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EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC
DEGENERATE SYSTEMS WITH L1 DATA AND

NONLINEARITY IN THE GRADIENT

ABDELHAQ MOUIDA, NOUREDDINE ALAA, SALIM MESBAHI, WALID BOUARIFI

Abstract. In this article we show the existence of weak solutions for some

quasilinear degenerate elliptic systems arising in modeling chemotaxis and an-

giogenesis. The nonlinearity we consider has critical growth with respect to
the gradient and the data are in L1.

1. Introduction

Reaction-diffusion systems are important for a wide range of applied areas such
as cell processes, drug release, ecology, spread of diseases, industrial catalytic pro-
cesses, transport of contaminants in the environment, chemistry in interstellar me-
dia, to mention a few. Some of these applications, especially in chemistry and
biology, are explained in books by Murray [26, 27] and Baker [10]. While a general
theory of reaction-diffusion systems is detailed in the books of Rothe [34] and Grzy-
bowski [21]. Various forms of this problems have been proposed in the literature.
Most discussions in the current literature are for linear or nonlinear systems and
different methods for the existence problem have been used, see Alaa et al [1]–[9],
Baras [11, 12], Boccardo et al [15], Boudiba [16] and Pierre et al [29]-[32]. This is
a relatively recent subject of mathematical and applied research. Most of the work
that has been done so far is concerned with the exploration of particular aspects
of very specific systems and equations. This is because these systems are usually
very complex and display a wide range of phenomena remain poorly understood.
Consequently, there is no established program for solving a large class of systems.
For example a system of Chemotaxis, which is a biological phenomenon describ-
ing the change of motion of a population densities or of single particles (such as
amoebae, bacteria, endothelial cells, any cell, animals, etc.) in response (taxis) to
an external chemical stimulus spread in the environment where they reside see for
example [28]. The simple mathematical model which describes such a phenomenon
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reads as follows
∂u

∂t
−Du∆u+∇(κ(u)∇u+ χ(v)∇v) = 0 in Ω× (0, T )

∂v

∂t
−Dv∆v +∇(ζ(u)∇u+ η(v)∇v) = 0 in Ω× (0, T )

u(0) = u0, v0(0) = v0

(1.1)

here u and v are the population densities. For a simple expansion, we include

a(x) =
∂κ(u)
∂u

, b(x) =
∂χ(v)
∂v

, c(x) =
∂ζ(u)
∂u

, d(x) =
∂η(v)
∂v

f = −(κ(u)∆u+ χ(v)∆)v, g = −(ζ(u)∆u+ η(v)∆v) .

Then the system can be written as
∂u

∂t
−Du∆u+ a(x)|∇u|2 + b(x)|∇v|2 = f in Ω× (0, T )

∂v

∂t
−Dv∆v + c(x)|∇u|2 + d(x)|∇v|2 = g in Ω× (0, T )

u(0) = u0, v0(0) = v0 .

(1.2)

In this work we are interested in the quasilinear elliplic degenerate problem

u−D1∆u+ a(x)|∇u|2 + b(x)|∇v|α = f(x) in Ω

v −D2∆v + c(x)|∇u|β + d(x)|∇v|2 = g(x) in Ω
u = v = 0 on ∂Ω

(1.3)

where Ω is an open bounded set of RN , N ≥ 1, with smooth boundary ∂Ω, the
diffusion coefficients D1 and D2 are positive constants, a, b, c, d, f, g : Ω→ [0,+∞)
are a non-negative integrable functions and 1 ≤ α, β ≤ 2.

