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ALMOST PERIODIC SOLUTIONS OF DISTRIBUTED
PARAMETER BIOCHEMICAL SYSTEMS WITH TIME DELAY

AND TIME VARYING INPUT

ABDOU K. DRAME, MANGALA R. KOTHARI, PETER R. WOLENSKI

Abstract. In this article we study the existence of almost periodic solutions

for distributed parameters biochemical system, with time delay when the in-

put Sin is time dependent. This study is motivated by the input begin time
dependent in many applications, and by the importance of almost periodically

varying environments. Using the semigroup method, we prove that if the input

is almost periodic then the system has an almost periodic solution.

1. Introduction

The article is concerned with the existence of almost periodic solutions of a dis-
tributed parameters biochemical system, with time delay in the growth response
when the input is time dependent (Sin = Sin(t)) and is an Almost periodic function
of the time t. The study of the existence of periodic and almost periodic solutions
is important in the theory of bioengineering systems because of the periodically
and almost periodically time varying environments. In the previous decades, many
authors have introduced various types of delay into the dynamical models of bio-
engineering systems to understand the oscillations (periodic solutions) observed ex-
perimentally on chemostat systems (see references in [6]). However, most of these
studies were focused on time varying systems and few consider space varying cases.
Recently, Drame et al [6] studied a distributed parameters biochemical system with
time delay in the growth response. They proved the existence of periodic solutions
(oscillations) for large values of the delay parameter. In [6], the authors assumed
the inlet substrate concentration to be constant. However, in applications, this
quantity may be time dependent and periodic or almost periodic in time. In this
paper, we consider a distributed parameter biochemical system with time delay and
almost periodic time varying inlet substrate concentration. The basis of the model
under study is derived from the work performed on anaerobic digestion in the pilot
fixed bed reactor of the LBE-INRA in Narbonne (France) and is inspired from the
dynamical models built and validated on the process (see [1, 14]). Using semigroup
approach, we prove the existence of almost periodic solutions for the system. We
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consider the dynamical system

∂S(t)
∂t

= d
∂2S(t)
∂x2

− q ∂S(t)
∂x

− kµ(S(t), X(t))X(t)

∂X(t)
∂t

= −kdX(t) + µ(S(t− r), X(t− r))X(t− r),
(1.1)

with the boundary conditions: for all t ≥ 0,

d
∂S

∂x
(t, 0)− qS(t, 0) + qSin(t) = 0 and

∂S

∂x
(t, L) = 0, (1.2)

and initial condition: for all −r ≤ s ≤ 0, 0 ≤ x ≤ L,

S(s, x) = Φ1(s, x), X(s, x) = Φ2(s, x) (1.3)

where the initial data Φ1 and Φ2 are continuous functions on [−τ, 0]× [0, L].
The parameters d, q, k, kd, Sin, µ, r, L are positive and represent the diffusion co-

efficient, the superficial fluid velocity, the yield coefficient, the death rate of the
biomass, the inlet limiting substrate concentration, the specific growth function or
growth response, the delay parameter and the length of the reactor, respectively.
In the rest of the paper, we will assume that the length L is 1.

In the right hand side of the first equation of (1.1), the last term represents the
growth response while the other terms represent the hydrodynamics (i.e. diffusion
and convection terms). As the biomass is assumed to be fixed, there is no hydro-
dynamic term in the right hand side of the second equation of (1.1). The first
term in right hand side of this equation represents the mortality of biomass and
the last one represents the growth response with delay. The delay is considered in
the second equation of (1.1) only as it is assumed to be caused by memory effects
of micro-organisms, on one hand. On the other hand, the substrate is apparently
instantaneously consumed although the biomass growth takes place with some de-
lay. This can be explained e.g. by the absorption of the (liquid) substrate into the
(solid) biomass, a phenomenon that might be fast with respect to the conversion
of substrate into biomass, at least fast enough to emphasize the disappearance of
the substrate from the liquid medium before its conversion into biomass exhibits its
effects. The resulting dynamical model is a system of partial functional differential
equations with almost periodic boundary conditions. One of the most attracting
areas of qualitative theory of partial functional differential equations is the existence
of periodic and almost periodic solutions due to the important roles of periodically
and almost periodically varying environments play in many biological and ecologi-
cal dynamical systems. Compared with periodic effects, almost periodic effects are
more frequent [11]. The existence of almost periodic (or pseudo-, weighted almost
periodic) solutions of partial differential equations has been increasingly studied
by many authors (see e.g. [3, 4, 13] and references therein). In these studies, the
semigroup or evolution family is compact and exponentially stable, and therefore
cannot be applied to the system under consideration here. As mentioned above,
the current work is motivated, on one hand, by a recent paper by Drame et al [6],
where the authors considered existence question of periodic solutions of biochemical
distributed parameters system with time delay. On the other hand, in applications
the inlet concentration of substrate in biological processes are time varying and
may be periodic or almost periodic function of time.
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The fundamental assertion we prove in this paper is that if the input Sin(t) is
an almost periodic function of t then the system (1.1)-(1.3) has an almost periodic.
So, we make the following assumption:
Assumption A1. The input Sin(t) is an Almost Periodic function of t, that is:
for any ε > 0, there exists l(ε) > 0 such that any interval of length l(ε) contains a
number τ such that

