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PICONE’S IDENTITY FOR A SYSTEM OF FIRST-ORDER
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

JAROSLAV JAROŠ

Abstract. We established a Picone identity for systems of nonlinear partial

differential equations of first-order. With the help of this formula, we obtain

qualitative results such as an integral inequality of Wirtinger type and the
existence of zeros for the first components of solutions in a given bounded

domain.

1. Introduction

The purpose of this article is to establish a Picone-type identity for the nonlinear
differential system

∇u = uA(x) +B(x)‖v‖q−2v,

div v = −C(x)|u|p−2u−D(x) · v,
(1.1)

where p > 1 is a constant, q = p/(p − 1) is its conjugate, A(x), D(x) ∈ C(Ω; Rn),
C(x) ∈ C(Ω,R), B(x) = diag{B1(x), . . . , Bn(x)} is a diagonal matrix with the
positive entries defined and continuous in a bounded domain Ω ⊂ Rn with a piece-
wise smooth boundary ∂Ω and u and v denote real- and vector-valued functions
of x = (x1, . . . , xn), respectively, which are continuously differentiable in their do-
mains of definition. Here div and ∇ are the usual divergence and nabla operators,
‖ · ‖ is the Euclidean length of a vector in Rn and the dot is used to denote the
scalar product of two vectors in Rn.

If the special case A(x) ≡ 0 in Ω, the system (1.1) is equivalent with the second-
order half-linear partial differential equation

div
(
P (x)‖∇u‖p−2∇u

)
+R(x) · ‖∇u‖p−2∇u+Q(x)|u|p−2u = 0, (1.2)

where

P (x) = B(x)1−p, R(x) = B(x)1−pD(x), Q(x) = C(x).

If the coefficient P (x) is a scalar function, then (1.2) reduces to the equation studied
in [9] where the following theorem was proved.
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Theorem 1.1. Suppose that there exists a nontrivial function y ∈ C1(Ω; R) such
that y = 0 on ∂Ω and

MΩ[y] ≡
∫

Ω

[
P (x)

∥∥∇y − 1
p

R(x)
P (x)

y
∥∥p −Q(x)|y|p

]
dx ≤ 0. (1.3)

Then every solution u of (1.2) must have a zero in Ω.

The proof of the above theorem was based on an identity which says that if u is
a solution of (1.2) satisfying u(x) 6= 0 in Ω and y ∈ C1(Ω; R) is not identically zero
in Ω, then

div
[
|y|pP (x)

‖∇u‖p−2

|u|p−2u
∇u
]

= P (x)
∥∥∇y − y

pP (x)
R(x)

∥∥p −Q(x)|y|p − P (x)
{∥∥∇y − y

pP (x)
R(x)

∥∥p

− p
(
∇y − y

pP (x)
R(x)

)
·
∥∥y
u
∇u
∥∥p−2 y

u
∇u+ (p− 1)

∥∥y
u
∇u
∥∥p
}
.

(1.4)

Moreover, if D(x) ≡ 0 in Ω, then (1.2) reduces to

div
[
P (x)‖∇u‖p−2∇u

]
+Q(x)|u|p−2u = 0. (1.5)

Identities of Picone type for (1.5) (or its special case where P (x) ≡ 1 in Ω) were
established by several authors including Allegretto [1], Dunninger [3], Kusano et al
[6] and Yoshida [10] who obtained a variety of qualitative results based on these
formulas. For an extension of Picone’s identity to the case of pseudo-p-Laplacian
and anisotropic p-Laplacian see Došlý [2] and Fǐsnarová et al [4], respectively. As
was demonstrated in Mař́ık [7], an alternative approach to (1.2) and (1.5) can be
based upon Riccati-type equations and inequalities.

While comparison and oscillation theory for equations of the type (1.2) and
(1.5) is well-developed, there appears to be little known for general systems such
as (1.1), particularly in the case where A(x) 6= 0 or A(x) 6= D(x) in Ω (for some
results concerning the case p = 2 see Wong [11]).