We are interested in the case where the data are non-regular and where the
growth of the nonlinear terms is arbitrary with respect to the gradient. To help
understanding the situation, let us mention some previous works concerning the
problem when a, b, c, d ∈ L∞(Ω).
• if f, g are regular enough (f, g ∈W 1,∞(Ω)) and for all α, β ≥ 1, the method of

sub- and super-solution can be used to prove the existence of solutions to (1.3). For
instance (0, 0) is a subsolution and a solution, w = (w1, w2), of the linear problem

w1 −D1∆w2 = f(x) in Ω

w1 −D1∆w2 = g(x) in Ω
w1 = w2 = 0 on ∂Ω,

(1.4)

is a supersolution. Then (1.3) has a solution (u, v) ∈W 1,∞
0 (Ω)∩W 2,p(Ω); see Lions

[23].
• If f, g ∈ L2(Ω) and 1 ≤ α, β ≤ 2, then |∇u|α, |∇v|β ∈ L1(Ω). Many authors

have studied this problem and showed that (1.3) has a solution (u, v) ∈ H1
0 (Ω) ×

H1
0 (Ω), see Bensoussan et al [14], Boccardo et al [15] and the references there in.
• If f, g ∈ L1(Ω) and 1 ≤ α, β < 2, Alaa and Mesbahi [1] proved that (1.3) has

a non negative solution (u, v) ∈W 1,1
0 (Ω)×W 1,1

0 (Ω).
• The case where f, g ∈ M+

B (Ω) (f, g are a finite non negative measures on Ω)
has treated by Alaa and Pierre [9]. They proved that if 1 ≤ α, β ≤ 2 and the
supersolution w = (w1, w2) ∈ H1

0 (Ω) × H1
0 (Ω), then the problem (1.3) has a non

negative solution (u, v) ∈ H1
0 (Ω)×H1

0 (Ω).
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We are particularly interested in the case of a system (1.3) when a, b, c, d, f, g
are not regular, more precisely, a, b, c, d, f, g are in L1(Ω).

Let us make some specifications on the model problem

u−D1∆u+ b(r)|∇v|α = f in B

v −D2∆v + c(r)|∇u|β = g in B

u = v = 0 on ∂B

(1.5)

where B is the unit ball in RN , r = ‖x‖ and

b(r) = c(r) =

{
− ln r if N = 2
r2−N if N ≥ 3 .

(1.6)

In this case, b(r), c(r) are in L1
loc(B) but not in L∞(B). As a consequence the

techniques usually used to prove existence and based on a priori L∞-estimates on
u and ∇u fail. To overcome this difficulty, we will develop a new method which
differ completely of the previous approach.

We have organized this article as follows. In section 2 we give the precise setting
of the problem and state the main result. In section 3 we present an approximate
problem and we give suitable estimates to prove that (1.3) has a solution in the
case where the growth of the nonlinearity with respect to the gradient is arbitrary.

2. Assumptions and statement of main results

Let f, g, a, b, c, d are functions that satisfies the following assumptions

f, g ∈ L1(Ω), f, g ≥ 0 (2.1)

a, b, c, d ∈ L1
loc(Ω), a, b, c, d ≥ 0 (2.2)

First, we have to clarify in which sense we want to solved problem (1.3).

Definition 2.1. We say that (u, v) is a weak solution of (1.3) if

u, v ∈W 1,1
0 (Ω)

a(x)|∇u|2, b(x)|∇v|α, c(x)|∇u|β , d(x)|∇v|2 ∈ L1
loc(Ω)

u−D1∆u+ a(x)|∇u|2 + b(x)|∇v|α = f(x) in D′(Ω)

v −D2∆v + c(x)|∇u|β + d(x)|∇v|2 = g(x) in D′(Ω)

(2.3)

We are interested to proving the existence of weak positive solutions of the
problem (1.3). For this, we define the truncation function Tk ∈ C2, such that

Tk(r) = r if 0 ≤ r ≤ k
Tk(r) ≤ k + 1 if r ≥ k
0 ≤ T ′k(r) ≤ 1 if r ≥ 0

T ′k(r) = 0 if r ≥ k + 1

0 ≤ −T ′′k (r) ≤ C(k) .

(2.4)
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For example, the function Tk can be defined as
Tk(r) = r in [0, k]

Tk(r) =
1
2

(r − k)4 − (r − k)3 + r in [k, k + 1]

Tk(r) =
1
2

(k + 1) for r > k + 1 .