|Sin(t+ τ)− Sin(t)| < ε for all t ∈ R.

To guaranty the existence and some regularity of solution of the system (1.1)-(1.3),
we make the assumption that:
Assumption A2. The function µ is smooth (to say of class C2, for example) and
bounded on (0, 1)× (0,∞).

In the next section, we give some preliminary properties of the system (1.1)-(1.3)
and recall some definitions and properties of Almost periodic functions.

2. Preliminaries

Let us consider the following state spaces Z1 = Z2 = C[0, 1], Z = Z1 × Z2,
C = C([−r, 0];Z) and the positive cones

Z+ = {v ∈ Z : vi(z) ≥ 0, ∀z ∈ [0, 1], i = 1, 2},
C+ = {ϕ ∈ C : ϕ(s) ∈ Z+, ∀ − r ≤ s ≤ 0}.

We also adopt the following notation: for a continuous function w : [−r, b) →
Z, b > 0, we define wt ∈ C, t ∈ [0, b), by wt(s) = w(t + s) for all −r ≤ s ≤ 0.
Therefore, it is not difficult to see that the map t → wt is continuous from [0, b)
into C.

Definition 2.1 ([2, p. 55]). A function F (t, x) is called almost periodic in t,
uniformly with respect to x ∈ Z, if for any ε > 0 there exists a number l(ε) such
that any interval of the real line of length l(ε) contains at least one number τ such
that

|F (t+ τ, x)− F (t, x)| < ε for all t ∈ R, x ∈ Z.

Theorem 2.2 ([2, Theorem 2.6]). A necessary and sufficient condition for a func-
tion F (t, x) to be almost periodic in t, uniformly with respect to x ∈ Ω, where Ω is
a bounded and closed set, is that for any sequence {F (t+ τn, x)}, we can extract a
subsequence {F (t+ rn, x)} that satisfies the Cauchy uniform convergence.

Let us consider the following auxiliary problem from (1.1)-(1.2) (recall L = 1):

∂w(t)
∂t

= d
∂2w(t)
∂x2

− q ∂w(t)
∂x

,

d
∂w

∂x
(t, 0) = qw(t, 0)− qSin(t),

∂w

∂x
(t, 1) = 0.

(2.1)

In section 3, we will show that under assumption A1, the auxiliary problem (2.1)
has an almost periodic solution. Observe that if w is an almost periodic solution
of (2.1) then the function f , defined by: for any u ∈ C,

(f1(t, u))(x) = −kµ(u1(0, x) + w(t, x), u2(0, x))u2(0, x)

(f2(t, u))(x) = µ(u1(−r, x) + w(t, x), u2(−r, x))u2(−r, x)
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and f = (f1, f2), is almost periodic in t uniformly with respect to u. Now, let
w(t, x) be a solution of (2.1) and let us introduce

u1(t, x) = S(t, x)− w(t, x) and u2(t, x) = X(t, x) for all t ≥ 0 and 0 ≤ x ≤ 1,

where S and X are as in (1.1)-(1.3). Then u = (u1, u2) satisfies the equations

∂u1(t)
∂t

= d
∂2u1(t)
∂x2

− q ∂u1(t)
∂x

+ f1(t, u1t, u2t)

∂u2(t)
∂t

= −kdu2(t) + f2(t, u1t, u2t),

d
∂u1

∂x
(t, 0) = qu1(t, 0),

∂u1

∂x
(t, 1) = 0.

(2.2)

Let us define the operators

D(A1) = {u1 ∈ C2[0, 1] : d
∂u1

∂x
(0) = qu1(0),

∂u1

∂x
(1) = 0};

A1u1 = d
∂2u1

∂x2
− q ∂u1

∂x
;

D(A2) = C[0, 1], A2 = −kdI;

D(A) = D(A1)⊗D(A2), A = diag(A1, A2).

