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LOCAL WELL-POSEDNESS FOR DENSITY-DEPENDENT
INCOMPRESSIBLE EULER EQUATIONS

ZHIQIANG WEI

ABSTRACT. In this article, we establish the local well-posedness for density-
dependent incompressible Euler equations in critical Besov spaces.

1. INTRODUCTION

We consider the following density-dependent incompressible Euler equations in
RN, N >2,

atg+ (U : V)Q = 07
I(ov) + (v-V)(ev) + VP = of,
dive =0,

(97 U)'t:O = (907 UO)a

where 0 < m < go(z) < M < oo and lim,_, 1+, 00(z) = 9, without loss of generality,
assume that p = 1. Suppose that f = 0, just for simplicity, then one can rewrite
the above equations as

dp+(v-V)p=0,
o+ (v-Vo+ (14 p)VP =0,
dive =0, (1.1)

1
p= E — ]., (,0, U)lt:() = (p()’UO)'

If go(x) = o = 1, then is the standard incompressible Euler equations. For
this Euler model, we mention the following local well-posedness results. Given
vo € H™(RY), m > N/2 + 1, Kato [8] proved local existence and uniqueness for
a solution belonging to C([0,T]; H™(RY)) with T' = T'(||vo||g=). Later on, many
various function spaces (see [3, [0 12| [13]) are used to establish the local existence
and uniqueness for the incompressible Euler equations. For example, W*P(RY)
with s > N/p+1, 1 <p < ocoisused in [9] and F;, for s > N/p+1,1 < p < o0,
1 < g < ooisused in [3].

For the density-dependent Fuler equations, it is worth noting the following re-
sults. Beirao da Veiga and Valli [I] discussed the local existence and uniqueness for
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in a bounded domain with various condition. In unbounded domain, Itoh [7]
proved the local existence and uniqueness for with initial data in H?(R3).

In this work we establish the local existence and uniqueness for the system
with initial data in the critical (with respect to the scaling invariance) Besov spaces.

Theorem 1.1. Let p € (1,00). There exists a constant ¢ depending only on N,
such that for any given py € B;Xl/pH(RN) and vy € Bg{pH(RN), divvg = 0 with

Hp()HB;V{erl <eg, (1.2)

there exists a T = T (p, ||poll gv/v+1s [voll grso+1), the system (L) has a unique
p;1 p,1

solution (p,v,VP) with p € C([QT];B;Y{I’H), v E C([O,T];Bg{pﬂ) and VP €

LY(0,T; BY{"H.

We remark that Theorem 1.1 gives a local existence and uniqueness theorem for
under a small perturbation of an initial constant density state. We wish to
discuss the well-posedness for problem without the restriction , in other
words, a perturbation of any initial density in the future. It is worth to point out
that local well-posedness is established in [14] for the periodic case without .
For the case of supercritical Besov spaces, we refer to [I5].

For the standard 2-D incompressible Euler equations in the critical (borderline)

Besov spaces Bf,’/lp T1(R2), Vishik [12] showed the (global) well-posedness recently.
Just as he said in his paper, it is of great interest to establish local well-posedness for
high dimensional Euler equations. Obviously, Theorem 1.1 is true for the standard
incompressible Euler equations (pg(z) = 0, (1.2]) automatically holds). In other
words, we recover the following local well-posedness theorem for incompressible

Euler equations in the critical Besov space Bg{pH(RN) [13].

Corollary 1.2 ([13]). Given any vy € Bgl/pH(RN), 1 < p < oo, there exists a
T =T(|lvoll gn/p+1) and a unique solution (v, VP) to the system
p,1

% (Vw4 VP =0,

ot
dive =0,
v(z,t =0) =v(x),
such that
v(z,t) € C(10,T); BAPY) and VP e LY0,T; BY["*).

p,1

In Theorem 1.1, if p = 2, then the smallness assumption on py can be removed.
More precisely, we have

Theorem 1.3. Assume pg € Bé\’[{zH and vy € BQ{QH, divvg = 0. Then there

ezists T = T(||pol| gn/2+1, |[vol| gr/2+1) such that the system (1.1)) has a uniqueness
2,1 2,1

solution (p,v,VP) with p € C’([O,T];Bé\fl/ﬂl), v € C([O,T];Bé\’/{ﬂl) and VP €

LY0,T; BY*™).

Remark 1.4. After completing this article, the author was informed that Theorem

1.3 already was proved in [4]. However, the proof of Theorem 1.3 in Section 4 is
different from proof in [4]. Another purpose is to investigate the difference of space
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B;)V {p *1 between general p # 2 and p = 2. We hope we can get ride of smallness

restriction (1.2)) in a future work.

