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PROPERTIES OF MEROMORPHIC SOLUTIONS TO CERTAIN
DIFFERENTIAL-DIFFERENCE EQUATIONS

XIAOGUANG QI, LIANZHONG YANG

Abstract. We consider the properties of meromorphic solutions to certain
type of non-linear difference equations. Also we show the existence of mero-

morphic solutions with finite order for differential-difference equations related

to the Fermat type functional equation. This article extends earlier results by
Liu et al [12].

1. Introduction

In this article, we assume that the reader is familiar with standard symbols
and fundamental results of Nevanlinna Theory [7, 15]. A meromorphic function
will mean meromorphic in the whole complex plane. In particular, we denote the
order of growth of a meromorphic function f(z) by σ(f). The values m(r, f),
N(r, f), N(r, f) and T (r, f) denote the proximity function, the counting function,
the reduced counting function and the characteristic function of f(z), respectively:

m(r, f) :=
1

2π

∫ 2π

0

log+ |f(reiθ)| dθ,

N(r, f) :=
∫ r

0

n(t, f)− n(0, f)
t

dt+ n(0, f) log r,

N(r, f) :=
∫ r

0

n(t, f)− n(0, f)
t

dt+ n(0, f) log r,

T (r, f) := m(r, f) +N(r, f),

where log+ x = max(log x, 0) for all x ≥ 0, n(t, f) denotes the number of poles of
f(z) in the disc |z| ≤ t, counting multiplicities; and n(t, f) denotes the number of
poles of f(z) in the disc |z| ≤ t, ignoring multiplicities.

Nevanlinna’s value distribution theory of meromorphic functions has been used
to study the growth, oscillation and existence of entire or meromorphic solutions of
differential equations. In 2001, Yang [14] started to study the existence and unique-
ness of finite order entire solutions of the following type of non-linear differential
equation

L(f)− p(z)f(z)n = H(z). (1.1)
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Subsequently, several papers have appeared in which the solutions of equation (1.1)
are studied. The reader is referred to [8, 10, 11].

Recently, many articles focused on complex difference equations. The back-
ground for these studies lies in the recent difference counterparts of Nevanlinna
theory. The key result here is the difference analogue of the lemma on the logarith-
mic derivative obtained by Halburd-Korhonen [5, 6] and Chiang-Feng [2], indepen-
dently.

Yang and Laine [16] gave difference, resp. differential-difference, analogues of
previous results concerning the equation (1.1). In fact, they proved the following
theorem.

Theorem 1.1 ([16, Theorem 2.6]). Let n ≥ 4 be an integer, L(z, f) be a linear
differential-difference polynomial of f(z), with small meromorphic coefficients, and
H(z) be a meromorphic function of finite order. Then the differential-difference
equation

f(z)n + L(z, f) = H(z)
possesses at most one transcendental entire solution of finite order, unless L(z, f)
vanishes identically. If such a solution f(z) exists, then f(z) is of the same order
as H(z).

Using Theorem 1.1, the authors investigate the existence and the growth of
meromorphic solutions with a few poles of the difference equation

f(z)n + L(z, f) = H(z), (1.2)

where L(z, f) = a0f+a1f(z+c1)+ . . . akf(z+ck) is a linear difference polynomials
in f(z) with small meromorphic functions as the coefficients, and ci are constants,
i = 1, 2, . . . k. Here, H(z) is meromorphic of finite order, and n is an integer such
that n ≥ 2. In fact, if n = 0 or n = 1, then (1.2) reduces to a linear difference
equation, which has been considered in [1, 2, 9, 17].

AUTHORS: Please define N(r, f) and S(r, f) S(r, f)

Theorem 1.2. Given L(z, f) and H(z) as above. If f(z) is a finite order mero-
morphic solution of (1.2) satisfying N(r, f) = S(r, f) and n ≥ 4, then one of the
following statements hold:

(1) Equation (1.2) has f(z) as its unique transcendental meromorphic solution
with finite order such that N(r, f) = S(r, f).

