration of the bisection method any solution is to be tested for feasibility.
The set of utilities for the K players (u1, u2, . . . , uK) is linearly dependent on the al-
located resources. If (a1, a2, . . . , aK) is the set of resources allocated to the players,
the iterative bisection search method should test every solution according to the
problem feasibility condition:

∑K
j=1 aj ≤ R, with R the maximum resources avail-

able in the system. Starting from a lower bound equal to the disagreement point
and an upper bound equal to the utopia point, the bisection method is applied as
given in Algorithm (1).

Algorithm 1 Bisection Method

Require: lower bound l := u0
1, upper bound u := h1(U , u0

1), tolerance ε > 0
while (u− l ≤ ε) do

(1) Set u1 at the mid-point of l and u; u1 = (l + u)/2
(2) Obtain uj with (j = 2, . . . ,K) based on u1 according to equation (2.17)
(3) Check feasibility of the proposed utilities based on the constraint on

the correspondent allocated resources:
∑K

j=1 aj ≤ R
(4) If solution is feasible l := u1, else u := h1(U , u0

1)
end while

Similarly to the NBS, a further final step is required to map the found solutions
to real implementable solutions, through the so-called integer procedure.
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2.4. Egalitarian Solution. The third bargaining solution considered in this work
is the Egalitarian solution, which assigns the point in the feasible set where all
players achieve maximal equal increase in utility with respect to the disagreement
point. To define this solution, we need to introduce the following axioms:

Strong monotonicity : if G ⊂ U then φ(G, u0) ≥ φ(G, u0);
Weak Pareto optimality : φ(U , u0) ∈WPO(U).

Definition 2.4 (Egalitarian Solution (ES)). φ(U , u0) is the ES if the Individual Ra-
tionality, the Weak Pareto Optimality, the Symmetry and the Strong Monotonicity
axioms are satisfied.

Let u′ be such that ∀i, u′i = u0
i + b, b ∈ R and Λ be set of points in the line

containing u0 and u′. The unique ES is WPO(U) ∩ Λ, which can be expressed as
[12]:

max
{
u > u0|ui − u0

i = uj − u0
j ,∀i, j ∈ K

}
.

The strong monotonicity property implies that if in a subgroup configuration
s ∈ S the worst performing player improves the CQI level, then all the players
would improve their utility. For the ES, an alternative formulation can be given in
the form of a strict max-min fairness:

φ(U , u0) = arg max
u∈U

min(u1 − u0
1, . . . , uK − u0

K). (2.18)

Also for the ES we follow the approach based on a bisection method search.
Similarly to the KSS, we can define the utilities for the players as a function of the
utility of the player 1. Based on the condition given in the ES definition, the utility
for a generic player j can be written as:

uj = ((u1 − u0
1) + u0

1), ∀j ∈ K. (2.19)

For the ES computation, the bisection method as introduced for KSS can be equally
applied by defining the utilities in step 2 of Algorithm 1 according to equation (2.19).

2.5. Utilitarian Solution. The last bargaining solution considered in this work
is the Utilitarian solution. This solution maximizes the sum of the utilities and is
not always unique.

Definition 2.5 (Utilitarian Solution (US)). φ(U , u0) is a US if the Individual
Rationality, the Pareto Optimality, the Symmetry and the Linearity axioms are
satisfied [13].

The Linearity axiom states that the players are indifferent between solving prob-
lems separately or in a single problem:

Linearity : For any S, T ∈ Σ,U(λS+(1−λ)T )) = λU(S)+(1−λU(T )), for every
λ ∈ [0, 1].

The Utilitarian solution maximizes the sum of the utilities and is equal to:

φ(U , u0) = arg max
u∈U

K∑
j=1

uj . (2.20)

Considering the problem formulation presented in section 1 and the utility defini-
tion in equation (1.1), for any subgroup configuration s, the number of RB allocated
to a subgroup j, aj , can be easily computed. In particular, after having assigned
the minimum required resources to each of the involved subgroups, the sum of the
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utilities is maximized if the remaining resources are all assigned to the player with
the highest value of the V s

j · bsj product.
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