2. LITTLEWOOD-PALEY DECOMPOSITION AND BESOV SPACES

We start by recalling the Littlewood-Paley decomposition of temperate distribu-
tions. Let S be the class of Schwartz class of rapidly decreasing functions. Given
f € S, the Fourier transform is defined as

F) = F= Gyers [, S

One can extend F and F~! to S’ in the usual way, where S’ denotes the set of all
tempered distributions. Let ¢ € S satisfying

suppd < {€: 2 <[fl <=} and Y dETIG=1,
jez
for € # 0. Setting ¢; = 4(277¢), in other words, ¢;(x) = 2/N¢(27z), for any f € &,

we define

Ajf=¢;xf and S;f= > ¢ixf. (2.1)
k<j—1
The homogeneous Besov semi-norm || f|| 5. and Triebel-Lizorkin semi-norm || f|
p,q

Fi
are defined next.

Definition 2.1 ([I0, 11I]). For —co < s < 00, 0 < p < 00, 0 < ¢ < 00, set

| Ve
Ul = [(Z27185718) ™, it g € (0,00),
Pra \sup, 28 e, g =oo.

iqs 1/ .
e = LI 2518510 s, i g € (0,00),
o lsup; (27018 fDllze, i g = oo,

The spaces By . and Fj , are quasi-normed spaces with the above quasi-norm

given by Definition 2.1. For s > 0, (p, q) € (1,00) x [1, 0], we define the inhomoge-
neous Besov space norm | f||p;  and inhomogeneous Triebel-Lizorkin space norm

|7y, of f € as
1Flss, = Ufllze + 1l - DFlrg, = 17+ 1Fes - (22)

The inhomogeneous Besov and Triebel-Lizorkin spaces are Banach spaces equipped
with the norm || f||ps  and | f[|Fs respectively.
Let us now state some classical results.

Lemma 2.2 (Bernstein’s Lemma [10, 11]). Assume that k € Z*, f € LP, 1 <p <
00, and supp f C {2772 < [€] < 27}, then there exists a constant C(k) such that the
following inequality holds.

C (k)™ 2% fllzr < IID*fllLe < C(R)2™| fLo-

For any k € Z*, there exists a constant C(k) such that the following inequalities
are true:

Ok 1D Fll sy, < 1l < CR)IF s, (2.3)
O 1D fll gy < Il ggie < CORI S - (2.4)
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Lemma 2.3 (Embeddings [I0, 11]). (I) Let s € R, p € (1,00), € > 0 and ¢1,q2 €
[1700]’ q1 < g2, then

58 nl} S Hs+te s
s s [SEEN
Bp,l Fp,2 Bp7<x>’ BP;QI Bp,qz'

(IT) Let p € (1,00), then

BN/ZU(_)LOO’ BN/p‘—>LOO

p,1 p,1
Proposition 2.4 (Product). If s > N/p, and suppose f,g € B;Xl/p N B;l, then
fg € B;,l and
I7glls, , < (171, ol o + gl 151 g0 (25)

We will prove this proposition in the appendix.

Lemma 2.5 (Commutator [5]). Suppose that s € (—N/p — 1,N/p|]. Then for

fEBg{p+1 and g € B?

5.1, we have
,

I1F, A5)gllr < C277 TV £ gy lg]

Bs o

Lemma 2.6 (Interpolation [I0, I1]). Let 1 < p1,¢1,p2 < 00 and 1 < g2 < o0.
Then

< fle. 1-0
1£155, < W0y IF2
holds for all f € st)i,ql N Bgiqz provided that

1 0 1-4 1 0 1-0
s=0s1+(1—0)sy, —=—+ , —=—+ .
p D1 P2 q q1 qz

3. PROOF OF THEOREM 1.1

In this section, we establish the existence and uniqueness of the solutions to (|1.1))
(Theorem 1.1). In the sequel, C' denotes a absolute constant, which maybe different
from line to line.

Consider the linear system

v+ (w-V)v+ VP = f,
dive =0, (3.1)
v(z,t =0) = vg(x).

We have easily the existence of a local solution for (3.1)).