(2.5)

Then we define the the space

τ1,2(Ω) =
{
w : Ω→ R measurable, such that Tk(w) ∈ H1(Ω) for all k > 0

}
This enables us to state the main result of this paper.

Theorem 2.2. Assume that (2.1) and (2.2) hold, and 1 ≤ α, β < 2. If there exists
a function θ ∈ τ1,2(Ω) and a sequence θn ∈ L∞(Ω) such that

0 ≤ a, b, c, d ≤ θ in Ω
θn → θ a.e. Ω

∇Tk(θn)→ ∇Tk(θ) strongly in L2(Ω)

lim
k→∞

sup
n

(1
k

∫
Ω

|∇Tk(θn)|2
)

= 0

(2.6)

Then the problem (1.3) has a non negative weak solution.

Remark 2.3. (i) If a, b, c, d ∈ L∞(Ω), then (2.6) is satisfied. Indeed, θ can take
the value of any non negative constant C, such that

C ≥ max
{
‖a‖L∞ , ‖b‖L∞ , ‖c‖L∞ , ‖d‖L∞

}
(2.7)

(ii) Hypothesis (2.6) holds for the functions ξ = b or c given in (1.6). Indeed
−∆ξ = λ is in this case the measure of Dirac which is a finite non negative measure
on Ω. By consequent, we take θ = ξ and θn solution of

−∆θn = λn in Ω
θn = 0 on ∂Ω,

(2.8)

where λn ∈ C∞0 (Ω), λn → λ in L1(Ω) and λn ≤ λ. Then, we can applied Theorem
2.2 and conclude the existence of the non negative weak solution for our model
problem (2.1).

3. Proof of theorem 2.2

3.1. An approximation scheme. In this paragraph, we define an approximated
system of (1.3). For this, we truncate the functions a, b, c, d, f, g by introducing the
sequence an, bn, cn, dn, fn, gn defined as follows

an = min{a, θn}, bn = min{b, θn}, cn = min{c, θn}, dn = min{d, θn}
and

fn ∈ C∞0 (Ω), fn → f in L1(Ω), fn ≤ f
gn ∈ C∞0 (Ω), gn → g in L1(Ω), gn ≤ g

(3.1)

Then the approximate problem is

un, vn ∈W 1,∞
0 (Ω)

un −D1∆un + an(x)|∇un|2 + bn(x)|∇vn|α = fn(x) in D′(Ω)

vn −D2∆vn + cn(x)|∇un|β + dn(x)|∇vn|2 = gn(x) in D′(Ω) .

(3.2)
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One can see that an, bn, cn, dn are in L∞(Ω). On the other hand, (0, 0) is a subso-
lution of (3.2) and (Un, Vn) a solution of the linear problem

Un −D1∆Un = fn in Ω
Vn −D2∆Vn = gn in Ω

Un, Vn ∈W 1,∞
0 (Ω)

(3.3)

is a supersolution, then by the classical results in Amann and Grandall [13] and
Lions [23, 24], there exists (un, vn) solution of (3.2) such that

0 ≤ un ≤ Un for all n
0 ≤ vn ≤ Vn for all n

3.2. A priori estimates. To prove theorem 2.2, we propose to send n to infinity
in (3.2). For this we will need some estimates passing to the limit.

Lemma 3.1. Let un, vn, an, bn, cn, dn be sequences defined as above. Then (i)∫
Ω

|∇Tk(un)|2 ≤ k‖f‖L1(Ω)∫
Ω

|∇Tk(vn)|2 ≤ k‖g‖L1(Ω)

and (ii) ∫
Ω

bn.|∇Tk(vn)|α ≤ k‖f‖L1(Ω)∫
Ω

cn.|∇Tk(un)|β ≤ k‖g‖L1(Ω)

Proof. (i) By multiplying the first equation of (3.2) by Tk(un) and the second
equation by Tk(vn) and integrating over Ω, we have∫

Ω

|Tk(un)|2 +D1

∫
Ω

|∇Tk(un)|2

+
∫

Ω

anTk(un)|∇Tk(un)|2 +
∫

Ω

bnTk(un)|∇Tk(vn)|α ≤
∫

Ω

fnTk(un)

and ∫
Ω

|Tk(vn)|2 +D2

∫
Ω

|∇Tk(vn)|2

+
∫

Ω

cnTk(vn)|∇Tk(un)|β +
∫

Ω

dnTk(vn)|∇Tk(vn)|2 ≤
∫

Ω

gnTk(vn)

Thanks to the positivity of an, bn, cn, dn, the assumptions on fn and gn, the defini-
tion of the function Tk, we deduce the result.