The purpose of this article is to generalize Picone’s identity for nonlinear partial
differential systems of the form (1.1) and illustrate its applications by deriving
Wirtinger-type inequalities formulated in terms of solutions of the system (1.1)
and obtaining results about the existence and distribution of zeros of the first
component of the solution of (1.1). Our results involve an arbitrary continuous
vector-valued function G(x) and particular choices of this function lead to different
integral inequalities or criteria for the existence of zeros of first components of
solutions of (1.1). They are new even when they are specialized to the case of the
damped equation (1.2).

This article is organized as follows. In Section 2, the desired generalization of
Picone’s formula to nonlinear system (1.1) is derived and some particular cases of
this new identity are discussed. Section 3 contains some applications of the basic
formula which include the integral inequalities of the Wirtinger type and theorems
about the existence of zeros for components of solutions of system (1.1).

2. Picone’s identity

Define ϕp(s) := |s|p−2s, s ∈ R, and Φp(ξ) := ‖ξ‖p−2ξ, ξ ∈ Rn. Let ξ, η ∈ Rn

and B be a diagonal matrix with positive entries Bi, i = 1, . . . , n. Define the form
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FB by

FB [ξ, η] = ξ ·B1−pΦp(ξ)− pξ ·B1−pΦp(η) + (p− 1)η ·B1−pΦp(η). (2.1)

where B1−p = diag{B1−p
1 , . . . , B1−p

n }. The next lemma establishes the generaliza-
tion of Picone’s identity for the nonlinear system (1.1).

Lemma 2.1. Let (u, v) be a solution of (1.1) with u(x) 6= 0 in Ω. Then, for any
y ∈ C1(Ω; R) and G ∈ C(Ω,Rn),

div
[
|y|p v

ϕp(u)

]
=
[
∇y − yG(x)

]
·B(x)1−pΦp(∇y − yG(x))− C(x)|y|p

−
[
p
(
A(x)−G(x)

)
+D(x)−A(x)

]
· |y|

p

ϕp(u)
v

− FB [∇y − yG(x), B(x)yΦq(v)/u].

(2.2)

Proof. If (u, v) is a solution of (1.1) with u(x) 6= 0 and y ∈ C1(Ω,R), then a direct
computation yields

div
[
|y|p v

ϕp(u)
]

= p
ϕp(y)
ϕp(u)

∇y · v − (p− 1)
|y|p

|u|p
∇u.v +

|y|p

ϕp(u)
div v . (2.3)

Using (1.1), adding and subtracting the terms [∇y−yG(x)]·B(x)1−pΦp(∇y−yG(x))
and pyG(x).B(x)1−pΦp(B(x) y

uΦq(v)) (=pyG(x) · ϕp(y)
ϕp(u)v

)
on the right-hand side of

(2.3), we obtain

div
[
|y|p v

ϕp(u)

]
=
[
∇y − yG(x)

]
·B(x)1−pΦp(∇y − yG(x))

− C(x)|y|p −
[
p
(
A(x)−G(x)

)
+D(x)−A(x)

]
· |y|

p

ϕp(u)
v

−
{[
∇y − yG(x)

]
·B(x)1−pΦp

(
∇y − yG(x)

)
− p
[
∇y − yG(x)

]
·B(x)1−pΦp

(
B(x)

y

u
Φq(v)

)
+ (p− 1)B(x)

y

u
Φq(v) ·B(x)1−pΦp

(
B(x)

y

u
Φq(v)

)}
,

which is the desired identity (2.2). �

Remark 2.2. If we put y(x) ≡ 1 in (2.2) and denote w = v/ϕp(u), then (2.2)
becomes the generalized Riccati equation

divw +
[
pG(x) + (p− 1)B(x)Φq(w)

]
·B(x)1−pΦp

(
B(x)Φq(w)

)
+
[
p
(
A(x)−G(x)

)
+D(x)−A(x)

]
· w + C(x) = 0 .