Proposition 3.1. Assume that divw =0, w € L>=(0,T; Bgl/pﬂ), feLo,T;
Bg{pﬂ), for some T > 0. Then for any vy € Bgl/pﬂ, divvg = 0, there ewists

a unique solution v € C(O,T;Bg{p+1) to (3.1), and then VP can be determined
uniquely.
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The above proposition will be showed in the appendix. To prove the existence,
we consider the following approximate linear iteration system for (1.1)),

Ot 0™Vt =0,
e e R VA S Vi A v o
dive™ = divo™ =0,

(0", 0" D) lmo = (p"71(0),v"F(0)) = (S+1p0, Sn+1%0),

where (p°,0%, P%) = (0,0,0). If we have the uniform estimate for the sequence
(p",v™, VP™) by induction, which satisfies the conditions in Proposition 3.1, then
the second equation of can be solved with v"*! and VP"*1. While p"*! can
be obtained easily by solving the linear transport equation. So we establish uniform
estimates first.

Uniform estimates. For the first equation of 7 thanks to the divergence free
of v™, it follows that for any 1 < p < oo,

(3.2)

" Ollee < llp" T (0) e, for > 0. (3-3)

Applying the operator A; on the both sides of the linear transport equation, we
obtain

O A" 4 (V" V) A T = o, AV (3.4)
Multiply (3.4]) by |Ajp”+1 |1’_2Ajp"“‘17 and integrate over R", due to the divergence

free of v™, then one has

1 d V3 n n
1850 L < ™, A1V Lo 140" HIE

< 0C;2- ]S”vn”BN/P+1Hpn+1HB“ 180" M1

where we used the commutator estimate for s < % + 1 and Hoélder’s inequality.
Thus

d iy
SIAGH s < OC27 0" gy 0™ g (35)
Multiplying (3.5) by 27¢ and taking summation over j, we have
d
1o s, < I g 16 . (36

By Gronwall inequality and (3.3]), we have the estimate for p"*?,

B < [P TH0)] |Bs exp / Cllv™( HBN/p+1dt) (3.7

p,1

sup [[p" (., 1)
0<t<T

Multiplying each coordinate in second equation of (3.2) by |v;""|P~2v"!, where

”‘H is the I-th coordinate of the vector field v™*!, thanks to Holder’s inequality,
we have
1d -1
E%Hv P < VP e lof I+ IV P e oI

< Cllp™ gy IV P o i T + IV P o o I
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T
sup [[v" | Lo < [[0"F1(0)]| e +C/ 1™ | e [V P (-, 1) o dt
0<t<T 0 1 (3.8)

T
+/ VP (., 1) Lrdt.
0
Now taking A; on the second equation of (3.2), we obtain
AT 4™ VAT VAP = [0 AV — A (p" VP, (3.9)
Multiplying (3.9)) coordinate by coordinate with |Ajvl”+1 |p_2Ajvl”+1, and integrat-
ing over R, we have
d n
*llA /%
n n p—1
<CH A1V 1A I
+ HA-( VP80 I 1AV P e A (310)
< 0C27 NP ||| N/,,+1|\v”+1|\BN/p+1||A o I

+ 185 (" VPl o | Ao I+ 1AV P o | Ao I

Then applying 2/(V/P+1) on (3.10) and taking summation yields

|| "“II N+1<CHU"H N+1||v"“|| x + Ol VP N+1+||VP”“|| N

pl pl pl pl

< Ol g [+ g + Cllo™ g IV P gy
P

+Clo" | gypa IVP | gvye + IIVP"“II N

pl

By Gronwall’s inequality and (3.8]), for all 0 < ¢ < T, we have
T
(G ||BN/p+1 < ||U"+1(0)||B§{p+1 exp (C’/O [lo™( )HBN/pHdt)
T T
+/ An(t) exp (C/ 0" (., )||BN/p+1dT)dt (3.11)
0 t

T
4+ [ 10y p VP )
0 P,

where

An(t) = Cllp"| 2 VP st Cllo™|| [V +HVP”“|| N (3.12)
p 1 p 1 p 1 p 1 p 1
Now we give estimates for the pressure. Taking divergence on both sides of the
second equation of (3.2, we have
—AP™! = div(v™ - Vo) + div(p"VP");

thus
0;0;P™* = R;R; div(v" - V") + R;R; div(p"VP"). (3.13)
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For 1 < p < oo, in [10} 1], it was proved that FIE{Q = L? and R; is bounded from
Fz‘f,q into itself [6]. Due to Bernstein’s lemma, we have

N
VP = ||VP"+1||F;{2 <C Z ||87;8jP"+1||F;21
ij=1
< Ol div(e" - Vo™ ) o + OV VPl (3.14)

< Ol - Vo o + Clo"V P o
< Ol ool gy |+ Cllo" g IV P72,

where we used the embedding Lemma 2.3. From (3.13)) it follows that

N
IVP" v < © Z 19:0; P
3,j=1
N
<C X ARRDNO gy + Ol VP s 319
VLA

< Ol | g0 gavgpes + Cllp™ Lo |V P | g
+ CHanB;X{erl HVPHHB;V{P
Combining (3.14) and (3.15)), one has
T
| IV 0l e
0 Pl

T

SCIIP"IILOO(QT;B%W)/O IV (1) vyt (3.16)
+ CT]v"| x| Ny
Lo (0,780, ) Loo(0,T5B,7, )

Note that although the above constants C' maybe depend on N, m, M and p, it is
nothing to do with n, therefore we can obtain uniform estimates by induction.