(ii) Integrating the first equation of (3.2) over Ω, we obtain∫
Ω

un −D1

∫
Ω

∆un +
∫

Ω

an(x)|∇un|2 +
∫

Ω

bn(x)|∇vn|α =
∫

Ω

fn(x) (3.4)

On the other hand, it is well know that for every function y in W 1,1
0 (Ω) such that

−∆y = H, H ∈ L1(Ω)
y ≥ 0
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there exists a sequence yn in C2(Ω) ∩ C0(Ω) which satisfies

yn → y strongly in W 1,1
0 (Ω)

∆yn → ∆y strongly in L1(Ω)

The regularity of yn allows us to write∫
Ω

∆yn =
∫
∂Ω

∂yn
∂υ

dσ,

but yn ≥ 0 on Ω and yn = 0 in ∂Ω. Then ∂yn

∂υ ≤ 0. We deduce by passing to the
limit that

∫
Ω

∆y ≤ 0. Therefore ∫
Ω

∆un ≤ 0

The relation (3.4) yields∫
Ω

un +
∫

Ω

an(x)|∇un|2 +
∫

Ω

bn(x)|∇vn|α ≤
∫

Ω

fn(x) .

By (3.1); we conclude that∫
Ω

un +
∫

Ω

an(x)|∇un|2 +
∫

Ω

bn(x)|∇vn|α ≤ ‖f‖L1(Ω) .

In the same way, if we integrate the second equation of (3.2) over Ω, we obtain∫
Ω

vn +
∫

Ω

cn(x)|∇un|β +
∫

Ω

dn(x)|∇vn|2 ≤ ‖g‖L1(Ω),

hence the result follows. �

Remark 3.2. (1) Using the assertion (ii) of lemma 3.1, and the compactness of
the operator

L1(Ω)→W 1,q
0 (Ω)

G 7→ ϑ

where 1 ≤ q < N
N−1 , and ϑ is the solution of the problem

ϑ ∈W 1,q
0 (Ω)

αϑ−∆ϑ = G in D′(Ω)

we conclude the existence of u, up to a subsequence, still denoted by un for sim-
plicity, such that

un → u strongly in W 1,q
0 (Ω), 1 ≤ q < N

N − 1
,

(un,∇un)→ (u,∇u) a.e. in Ω

see Brezis [17]
(2) Assertion (i) implies that

(Tk(un), Tk(vn))→ (Tk(u), Tk(v)) weakly in H1
0 (Ω)×H1

0 (Ω)

Lemma 3.3. Let (un, vn) be a solution of (3.2), then

lim
h→+∞

sup
n

( 1
h

∫
Ω

|∇Th(un)|2dx
)

= lim
h→+∞

sup
n

( 1
h

∫
Ω

|∇Th(vn)|2dx
)

= 0
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Proof. We first remark that un satisfies

−∆un ≤ fn in D′(Ω)

If we multiply this inequality by Th(un) and integrate on Ω, we obtain for every
0 < M < h,∫

Ω

|∇Th(un)|2 ≤
∫

Ω∩{un≤M}
fTh(un) +

∫
Ω∩{un>M}

fTh(un)

≤M
∫

Ω

f + h

∫
Ω

fχ{un>M}

hence
1
h

∫
Ω

|∇Th(un)|2 ≤ M

h

∫
Ω

f +
∫

Ω

fχ{un>M}

|{un > M}| =
∫
{un>M}

dx ≤ 1
M
‖un‖L1 ≤ C

M

Then limM→+∞
(

supn |{un > M}|
)

= 0
On other hand, since f ∈ L1(Ω), we have for each ε > 0 there exists δ such that

for for all E ⊂ Ω,

|E| < δ

∫
E

|f | ≤ ε

2
.