(2.4)

Moreover, if G(x) ≡ 0 and B(x) is a scalar function, then the Riccati-type equation
(2.4) reduces to

divw + (p− 1)B(x)‖w‖q +
[
(p− 1)A(x) +D(x)

]
· w + C(x) = 0. (2.5)

In the particular case where A(x) ≡ 0 and B(x) ≡ 1 in Ω, Equation (2.5) has
been employed by Mař́ık [8] as a tool for studying oscillatory properties of damped
half-linear PDEs of the form (1.2).
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Remark 2.3. If G(x) ≡ 0 in Ω, then (2.2) simplifies to

div
[
|y|p v

ϕp(u)

]
= ∇y ·B(x)1−pΦp(∇y)− C(x)|y|p

−
[
(p− 1)A(x) +D(x)

]
· |y|

p

ϕp(u)
v − FB [∇y,B(x)

y

u
Φq(v)

]
.

(2.6)
In the particular case p = 2, the identity (2.6) reduces to the formula used (implic-
itly) by Wong [11] in establishing an integral inequality of the Wirtinger type and
comparison theorems based on this inequality for the linear system

∇u = uA(x) +B(x)v, div v = −C(x)u−D(x) · v, (2.7)

and its Sturmian minorant

∇y = ya(x) + b(x)z, div z = −c(x)y − d(x) · z, (2.8)

where the coefficient functions satisfy the same assumptions as above with the only
difference that because of the linearity of the problem the matrices b(x) and B(x)
are not necessarily diagonal, but are allowed to be any continuous symmetric and
positive definite matrices.

The choice G(x) = (1/q)A(x) + (1/p)D(x) in (2.2) yields

div
[
|y|p v

ϕp(u)
]

=
[
∇y − y

(A(x)
q

+
D(x)
p

)]
·B(x)1−pΦp

(
∇y − y

(A(x)
q

+
D(x)
p

))
− C(x)|y|p − FB

[
∇y − y

(A(x)
q

+
D(x)
p

)
, B(x)

y

u
Φq(v)

]
.

(2.9)

Under the further restriction A(x) ≡ 0 and B1(x) = · · · = Bn(x) =: B(x) in Ω,
the identity (2.9) reduces to the following Yoshida’s formula for partial differential
equations with p-gradient terms (see[9, Theorem 8.3.1]):

div
[
|y|p v

ϕp(u)
]

= B(x)1−p
∥∥∇y − y

p
D(x)

∥∥p − C(x)|y|p − FB

[
∇y − y

p
D(x), B(x)

y

u
Φq(v)

] (2.10)

which was used in proving Theorem 1.1.

3. Applications

In what follows, for simplicity we restrict our considerations to the “isotropic”
case where B1(x) = · · · = Bn(x) =: B(x). In this special case it follows from [6,
Lemma 2.1] that the form FB [ξ, η] defined by (2.1) is positive semi-definite and the
equality in FB [ξ, η] ≥ 0 occurs if and only if ξ = η.

As the first application of the identity (2.2) we establish an inequality of the
Wirtinger type.

Theorem 3.1. If there exists a solution (u, v) of (1.1) such that u(x) 6= 0 in Ω
and [

p
(
A(x)−G(x)

)
+D(x)−A(x)

]
· v

ϕp(u)
≥ 0 (3.1)
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in Ω, then the inequality

JΩ[y] :=
∫

Ω

[
B(x)1−p

∥∥∇y − yG(x)
∥∥p − C(x)|y|p

]
dx ≥ 0 (3.2)

holds for any nontrivial function y ∈ C1(Ω; R) such that y = 0 on ∂Ω. Moreover,
if
[
p(A−G) +D−A

]
· v/ϕp(u) ≡ 0 in Ω, then equality in (3.2) occurs if and only

if y(x) is a solution of

∇y =
[
G(x) +B(x)

Φq(v)
u

]
y. (3.3)

Proof. Assume that (1.1) has a solution (u, v) with u(x) 6= 0 in Ω which satisfies
(3.1). Let y(x) be a nontrivial continuously differentiable real-valued function such
that y = 0 on ∂Ω. Integrating (2.2) on Ω and using the divergence theorem we get

0 = JΩ[y]−
∫

Ω

[
p
(
A(x)−G(x)

)
+D(x)−A(x)

]
· |y|

p

ϕp(u)
v dx

−
∫

Ω

FB [∇y − yG(x), B(x)yΦq(v)/u]dx.