In fact, suppose that initial data py and vg satisfies
“ <&
2 -2
for some C1,C5 > 0 and C] is sufficiently small. Then the following inequalities
hold

lleoll gvps < lvoll /o

+1
”pn ||L°O(O,T*;B;X{p+l) S 017

+1
||vn ||LDO(O,T*;B;X{Z)+1) < Oy, (317)
||vpn+1HL1(O,T*;B}IX{P+1) S 033

for all n > 0 and some C5 < C3/(8C'C1), provided that T (independent on n) is
sufficiently small.

We show ([3.17]) by mathematical induction. Note that (3.17]) holds obviously for
n = 0. Suppose (3.17) is true for n, we want to prove (3.17)) holds for n 4+ 1. From

(3.7, (3.11), (3.12) and (3.16]), we have

Gy
H/thl ||L°°(0,T;B1]x{p+1) < ? eXp(TCQ)>
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||’U7L+1 ||L°°(O,T;B;X{p+1)

C
< ?2 exp(CTCy) + CCLCs + C(C1Cs3 + Cal[v" | o o 1, ey T) exp(CTC),

||VPn+1HL1(0,T;Bf,V,{”“) S GG+ CTCQHU”+1||L°°(O,T;B;]x{p+l

)’

So one can choose T, sufficient small, such that

COQT exp(C’T 02) S

)-lkM—t

Moreover, T, satisfies
exp(T,.Cs) < 2,
2Cy eXp(CT*CQ) +4CC1Cs eXp(CT*CQ) < 509,

g
2 )
provided that C; < C/2. Then by induction, (3.17) holds for n + 1-th step. Hence
we get the uniform estimate for each n.
Convergence.

To prove the convergence, it is sufficient to estimate the difference of the iteration.

Take the difference between the equation (3.2)) for the (n + 1)-th step and the n-th
step, and set

CT,C2 <

wnJrl _ pn+1 o pn’ U n+l ,Un” HnJrl Pn+1 Pn’

then we obtain the equation
Qw0 VT ™ Vet =0,
O o™ - VT 4™ Vot 4+ VI = —w" VP — p" T VITT,
dive"™t = divo™ =0,
(W™ u" =0 = (w"1(0),u"+1(0)) = (Anpo, Anvy),

First, we do the estimate for w™™1. Multiplying |w™™*[P=2w"*! on both sides of
the first equation of (3.18)) and integrating over RV, we have
©
dt

(3.18)

"o < lu™ - Vo lee < Ju < [Vo™ | 1o
< Ol s 190", (3.19)
< " g 0" 5.,
Applying A; on both sides of the first equation of , we have
AW F o™ AT 4 A (U - V™) = ", AV (3.20)
Multiplying by |A;wTHP=2A;w ! and integrating over RV, we have

w™ n n -1
|| e < 1A @™ - Vo) oo [Ajw™ T,

+ Cp2 NP 0| ooy [T oo A0

Then applying 27/? and taking summation, we obtain
d

2 e (3:21)

W g < Clla g l0™ gpgons + Clle" g 0"
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Combining (3.19) and (3.21)), it follows that

d

i1 g < Cllo™ L grppellu®ll gy + Cllv
Just as what done for v™*!, multiplying the second equation of (3.18]) coordinate
by coordinate with |u”+1|p 2yt where u)' ™! is the I-th coordinate of the vector

field v *!. Thanks to Holder’s mequality, we have

N/p+1||w +1||BN/p (3.22)

"l g

d

D s < V0o + VP
S P )

< Cllll g 10”55, + Clla™ v IV P o
+ CHP”*IIIB;V{FIWH”HLP + (VI .
Applying A; on the second equation of (3.18)), we obtain
AN ju T 4™ VAU 4 VAT
(3.24)

= [0, Aj]Vu™ T — A (u™ - Vo) — Aj(w" VP 4 p" VD).