Taking into account the above limit, we obtain that for each ε > 0, there exists Mε

such that for all M ≥Mε,

sup
n

(∫
Ω

fχ[un>M]

)
≤ ε

2

Taking M = Mε and letting h tend to infinity, we obtain

lim
h→∞

sup
n

( 1
h

∫
Ω

|∇Th(un)|2
)

= 0 .

�

Lemma 3.4. Let ηn be sequence such that ηn → η, a.e. in Ω and
∫

Ω
|ηn|2 ≤ C

then ηn → η in Lα(Ω) for all 1 ≤ α < 2.

Proof. We show that ηn is equi-integrable in Lα(Ω). Let E be a measurable subset
of Ω; we have ∫

E

|ηn|α ≤ |E|(2−α)/2
(∫

E

|ηn|2
)α/2

≤ C|E|(2−α)/2

Since 1 ≤ α < 2 then 0 < 2 − α ≤ 1. We choose |E| = ( εC )2/(2−α), we obtain∫
E
|ηn|α ≤ ε. �

3.3. Convergence. The aim of this paragraph is to prove that (u, v) (obtained in
the previous section) is in fact a solution of problem (1.3). According to definition
2.1, we have to show only that

u−D1∆u+ a(x)|∇u|2 + b(x)|∇v|α = f(x) in D′(Ω)

v −D2∆v + c(x)|∇u|β + d(x)|∇v|2 = g(x) in D′(Ω)
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By lemma 3.1, we know that an(x)|∇un|2, dn(x)|∇vn|2, bn(x)|∇vn|α, cn(x)|∇un|β
are uniformly bounded in L1(Ω). Moreover

an(x)|∇un|2 ≥ 0, dn(x)|∇un|2 ≥ 0, bn(x)|∇un|α ≥ 0, cn(x)|∇un|β ≥ 0

and for almost every x in Ω, we have

an(x)|∇un(x)|2 → a(x)|∇u(x)|2

dn(x)|∇vn(x)|2 → d(x)|∇v(x)|2

bn(x)|∇vn(x)|α → b(x)|∇v(x)|α

cn(x)|∇un(x)|β → c(x)|∇u(x)|β

Then there exists µ1, µ2 non negative measures, see Schwartz [35], such that

lim
n→+∞

(un −D1∆un + an(x)|∇un|2 + bn(x)|∇vn|α)

= u−D1∆u+ a(x)|∇u|2 + b(x)|∇v|α + µ1 in D′(Ω)

lim
n→+∞

(vn −D2∆vn + cn(x)|∇un|β + dn(x)|∇vn|2)

= v −D2∆v + c(x)|∇u|β + d(x)|∇v|2 + µ2 in D′(Ω)

Consequently,

u−D1∆u+ a(x)|∇u|2 + b(x)|∇v|α ≤ f in D′(Ω)

v −D2∆v + c(x)|∇u|β + d(x)|∇v|2 ≤ g in D′(Ω)

Therefore, to conclude the proof of Theorem 2.2, we must establish the opposite
inequality. For this, Let H be a function in C1(R), such that

0 ≤ H(s) ≤ 1

H(s) =

{
0 if |s| ≥ 1
1 if |s| ≤ 1

2

To this end, we introduce the test functions

Φ1 = ψ1 exp[− θn
D1

un]H(
θn
k

)H(
un
k

),

Φ2 = ψ2 exp[− θn
D2

vn]H(
θn
k

)H(
vn
k

)

where H denotes the function defined above and ψ1, ψ2 ≤ 0, ψ1, ψ2 ∈ H1
0 (Ω) ∩

L∞(Ω). We multiply the first equation in (3.2) by Φ1 and we integrate on Ω, we
obtain ∫