By the same arguments as in [5], we can show that the operator A is the infinitesimal
generator of a C0-semigroup of bounded linear operators T (t) on Z, given by T (t) =
diag(T1(t), T2(t)), where T1(t) and T2(t) are the C0-semigroups generated by A1 and
A2, respectively. Moreover, the semigroup T1(t) is compact in C1[0, 1] and T (t) is
analytic. The system (2.2) can be written as the following abstract Cauchy problem

du(t)
dt

= Au(t) + f(t, ut),

u(s) = u0(s), for − r ≤ s ≤ 0,
(2.3)

where, as in (1.3), the initial data u0 is in C([−τ, 0], Z).

Definition 2.3.

• A mild solution of (2.3) (equivalently of (1.1)-(1.3)) is a continuous function
u : [−τ, tu)→ Z, with tu > 0, satisfying

u(t) = T (t)θ(0) +
∫ t

0

T (t− s)f(s, us)ds, 0 ≤ t ≤ tu

u0 = θ ∈ C,

where us ∈ C is given by us(σ) = u(s+ σ), −τ ≤ σ ≤ 0.
• A function u ∈ C([−τ, tu), Z) ∩ C1((0, tu), Z) satisfying u(t) ∈ D(A), for

0 < t < tu, and u(t) satisfies (2.3) is called a classical solution.

3. The auxiliary problem and existence of solutions for (2.3)

As we mentioned earlier, in this section we prove that under assumption A1 the
auxiliary problem (2.1) has an almost periodic solution, by using the method of
sub-super solutions. Later, we will also discuss the existence of solutions of (2.3).
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Since Sin(t) is almost periodic, by [2, Theorem 1.2], Sin(t) is continuous and
bounded on the real line. Let S ≥ 0 and S̄ ≥ 0 be such that

S ≤ Sin(t) ≤ 1
2
S̄, for all t ∈ R,

and let S∗ = q
2dS, and S∗ = q

2d S̄. To prove the following remark, we assume that:
Assumption A3: 1 + q ≤ d

2 .

Remark 3.1. Assume that A3 holds. Then there exists a function g such that for
all t ≥ 0

0 ≤ g(t) ≤ A = min(S∗,
2q2S

4d+ qd
), 0 ≤ g′(t) ≤ 8dg(t)− 4qS∗, t ≥ 0.

Proof. Let y(t) = At
1+t , for t ≥ 0. We have y(t) ≤ A, for t ≥ 0. In addition, for

t ≥ 1, y(t) ≥ A
2 . On the other hand, under assumption A3, we have A ≥ 2q

d S∗.
Therefore, for t ≥ 1, we obtain

8dy(t)− 4qS∗ ≥ 8dy(t)− 2dA ≥ 8dy(t)− 4dy(t) = 4dy(t) ≥ 2dA.

Also, y′(t) = A
(1+t)2 ≤ 2dA for all t ≥ −1 + 1√

2d
. Taking t0 = max(1,−1 + 1√

2d
), we

obtain 0 ≤ y′(t) ≤ 8dy(t)− 4qS∗ for all t ≥ t0. Finally, define the function g to be
g(t) = y(t+ t0) for all t ≥ 0. �

Lemma 3.2. Assume A1 and A3 hold. Then (2.1) has an almost periodic solution,
w(t, x), in the sense of definition 2.1.

Proof. By [7, Theorem 22.3], equation (2.1) will have a stable periodic solution,
which in turn will be almost periodic, if it has a properly ordered pair of strict sub-
and super solutions. Let

ϕ(t, x) = g(t)(
1
2
− x)2 + S∗(−1− x), ψ(t, x) = −g(t)(

1
2
− x)2 + S∗(1 + x),

for t ≥ 0 , 0 ≤ x ≤ 1, where g is as given in Remark 3.1. We will show that ϕ and
ψ are properly ordered pair of strict sub- and super solutions of the equation (2.1).
• For ϕ: The scripts ϕt, ϕx, and ϕxx represent the first and second partial

derivatives of ϕ with respect to t and x, respectively. We have

ϕt(t, x) = g′(t)(
1
2
− x)2 ≤ 1

4
g′(t),

ϕx(t, x) = −2g(t)(
1
2
− x)− S∗,

ϕxx(t, x) = 2g(t).