1

Multiplying each coordinate with |Ajul ™! [P~2A;u™!, and integrating over R,

we have

d n
aHAg‘U e

< CCj2_jN/p||’Un||BN/p+1 ||un+1||BN/p + ||A (u™ - VU”)HLp (3.25)
+ 1A (W VP [ Lo + 1 A5(p" T VI | 2o + (|4 VI | 2o

Then applying 2/V/? on (3.25)) and taking summation yields

d
S e

< Ol g [0 g + Cll™ - Vo™ e
" P g+ " T o VT
p,1 p,1 p,1
< Ol o 1 v + Ul gl o

+ Cl™ g IV P g+ Cllo™ s VT v + [ VT

(3.26)

"llg

Combining ([3.23)) and ( -, we have
d
+
s s
< Ol ll gyl gavge + Cllo™ | gavgoes [ | v

+ CIVP [ gy llw™ll g + Cllo™ gy VI | vy + IV g

(3.27)
Now we give estimates for VII"*!. Applying the operator div on both sides of the
second equation of ([3.18)), we have

—ATI" = div(v™ - Vu™ ) 4 div(u™ - Vo) + div(w"VP" + p" "1 VIT");
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thus

0;0;TI" = R, R; div(v™ - Vu™) + R;R; div(u™ - Vo™)
+ RlR] dlv(w"VP") + RiRj div(p”‘1VH").

Thanks to the divergence free of v™, we have

N N N
div(e™ - Vu ) = " ooy = D okdvup ) = Y di(Okviup ).
k=1 k=1 k=1

Due to Bernstein’s lemma, we have

N
VI = [V e <€ (0,017
ij=1
< Cfldiv(w™ - Vu" )y + O div(u™ - Vo")|| -1
+C| div(w"VP")HFE% +C div(p"_IVf[")”l;;21

N (3.28)
<C Z |0 vfuf ™ | e + Cllu™ - Vo™ || e

k,l=1
+ Clw™V P™|| e + C||p" VIT"|| s
< Cllv™ | gvgpas lu™H ze + Cllu™ Lo [l™ || gpss
p,1 p,1

+ Ol g VP [ Le + C||p"*1\|35{p||VH"||Lp,

where we used the embedding in Lemma 2.3 and the product estimate. Similarly,

N
||VH"+1||Bg{p <C ) Haz@jH"HHBg{w
3,j=1
N
<C > HRiRjal(akvl“ug“)||BN{p,1 +Cllw"V P gy
i.gk =1 " "
+ Cllu™ - Vo' gy + CIIP"’1VH"IIBN¢
P, P,
N (3.29)
<C ) Hakv?UZ“HBﬂp + Cllw"VP”IIBg{p
k=1
+ Ol - V| grse + Cllp" VI | gy
p,1 p,1
< CIIU”HBQ{W HU”HIIBIJX{@ + CHW"IIBQ{@HVP”HBXP

+ Ol gl | vy + Cllpm v/ VI | g
Combining (3.28)) and ([3.29)), it follows that
IVI o < Cllo g s + CIVP 0" o

- (3.30)
o+ Cl s I 7+ ClO™ g VT v
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Therefore, if we add (3.22), (3.27)) and (3.30]) together, then we obtain,

d +1 d +1

— n e n VHn+1

"+ e Iy

§c4(||w"+1|| y o+ [ x| ﬂ) (3.31)
BP? BP BP

p,1 p,1 p,1
-1
+CIVE | grppllw™ || gy + Cllo™ | vy VI vy,
where C} is a constant depending on the uniform bounds of Hp"||Lm(0 T BN
T p,

||Un71HLoc(o,T*;Bﬁ{”+l) and ||v”||Lm(O7T*;BZJX{p+1). Then integrate (3.31]) on the time
interval (0,71) C [0,T%], T1 sufficiently small, such that

1

1
T <= p" <=
C4174, c|v <2

”Ll(o,Tl;BjI{”)
Then (3.31)) yields

[ e [P

+1
oy Tl omisy) IV o zym2r)

4 n n 1 n
< 3 (™ Ol gs + 10" Ol oo ) + 510" e 015070, (3:32)
1 n 4 n—1 n
+ g”u ||L°°(O,T1;B;\{{p) + gOHp ||L°°(0,T1;B${{p)”vn ”Ll(O,Tl;Bé\{{p)'
Due to the smallness of Cy, say CCy < 1/4, from (3.32)) it follows that
||wn+1||Lm(O’T1;B£{p) + ||un+1||Loo(o,T*;B£f{p) + HVH”+1||L1(0,T1;B:{{’)) — 0,

as n tends to infinity.