(2) Equation (1.2) has exactly n transcendental meromorphic solutions, fj (j =
1, 2, 3 . . . n), with finite order such that N(r, fj) = S(r, fj).

Next, we consider the growth of meromorphic solutions of (1.2). In fact, using
the same method as Theorem 1.2, we prove the following result.

Theorem 1.3. Given L(z, f) and H(z) as above. Let f1(z) and f2(z) be two
distinct arbitrary solutions such that N(r, fi) = S(r, fi) (i = 1, 2). Then

T (r, f1) = T (r, f2) + S(r, f1).

Theorem 1.4. Given L(z, f) and H(z) as above, assume that f(z) is a meromor-
phic solution of for (1.2) with finite order. Then σ(f) ≤ σ(H). Furthermore, if
f(z) satisfies any one of the following two conditions

(1) n ≥ k + 2, or
(2) N(r, f) = S(r, f),
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then σ(f) = σ(H).

Remark. It seems that replacing L(z, f) with differential-difference polynomial in
f(z), the same conclusions of Theorem 1.2–Theorem 1.4 can be proved.

In a recent publication, Liu et al [12, 13] discussed the existence of entire solutions
with finite order of the Fermat type differential-difference equation

(f ′(z))n + f(z + c)m = 1. (1.3)

They showed that the above equation has no transcendental entire solutions with
finite order, provided that m 6= n, where n,m are positive integers. Here and in
the following, c is a non-zero constant, unless otherwise specified. It is natural
to ask what happens if the right side of (1.3) is a meromorphic function H(z).
Corresponding to this question, we give the following results:

Theorem 1.5. Let f(z) be a transcendental meromorphic function with finite or-
der, m and n be two positive integers such that m ≥ 2n + 4 and H(z) be a mero-
morphic function satisfying N(r, 1/H) = S(r, f). Then f(z) is not a solution of
the equation

(f ′(z))n + f(z + c)m = H(z). (1.4)

Using a similar reasoning as in Theorem 1.5, we conclude have the following
result.

Corollary 1.6. Let f(z) be a transcendental entire function with finite order, m
and n be two positive integers such that m ≥ n + 2 and H(z) be a meromorphic
function satisfying N(r, 1/H) = S(r, f). Then f(z) is not a solution of (1.4).

Remarks (1) Corollary 1.6 does not hold when n = m. In particular,

f ′(z) + f(z + 2πi) = 2ez

admits a transcendental entire solution, ez. This implies that the restriction that
m ≥ n + 2 is necessary. Meanwhile, we considered Corollary 1.6 for m = n + 1.
Unfortunately, we have not succeed.

(2) Let f(z) = cos z, then f(z) is a transcendental entire solution of the equation

f ′(z) + f(z − π

2
)3 = sin z(sin2 z − 1).

Indeed, this example shows Corollary 1.6 cannot hold when N(r, 1/H) 6= S(r, f),
(If N(r, 1/H) = N(r, 1

sin z(sin2 z−1)
) = S(r, f), then we can have a contradiction by

the second main theorem.) which means the assumption N(r, 1/H) = S(r, f) in
Corollary 1.6 is sharp.

(3) If we omit the restriction of the order of the solutions, then (1.4) may have an
infinite order entire solution. Indeed, f(z) = ee

z

is an entire function with infinite
order and solves the equation

f ′(z) + f(z + ln
1
3

)3 = (ez + 1)ee
z

.

(4) Some ideas in this paper are based on [3, 8].

Theorem 1.7. Let f(z) be a transcendental entire function with finite order, m
and n be two positive integers such that m 6= n and H(z) be a small function of
f(z). Then f(z) is not a solution of equation (1.4).
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The proof of Theorem 1.7 is similar to the proof of [12, Theorem 1.2]. One
can apply the the second main theorem for small target functions, instead of the
classical second main theorem, and use an elementary computation. Therefore, we
omit the proof here.