(i) If g′(t) ≤ 8dg(t)− 4qS∗ as in Remark 3.1, then 1
4g
′(t) ≤ 2dg(t) + 2qg(t)( 1

2 −
x) + qS∗ and therefore,

ϕt(t, x) ≤ dϕxx − qϕx.

(ii) dϕx(t, 0)− qϕ(t, 0) = −dg(t)−dS∗− q
4g(t) + qS∗ = −(d+ q

4 )g(t)− q
2S+ q2

2dS.
Therefore, if 0 ≤ g(t) ≤ A as in Remark 3.1, then

dϕx(t, 0)− qϕ(t, 0) ≥ −q
2
S ≥ −qSin(t).

(iii) ϕx(t, 1) = g(t)− S∗ < 0 since g satisfies the conditions in Remark 3.1.
Combining (i), (ii), and (iii), it follows that ϕ is a strict sub-solution of (2.1).
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• For ψ. Similarly, the scripts ψt, ψx, and ψxx represent the first and second
partial derivatives of ψ with respect to t and x, respectively. We have

ψt(t, x) = −g′(t)(1
2
− x)2 ≥ −1

4
g′(t),

ψx(t, x) = 2g(t)(
1
2
− x) + S∗,

ψxx(t, x) = −2g(t).

(i) If g′(t) ≤ 8dg(t)−4qS∗ as in Remark 3.1, then − 1
4g
′(t) ≥ −2dg(t)−2qg(t)( 1

2−
x) + qS∗ and therefore,

ψt(t, x) ≥ dψxx − qψx.

(ii) dψx(t, 0)− qψ(t, 0) = dg(t)− dS∗ + q
4g(t)− qS∗ = (d + q

4 )g(t)− q
2 S̄ −

q2

2d S̄.
Therefore, if 0 ≤ g(t) ≤ A as in Remark 3.1, then

dψx(t, 0)− qψ(t, 0) ≤ −q
2
S̄ ≤ −qSin(t).

(iii) ψx(t, 1) = −g(t) + S∗ > 0 since g satisfies the conditions in Remark 3.1.
Combining (i), (ii), and (iii), it follows that ψ is a strict super-solution of (2.1).
Now, let us show that ϕ(t, x) ≤ ψ(t, x) for all t ≥ 0 and 0 ≤ x ≤ 1. Using

Remark 3.1,

ψ(t, x)−ϕ(t, x) = −2g(t)(
1
2
−x)2+(S∗+S∗)(1+x) ≥ (S∗+S∗)(1+x−(

1
2
−x)2) ≥ 0,

for all t ≥ 0 and 0 ≤ x ≤ 1.
Then, ϕ and ψ are properly ordered pair of strict sub- and super solutions of

(2.1). Therefore, by [7, Theorem 22.3], the equation (2.1) has a stable periodic
solution, w(t, x), which in turn is almost periodic. �

From assumption A2, the function f : C → Z is continuously differentiable.
Also, the semigroup T (t) is a C0-semigroup on Z. Then, by the usual existence
and regularity theorem (see [6, Theorem 3,1], [8, Theorem 1], [10, Theorem 1.5, p.
187]), we have the following theorem.

Theorem 3.3. Assume A2 holds. For any θ ∈ C, system (2.3) (and equivalently
(1.1)-(1.3)) has a unique mild solution u(t) with initial condition θ. Moreover, u(t)
is a classical solution of (2.3) for all t > 0. Also, if we denote by T(t)θ = u(t, θ)
the solution of (2.3), then T(t) is a nonlinear C0-semigroup on Z.

4. Main Result

In this section, we prove our main result on the existence of almost periodic
solutions of the system (2.2) which is equivalent to the distributed parameters
biochemical system (1.1)-(1.3). Let us first prove the following lemma.

Lemma 4.1. Under assumption A2, the solutions of (2.2) are bounded.

Proof. Let u(t) = (u1(t), u2(t)) be a solution of (2.2). Let us start with the second
component u2(t). In integral form, we have

u2t(.) = T2(t)θ2(.) +
∫ t

0

T2(t− s)f2(s, us)ds.
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Therefore,

|u2t(.)| ≤ |θ2(.)|+N

∫ t

0

e−γ(t−s)|u2s|ds,

where N is an upper bound of the function µ. Recall that

(f2(t, u))(x) = µ(u1(−r, x) + w(t, x), u2(−r, x))u2(−r, x).