Therefore, from the uniform estimates, we find that there exists a limit (p, v, VP)
belonging to C(0,T; Bo1P ™) x C(0,T; BN 1"*") x L'(0,T; B1"), which is the so-
lution to , for sufficient small T

This complete the proof of local existence theorem. Next we turn our attention
to the uniqueness of solutions.

Uniqueness. Suppose (p1,v1, VP) and (pa, v, VP,) are two solutions to (1.1)
with the same initial data. If we set p = p1 — p2, v = vy — vy and P = P, — Ps,
then we get a similar system as as

Otp+v1-Vp+uv-Vpy =0,
Ow+v1-Vo+v-Vug+ VP =—p VP — pV Py,
divv; = diveg =0,

(pvv)‘t:O = (070)

Just as in the convergence part for the sequences, we can treat (3.33) as , and
obtain

(3.33)

||pHL°°(O,T1;BIZZ{p) + ||U||L°°(0,T1;Bg{p) + HVP||L1(O7T1;B£{{F)

1
< 2 (16l 0 13,3570+ W0l o270y + IV Pl a2y )

provided that T is sufficiently small and [|pol| zv/p+1 is sufficiently small. This
p,1

implies the uniqueness.
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4. PROOF OF THEOREM 1.3

Now we use the following iteration system
Ot 0™Vt =0,
Bpo™ ™ Vo (14 p") VP =0,
divo™t! = dive™ =0,

(", 0" ) im0 = (p"71(0),0"FH(0)) = (Sn+1p0, Sn+10),

with the corresponding linear system

ov+w-Vo+ (1+p)VP =0,
dive =0, (4.2)
v(z,t =0) = vg(x).

First, we have the following existence and uniqueness result, which will be proved

in the appendix.

Proposition 4.1. Assume that divw =0, w € L*(0,T; Bé\jl/%l), p € L>(0,T;

Bé\jl/zﬂ), for some T' > 0. Then for any vy € BQ{ZH, divwg = 0, there exists a

unique solution v € C(0,T} Bg{%l) to (4.2). Consequently, VP can be uniquely
determined.

Now, we go to the proof for Theorem 1.3.
Uniform estimates.
As in (3.7), for p"*1, we have the estimate

T
sup ||p”+1(.,t)||B;1§||p"“(0)||B;1exp(/ C’||v"(.,t)\|BN/p+1dt). (4.3)
0<t<T ’ ' 0 p.1

Multiplying the second equation of ([4.1)) by v"*! and integrating over RY, we
obtain

d n n n n n
Dol < I 0" e VP 2 < O+ 0 gy VP o (4.4
Applying A; on the second equation of (3.2)), we obtain

QA" T 0" VAT = [0, AV — A (14 pM)VPT). (4.5)
Multiplying (4.5 by Aﬂ)”“ and taking the divergence free property of v™ into
account, we have

d n —J n n
A g < OC2 IOV o s o g
145 (1 + p") VP ) e

Applying 27(N/2+1) op (4.6) and taking summation, and using the product estimate,
we have

d
%H’UnJrlHBév{%—l < C||”“||B;’{2+1 ”UnJrl”Bé,V{Q'H + CH(I + p")VP"“||Bév{z+1

(4.6)

< O™ gygpen 074 vjaos + CQU+ 10" 302 TP yxgne
+ O+ (107 e VP o
2,1 2,1

(4.7)
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So the remaining thing is to give an estimate for the pressure. For this purpose,
we apply the operator div on both sides of the second equation of the system (4.1),
and get

div ((1 + p") VP 1) = —div(v™ - Vo). (4.8)

Since 1+p = % is bounded away from 0, we can assume that 1+ p” bounded away
from 0, without loss of generality (otherwise, we take p"(0) = S, {mpo, such that
1+ p™ bounded away from 0 for sufficiently large integer m).

Multiplying by P"*! and integrating by parts, one has

IVP" g2 < Cllo™ - Vo |2 < Cllv™ ||z [[0™ | gz (4.9)
B2 1

Applying A; on ({.8)), we have

—div ((1+ p")VA; P =div ([A;, (14 p™)]VP" ) + Ajdiv (v - Vo).
(4.10)
Multiplying (4.10]) by AjP"‘H and integrating over RY, due to the bounds of 14 p™,
we obtain that

18, VP [T < Cll[A;, (14 p")]VP | 2| AV P 2

O 0 T AP s, Y
Multiplying by 27%/2 on and taking summation, we have
VP g
< OO+ 107 e IV P s + Clo™l a7
< O+ 0" g IV P [ 2w Pt 0D
(4.12)