Since the form FB is positive semi-definite and the condition (3.1) holds, we con-
clude that

0 ≤ JΩ[y]
as claimed. Clearly, if

[
p(A−G)+D−A

]
v/ϕp(u) ≡ 0 in Ω, then the equality holds

in (3.2) if and only if FB [∇y − yG(x), B(x)yΦq(v)/u] ≡ 0 in Ω which is equivalent
with the condition (3.3). �

As an immediate consequence of the above theorem we have the following result.

Corollary 3.2. Let (u, v) be a solution of (1.1) such that u(x) 6= 0 in Ω and[
p
(
A(x)−G(x)

)
+D(x)−A(x)

]
· v

ϕp(u)
≡ 0 (3.4)

in Ω. Then, for every nontrivial y ∈ C1(Ω; R) such that y = 0 on ∂Ω, the inequality
(3.2) is valid. Moreover, the equality holds in (3.2) if and only if

∇
(y
u

)
=
y

u

(
G(x)−A(x)

)
(3.5)

in Ω.

Proof. We need to show only that (3.5) is equivalent to (3.3). Using the first
equation in (1.1), it is easily seen that

∇y −
[
G(x) +B(x)

y

u
Φq(v)

]
y = ∇y − y

u
∇u+ y

[
A(x)−G(x)

]
= u∇

(y
u

)
+ y
[
A(x)−G(x)

]
= u

[
∇
(y
u

)
− y

u

(
G(x)−A(x)

)]
,

from which the assertion follows. �

In the case where G(x) ≡ A(x) ≡ D(x) in Ω, condition (3.4) is trivially satisfied
and inequality (3.2) reduces to∫

Ω

[
B(x)1−p

∥∥∇y − yA(x)
∥∥p − C(x)|y|p

]
dx ≥ 0.
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Clearly, in this special case the equality in (3.2) occurs if and only if y(x) is a
constant multiple of u(x).

Another choice of G(x) which guarantees the satisfaction of (3.4) is

G(x) =
(p− 1)A(x) +D(x)

p
.

The last result specializes as follows.

Corollary 3.3. If (u, v) is a solution of (1.1) with u(x) 6= 0 in Ω and a nontrivial
y ∈ C1(Ω; R) is such that y = 0 on ∂Ω, then

JΩ[y] =
∫

Ω

[
B(x)1−p

∥∥∇y − y (p− 1)A(x) +D(x)
p

∥∥p − C(x)|y|p
]
dx ≥ 0. (3.6)

Furthermore, equality in (3.6) occurs if and only if

y(x) = Ku(x) exp{f(x)} on Ω (3.7)

for some constant K 6= 0 and some continuous function f(x).

Proof. It suffices to prove (3.7). If (3.5) holds, then from [5, Lemma 2.3] if fol-
lows that there exists a continuous function f(x) such that y(x) is proportional to
u(x) exp{f(x)}. The proof is complete. �

The above result can be reformulated as the following theorem which generalizes
[9, Theorem 8.3.2].

Corollary 3.4. If for some nontrivial C1-function y(x) defined on Ω and satisfying
y = 0 on ∂Ω, the condition

JΩ[y] =
∫

Ω

[
B(x)1−p

∥∥∇y − y (p− 1)A(x) +D(x)
p

∥∥p − C(x)|y|p
]
dx ≤ 0 (3.8)

holds, then for any solution (u, v) of (1.1) the first component u(x) must have a
zero in Ω.
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Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathe-

matics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
E-mail address: jaros@fmph.uniba.sk


	1. Introduction
	2. Picone's identity
	3. Applications
	References