Applying the Gronwall inequality, we obtain

|u2t(.)| ≤ |θ2(.)| exp
(
N

∫ t

0

e−γ(t−s)ds
)
≤ |θ2(.)| exp

(N
γ

)
.

Therefore, u2 is bounded in Z2. Now, observe that (f1(t, u))(x) = −kµ(u1(0, x) +
w(t, x), u2(0, x))u2(0, x). Since the function µ is bounded and we just proved that
u2 is also bounded, then f1(s, us) is also bounded. Using the integral form

u1(t) = T1(t)θ1(0) +
∫ t

0

T1(t− s)f1(s, us)ds

of u1, we deduce from [10, p.236, Lemma 2.4] that u1 has a compact closure in Z1.
Therefore, u1 is bounded in Z1. �

Now, we can state and prove our main result.

Theorem 4.2. Assume A1–A3 hold. Then, system (2.2) has an almost periodic
solution, u = (u1, u2), in the sense of definition 2.1.

Proof. Observe that the function f in the system (2.2) is almost periodic in t,
uniformly with respect to u, since the function w(t, x) in the expression of f is an
almost periodic solution of (2.1).

Let u(t) = (u1(t), u2(t)) be a bounded solution of (2.2) corresponding to the
almost periodic solution w(t, x) of (2.1), with initial condition u(s) = (θ1(s), θ2(s)),
r ≤ s ≤ 0. In integral form, we have

u1(t) = T1(t)θ1(0) +
∫ t

0

T1(t− s)f1(s, us)ds,

u2(t) = T2(t)θ2(0) +
∫ t

0

T2(t− s)f2(s, us)ds.

Since the semigroup T1(t) is compact and f1 is bounded, then we can deduce from
[10, p. 236, Lemma 2.4] that u1(t) has a compact closure in Z1. Therefore, for
any sequence u1(t+ τn), we can extract a subsequence u1(t+ rn) that satisfies the
Cauchy uniform convergence in Z1.

Now, let us consider the component u2(t) of the solution. Let u2(t + τn) be
a sequence. Since f2(t, u) is almost periodic in t, uniformly in u, by Theorem
2.2, we can extract a subsequence f(t + rn, u) which satisfies the Cauchy uniform
convergence. In integral form, we have

u2t(.) = T2(t)θ2(.) +
∫ t

0

T2(t− s)f2(s, us)ds.

Let i, j be positive integers. We have

|u2(t+i) − u2(t+j)| ≤ |T2(t+ i)− T2(t+ j)||θ2(.)|+ |
∫ t+i

0

T2(t+ i− s)f2(s, us)ds
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−
∫ t+j

0

T2(t+ j − s)f2(s, us)ds|

Introducing the change of variables in the integrals, we obtain:

|u2(t+i) − u2(t+j)|

≤ |e−γ(t+i) − e−γ(t+j)||θ2(.)|+
∫ t

0

T2(t− s)|f2(s+ i, us+i)− f2(s+ j, us+j)|ds

+ | −
∫ 0

−i
T2(t− s)f2(s+ i, us+i)ds+

∫ 0

−j
T2(t− s)f2(s+ j, us+j)ds|

≤ |e−γ(t+i) − e−γ(t+j)||θ2(.)|+
∫ t

0

T2(t− s)|f2(s+ i, us+i)− f2(s+ i, us+j)|ds

+
∫ t

0

T2(t− s)|f2(s+ i, us+j)− f2(s+ j, us+j)|ds

+ | −
∫ 0

−i
T2(t− s)f2(s+ i, us+i)ds+

∫ 0

−j
T2(t− s)f2(s+ j, us+j)ds|

≤ |e−γ(t+i) − e−γ(t+j)||θ2(.)|+ L

∫ t

0

e−γ(t−s)|u1(s+i))− u1(s+j))|ds

+ L

∫ t

0

e−γ(t−s)|u2(s+i))− u2(s+j))|ds

+
∫ t

0

e−γ(t−s)|f2(s+ i, us+j)− f2(s+ j, us+j)|ds

+ | −
∫ 0

−i
T2(t− s)f2(s+ i, us+i)ds+

∫ 0

−j
T2(t− s)f2(s+ j, us+j)ds|,

where L is the Lipschitz constant of of the function f2. Observe that
(i) For any ε > 0, there exists l1(ε) > 0, such that if i, j ≥ l1(ε) then |e−γ(t+i)−

e−γ(t+j)| < ε.
(ii) Since u1(t) has a compact closure, then: for any ε > 0, there exists l2(ε) >

0, such that if i, j ≥ l2(ε), then |u1(t+i) − u1(t+j)| < ε. Therefore,

L

∫ t

0

e−γ(t−s)|u1(s+i) − u1(s+j)|ds ≤ Lε
∫ t

0

e−γ(t−s)ds =
Lε

γ
(1− e−γt) < Lε

γ
.