+ Ol g o™ oo
n n N-1)/(N+1 n 2/(N+1
< OO+ 110" gy VP s D [P D

+ Cllv " g

nHBN/zHU N/2+1,

where we used the interpolation and embedding lemmas, which listed in Section 2.
So thanks to Young’s inequality and (4.9)), it follows from (4.12)) that

n N+1)/2 n n
IVP™ gy < O+ 10"l L2 0™+ gy
- (4.13)
+ Cllo gy ™ v
If we apply 2/(N/2+1) on ([£.11)), similarly, we obtain
||VP”+1HBN/2+1 <C(l+ ||anBN/2+1)HVPn+1||BN/2 + C|| div(v™ - V’Un—H)HBN/z
2,1 1
n N+1)/(N+3 n 2/(N+3
< OO+ 7 g VPG iV P L
+ CII@kvl”alka“ HBN/Q
n N+1)/(N+3 n 2/(N+3
< COA (19| gy VP NM [P RNE)

+C||U"||B£{2+1||U n+1 ||Bé\{{z+1,
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where we used interpolation, embedding and product lemmas. Hence

N
IVP"H gaen < CAH " g™ 2llo™ gy
L (4.14)
+C||U ||Bé\f{2+1|‘v n+ HBé\{{erl.

Now combining (4.4)), (4.7)) (4.13) and (4.14), we obtain

d
prd [ [

Cllo™ )t n e n+l
< . 21+ 1+ p) + 2 v N
R ST s o s v [ I

OO g o™ gy 0™ s
OO+ 07 g I e 0™ g

Apply Gronwall’s inequality on (4.15]), we obtain
T
sup ||rUn+1||BN/2+1 < ||,Un+1( )||BN/2+1 exp (/ Bn(t)dt), (416)
0<t<T 2,1 0
where By, (t) is the coefficient of HUn+1HBN/2+1 in (4.15); i.e.,

Bu(®) = 1L+ 10" o) (10" L gy + ol + 1070 %
’ ,1
is (4.17)
n 2 n n
+ o ”Bﬁ“)) + O+ 11" gyl | gy

It is clear that the uniform estimates follows from (4.3)), (4.16]) and (4.17).
Convergence. Let w™t!, u"*! and II"*! be the same sequences as those in Section
3. The system reads

Qw0 VT "Vt =
o™ o™ VT ™ Vo 4 (14 p")VIT' 4w VP =0,
divw"™ ! = dive™ = 0,
(w1 u" =0 = (w"1(0),u"+1(0)) = (Anpo, Anvy).
1

(4.18)

The estimates for w™*!, "1 and II"*! are similar to those in Section 3, so we
just write down the estimates directly.

d

dt” n+1||BN/2 < OHp ||BN/2+1||UH||BN/2 —|—CH’U”HBN/2+1||U) +1HB;J{2. (419)
d n+1
el < nil . nil . nl n
gl e < Cllu™ll gz o™l gy, + O+ "l ) IVIF 2 (4.20)
+ Cllw”|| gl [V P 2.
2,1
d
dt” n+1||BN/z < C|o™ HBN/2+1||U +1||BN/2 +C(1+|p" ||BN/2)||VH ||BN/2 (4.21)
n n ’
+ Cllw™ 2 IV P | gpvge + Cllu gy llo” gy
IVIT g2 < Cllo™ | el gy, + Cllul gge 0”53 o

+ Ol 2 IV P 2.
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[T a2 < QL+ 97 s IV 2 o Cllo™ | g ™ g
o+ Ol g IV Pl g+ Cl gy e
(4.23)

It follows from and that the estimate for VII"*! can be represented in
term of p"~1, v"~! and v™. Due to the uniform estimates and —, then
the convergence follows from the same argument as that in Section 3.

The uniqueness follows from the analogous argument and estimates as that in

Section 3 and (4.19)-(4.23).

5. APPENDIX

To prove the second part of Proposition 2.4, we show the following lemma, which
clearly implies Proposition 2.4.

Lemma 5.1. Let s >0, 1 <p <oo. If f and g belong to B;”l N L*>, then fg is in

B; 1, and

I fgl

g:, < C(Iflls=lg B )- (5.1)

Proof. We use Bony’s decomposition [2] to represent the product as

g, + lollz=1f

where
Trg=3_ Si-1f8jg, R(f,9) =D A f(Aj1+ 45+ Ajia)g.
J J
By compactness of the supports of the series of Fourier transform, for any w, v,
AkAlu = 0, |k’ — l| > 2, Ak(SqflquU) = 0, if |k — q| > 5.
It follows that

> 2A gl =27 Y 1A;(Si-1fAjg)lLe

JEL JEeZ l7—3'1<4

< Csup [|Syfllz= D 2|18 glLr (5.2)
q j'ezr

< Cllgllz=£ll
Similarly,

1o 15, < ClFle~llgls, . (53)
It follows from Bony’s formula that

A;R(f,g) = > Aj(AvfAjg)

max{i,j'}>j—3,[i' =5’ |<1

= D D AAifAyg).