Ω

fnΦ1 =
∑

1≤j≤7

Ij ,

where

I1 =
∫

Ω

unΦ1,

I2 = D1

∫
Ω

∇un∇ψ1 exp[− θn
D1

un]H(
θn
k

)H(
un
k

)

I3 = −
∫

Ω

un∇un∇θnΦ1
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I4 =
D1

k

∫
Ω

∇un∇θnψ1 exp[− θn
D1

un]H ′(
θn
k

)H(
un
k

)

I5 =
∫

Ω

(an − θn)|∇un|2Φ1

I6 =
D1

k

∫
Ω

|∇un|2ψ1 exp[− θn
D1

un]H(
θn
k

)H ′(
un
k

)

I7 =
∫

Ω

bn.|∇vn|αΦ1

Next we study each term. For the first term, we have

lim
n→+∞

I1 = lim
n→+∞

∫
Ω

Tk(un)ψ1 exp[− θn
D1

un]H(
θn
k

)H(
un
k

)

=
∫

Ω

uψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

since

ψ1 exp[− θn
D1

un]H(
θn
k

)H(
un
k

)

converges strongly in L2(Ω) to

ψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
) in L2(Ω)

and ∇Tk(un) converges weakly to ∇Tk(u) in L2(Ω), (see [24, lemma 1.3, p 12]).
Concerning the second term, we get

lim
n→+∞

I2 = lim
n→+∞

D1

∫
Ω

∇Tk(un)∇ψ1 exp[− θn
D1

un]H(
θn
k

)H(
un
k

)

= D1

∫
Ω

∇u∇ψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

since

∇ψ1 exp[− θn
D1

un]H(
θn
k

)H(
un
k

)

converges strongly in L2(Ω) to

∇ψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
) .

For I3, we first remark that

lim
n→+∞

I3 = − lim
n→+∞

∫
Ω

Tk(un)∇Tk(un)∇Tk(θn)ψ1 exp[− θn
D1

un]H(
θn
k

)H(
un
k

)

= −
∫

Ω

Tk(u)∇Tk(u)∇Tk(θ)ψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

since

Tk(un)→ Tk(u) weakly in H1
0 (Ω)

Tk(θn)→ Tk(θ) strongly in H1
0 (Ω)

To study I4 and I6 we use Lemma 3.3. For I4, we have

I4 ≤ D1

[1
k

∫
Ω

|∇Tk(un)|2ψ1 exp[− θn
D1

un]H ′(
θn
k

)H(
un
k

)
]1/2
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× [
1
k

∫
Ω

|∇Tk(θn)|2ψ1 exp[− θn
D1

un]H ′(
θn
k

)H(
un
k

)]1/2

≤ D1[‖ψ1‖L∞(Ω)
1
k

∫
Ω

|∇Tk(un)|2]1/2[‖ψ1‖L∞(Ω)
1
k

∫
Ω

|∇Tk(θn)|2]12

since exp[− θn

D1
un] ≤ 1, thus

I4 ≤ D1[‖ψ1‖L∞δk]1/2[‖ψ1‖L∞ρk]1/2

Where
δk = sup

n
(
1
k

∫
Ω

|∇Tk(un)|2) and ρk = sup
n

(
1
k

∫
Ω

|∇Tk(θn)|2)

By Lemma 3.3, we have

lim
k→∞

δk = 0, lim
k→∞

ρk = 0

Then
lim
k→∞

sup
n

(I4) = 0

Similarly, for I6, we have
I6 ≤ D1‖ψ1‖L∞δk

Then
lim
k→∞

sup
n

(I6) = 0

Now we investigate the remaining term I5. Since an ≤ θn and ψ1 ≤ 0, we have

(an − θn)|∇un|2 exp[− θn
D1

u]H(
θn
k

)H(
un
k

) ≥ 0 in Ω

Therefore, by Fatou’s lemma, we obtain

lim
n→+∞

I5 ≥
∫

Ω

(a− θ)|∇u|2 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

For I7, we obtain

lim
n→+∞

I7 = lim
n→+∞

∫
Ω

Tk(bn)|∇Tk(vn)|αψ1 exp[− θn
D1

un]H(
θn
k

)H(
un
k

)