(iii) By Theorem 2.2: for any ε > 0, there exists l3(ε) > 0, such that if i, j ≥
l3(ε) then

|f2(s+ i, us+j)− f2(s+ j, us+j)| < ε.

Therefore,∫ t

0

e−γ(t−s)|f2(s+ i, us+j)− f2(s+ j, us+j)|ds ≤ ε
∫ t

0

e−γ(t−s)ds ≤ ε

γ
.

(iv) Finally, for the last integral we have:

I = | −
∫ 0

−i
T2(t− s)f2(s+ i, us+i)ds+

∫ 0

−j
T2(t− s)f2(s+ j, us+j)ds|

≤
∫ 0

−i
T2(t− s)|f2(s+ j, us+j)− f2(s+ i, us+i)|ds
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+
∫ −i
−j

T2(t− s)|f2(s+ j, us+j)|ds

≤
∫ 0

−i
T2(t− s)|f2(s+ j, us+j)− f2(s+ j, us+i)|ds

+
∫ 0

−i
T2(t− s)|f2(s+ j, us+i)− f2(s+ i, us+i)|ds+N2

∫ −i
−j

e−γ(t−s)ds,

where N2 is an upper bound of the function f2. If we proceed as in (i),
(ii) and (iii), we obtain: for any ε > 0, there exists l4(ε) > 0, such that if
i, j ≥ l4(ε) then

I ≤ εL
∫ 0

−i
e−γ(t−s)ds+ ε

∫ 0

−i
e−γ(t−s)ds+

N2

γ
(e−γ(t+i) − e−γ(t+j))

≤ εL

γ
+
ε

γ
+
εN2

γ
= ε
(L+N2 + 1

γ

)
.

Combining, (i), (ii), (iii) and (iv), for i, j ≥ l(ε) = min
(
l1(ε), l2(ε), l3(ε), l4(ε)

)
,

we obtain

|u2(t+i) − u2(t+j)|

≤ ε+
Lε

γ
+
ε

γ
+ ε
(L+N2 + 1

γ

)
+ L

∫ t

0

e−γ(t−s)|u2(s+i) − u2(s+j)|ds

≤ ε
(
1 +

L

γ
+

1
γ

+
L+N2 + 1

γ

)
+ L

∫ t

0

e−γ(t−s)|u2(s+i) − u2(s+j)|ds.

Applying the Gronwall inequality, we obtain

|u2(t+i) − u2(t+j)| ≤ ε
(2 + γ + 2L+N2

γ

)
exp

(
L

∫ t

0

e−γ(t−s)ds
)

≤ ε
(2 + γ + 2L+N2

γ

)
exp

(L
γ

(1− e−γt)
)

≤ ε
(2 + γ + 2L+N2

γ

)
exp

(L
γ

)
.

Therefore, taking ε′ = ε
(

2+γ+2L+N2
γ

)
eL/γ and interchanging the roles of ε and

ε′, we obtain: for any ε > 0, there exists l(ε) > 0, such that if i, j ≥ l(ε) then
|u2(t+i) − u2(t+j)| < ε. That is the component u2(t) of the solution is also almost
periodic. Hence, the system (2.2) has an almost periodic solution. �

Final remarks. This paper was devoted to the qualitative analysis of a distributed
parameter biochemical systems with time delay and time varying input. The ba-
sis for the system studied here is derived from the work performed on anaerobic
digestion in the pilot fixed bed reactor of LBE-INRA in Narbonne (France) and is
mainly inspired from the dynamical models built and validated on the process (see
[1, 14]). The growth function in [1], [14] and subsequently in [5], is expressed via
the law:

µ(S,X) = µ0
S

KSX + S + 1
Ki
S2

(4.1)

which clearly satisfies the assumption A2 of our present paper. In (4.1), the reaction
is considered autocatalytic; i.e., the biomass(microorganism) is not only a product
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of the reaction, but also a catalyst of that reaction. Therefore, although our present
work is inspired from dynamical models built and validated on the process, our
main result can be applied to many different situations with different models of the
growth function (or reaction term).

Acknowledgments. We are thankful to the anonymous referees for their thor-
ough examination of the paper, making comments that substantially improved the
manuscript.
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