Jr2j—4li—j'|<1
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Therefore, by Minkowski inequality, we have

1
Yoo 3 ST S 2 Ay k(A A9l

jEZ k>—4m=—1j'€Z
1
<C 2R YT N2 Ay fArg e (5.4)
E>—4 m=—1;'¢cZ ’

< Osup |y fllz= Y 27 AjgllLr
q

J'EL
<Ol flle=llglss -

Then (5.1]) follows from (5.2)), (5.3) and (5.4]). O
Remark 5.2. Actually, we can prove the Moser type inequality
1795, < C(1lmllglls, -+ lolen I Fl5:, )

provided that f € LP1 N Bﬁ%q, s >0,1<p4q,p1,re < 00,9 € L™ QB;Q’q,
1 <71,p2 <00 and

1 1 1 1 1

pipl D2 T1 T2

Proof of Proposition 3.1. The idea is to approximate (3.1]) by linear transport equa-
tions. First we find that (3.1)) is equivalent to the system

ow+w-Vo+ VP = f
—AP =div(w - Vv) — div f, (5.5)
v(z,t =0) =vg(z), diveg=0.
So we approximate (5.5 by the linear transport equations
8tvn+1 +w- v,UnJrl 4 VP" = f7
—AP" =div(w - V") — div f, (5.6)
V" (2t = 0) = S, 1v0(x).
The existence theorem for (5.6) is well-known for each n. Just as the proof of
Theorem 1.1, we should give a uniform estimates for the sequence v"*! and the

convergence of the corresponding sequence. In order to do so, we only need to do
a priori estimates for the equivalent system (5.5). First, we have

d
SO gess < Cllwll g ol vgoss + 15 gyoss + VPl gges. (5.7)

The estimate for the pressure is easy now, it reads
IVPlgxees < Cllwlgagsssllol gagsss +Cllfl o

Therefore, from (5.7) it follows that

d
Sl Bllpagoes < Cllwllgwpnillvl g +Cllfll s (53)
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Apply Gronwall inequality on (5.8]),

t
o Ollgygen < ool exp ([ Cllute o)l gypoonds)

t t
[Ny wep ([ Cluts)l yds)ar
0 B;l T BP?

p;1

(5.9)

Since we have the a priori estimate (5.9)), the existence and uniqueness of solutions
for the system (5.5) can be obtained by the approximate sequence v+ solutions
to ((5.6). This completes the proof. [

Proof of Proposition 4.1. Just as for Proposition 3.1, note that (4.3) is equivalent
to the linear system

Oow+w-Vu+ (1+p)VP =0,
—div ((1 4 p)VP) = div(w - Vv), (5.10)
v(z,t =0) =vg(z), diveg=0.
The linear transport approximate system is
O™ - Vo 4+ (14 p)VP" =0,
—div ((1 4 p)VP") = div(w - Vo), (5.11)
V" (2t = 0) = S, 1v0(x).

It is easy to establish a priori estimates for the system (|5.10)), then we can prove the
existence and uniqueness of the solution, which is a limit of the iteration sequence.
We would like to skip the details of the proof, for conciseness. O
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ADDENDUM POSTED ON SEPTEMBER 5, 2013

After publication, the author received the following comments.

The smallness assumption on initial data was removed in: Raphaél Danchin; On
the well-posedness of the incompressible density-dependent Euler equations in the
L? framework. J. Differential Equations 248 (2010), 8, 2130-2170.

The case p = oo was treated in: Raphaél Danchin, Francesco Fanelli; The well-
posedness issue for the density-dependent Euler equations in endpoint Besov spaces.
J. Math. Pures Appl. (9) 96 (2011), 3, 253-278.

The author wants to thank the anonymous reader for sending this information.

It was also commented that a result similar to Theorem 1.1 was obtained in:
Young Zhou; Local well-posedness and regularity criterion for the density dependent
incompressible Euler equations. Nonlinear Anal. 73 (2010), no. 3, 750-766.

Our article studies the critical case s = p/n + 1, in the space Bg/ﬁ“; while the

above reference studies the super-critical case s > p/n + 1, in the space By o
End of addendum.
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