By a direct application of Lemma 3.3, we have |∇Tk(vn)|α → |∇Tk(v)|αstrongly in
L1(Ω), then

lim
n→+∞

I7 =
∫

Ω

b|∇v|αψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

We have shown that

ω(
1
k

) +
∫

Ω

uψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
) +D1

∫
Ω

∇u∇ψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

−
∫

Ω

u∇u∇θψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
) +

∫
Ω

(a− θ)|∇u|2 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

+
∫

Ω

b|∇v|αψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

≤
∫

Ω

fψ1 exp[− θ

D1
u]H(

θ

k
)H(

u

k
)

where ω(ε) denotes a quantity that tends to 0 when ε tends to 0. Now we choose

ψ1 = −ϕ1 exp[
θ

D1
u]H(

θ

k
)H(

u

k
)
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where ϕ1 ≥ 0, ϕ1 ∈ D(Ω) and we replace ψ1 by this value in the previous inequality
to obtain

w(
1
k

)−
∫

Ω

uϕ1H
2(
θ

k
)H2(

u

k
)−D1

∫
Ω

∇u∇ϕ1H
2(
θ

k
)H2(

u

k
)

−
∫

Ω

ϕ1u∇u∇θH2(
θ

k
)H2(

u

k
)−

∫
Ω

ϕ1|∇u|2θH2(
θ

k
)H2(

u

k
)

− D1

k

∫
Ω

ϕ1∇u∇θH ′(
θ

k
)H(

θ

k
)H2(

u

k
)− D1

k

∫
Ω

ϕ1|∇u|2H2(
θ

k
)H(

u

k
)H ′(

u

k
)

+
∫

Ω

u∇u∇θϕ1H
2(
θ

k
)H2(

u

k
)−

∫
Ω

b|∇v|αϕ1H
2(
θ

k
)H2(

u

k
)

−
∫

Ω

a|∇u|2ϕ1H
2(
θ

k
)H2(

u

k
) +

∫
Ω

θϕ1|∇u|2H2(
θ

k
)H2(

u

k
)

≤ −
∫

Ω

fϕ1H
2(
θ

k
)H2(

u

k
)

By developing calculations and remarking that the sixth and seventh terms are
equivalent to ω( 1

k ), we can write

−
∫

Ω

uϕ1H
2(
θ

k
)H2(

u

k
)−D1

∫
Ω

∇u∇ϕ1H
2(
θ

k
)H2(

u

k
)

−
∫

Ω

[a|∇u|2 + b|∇v|α]ϕ1H
2(
θ

k
)H2(

u

k
) + ω(

1
k

)

≤ −
∫

Ω

fϕ1H
2(
θ

k
)H2(

u

k
)

Finally passing to the limit as k tends to infinity, we use the fact that

lim
k→∞

H(
θ

k
) = 1, lim

k→∞
H(

u

k
) = 1

to conclude that for every ϕ1 ≥ 0, ϕ1 ∈ D(Ω),∫
Ω

[u−D1∆u+ a(x)|∇u|2 + b(x)|∇v|α]ϕ1 ≥
∫

Ω

fϕ1

In the same way, we multiply the second equation in (3.2) by Φ2 and we integrate
on Ω. By studying separately each term as in the previous case still using Lemmas
3.1, 3.3 and 3.4, we choose

ψ2 = −ϕ2 exp[
θ

D2
u]H(

θ

k
)H(

v

k
)

where ϕ2 ≥ 0, ϕ2 ∈ D(Ω) and we replace ψ2 by this value in the inequality obtained
to conclude that for every ϕ2 ≥ 0, ϕ2 ∈ D(Ω) that∫

Ω

[v −D2∆v + c(x)|∇u|β + d(x)|∇v|2]ϕ2 ≥
∫

Ω

gϕ2

This completes the proof of theorem 2.2.
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