2. Preliminaries

Lemma 2.1 ([2, Theorem 2.1]). Let f(z) be a finite order meromorphic function,
then for each ε > 0,

T (r, f(z + c)) = T (r, f(z)) +O(rσ(f)−1+ε) +O(log r)

and
σ(f(z + c)) = σ(f(z)).

Thus, if f(z) is a transcendental meromorphic function with finite order, then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.2 ([6, Theorem 2.1]). Let f(z) be a meromorphic function with finite
order, and let c ∈ C and δ ∈ (0, 1). Then

m
(
r,
f(z + c)
f(z)

)
+m

(
r,

f(z)
f(z + c)

)
= o
(T (r, f)

rδ

)
= S(r, f),

outside of a possible set E with finite logarithmic measure.

Lemma 2.3 ([4, Lemma 5]). Let F and G be non-decreasing functions on (0,+∞).
If F (r) ≤ G(r) for r 6∈ E ∪ [0, 1], where the set E ⊂ (1,+∞) has finite logarithmic
measure, then, for any constant α > 1, there exists a value r0 > 0, such that
F (r) ≤ G(αr) for r > r0.

Lemma 2.4. Let f(z) be a meromorphic solution of (1.4), and

G(z) =
(fm(z + c))′

fm(z + c)
− H ′

H
. (2.1)

Then

N(r,G) ≤ N(r,
1
H

) +N(r, f) +N(r,
1

f(z + c)
) + S(r, f).

Remark.In the following proof, first impression of the reader is that the poles of
G(z) are at the poles of H(z) as well. But looking at the equation (1.4), one realizes
that the poles of H(z) should be at the poles of f(z) and f(z + c). Hence, it is
sufficient to discuss the poles of f(z) and f(z + c) here.

Proof. Observe that, the poles of G(z) are at the zeros of H(z) and f(z + c), and
at the poles of f(z), f(z + c) from (1.4) and (2.1). If z0 is a zero of H(z), zero of
f(z+c) , or pole of f(z), then z0 is at most a simple pole of G(z) by (1.4) and (2.1).
If z0 is a pole of f(z + c) but not a pole of f(z), then by the Laurent expansion
of G(z) at z0, we obtain that G(z) is analytic at z0. Hence, from the discussions
above, we can conclude that

N(r,G) ≤ N(r,
1
H

) +N(r, f) +N(r,
1

f(z + c)
) + S(r, f).

�



EJDE-2013/135 PROPERTIES OF MEROMORPHIC SOLUTIONS 5

3. Proof of main resutls

Proof of Theorem 1.2. Suppose f1(z), f2(z) are two distinct finite order meromor-
phic solutions of (1.2) such that N(r, fi) = S(r, fi) (i = 1, 2). From (1.2), we know
that

L(z, f1)− L(z, f2)
f2 − f1

=
fn1 − fn2
f1 − f2

= F (z) =
L(z, f1 − f2)
f2 − f1

, (3.1)

where F (z) = (f1−t1f2)(f1−t2f2) . . . (f1−tn−1f2). Here tj 6= 1 (j = 1, 2, . . . n−1)
are the distinct n-th roots of the unity. From Lemma 2.2 to (3.1), we obtain

m(r, F ) = S(r, f1) + S(r, f2).

Since N(r, fi) = S(r, fi), it follows that N(r, F ) = S(r, f1) + S(r, f2). Hence

T (r, F ) = S(r, f1) + S(r, f2). (3.2)

We will discuss the following two cases.
Case 1. If F (z) ≡ 0, then we conclude that fn1 = fn2 , that is, f2 = tjf1.

Substituting f2 = tjf1 into (3.1), we have L(z, f1)−L(z, tjf1) = (1−tj)L(z, f1) = 0.
Hence, L(z, f1) = 0 and L(z, tjf1) = 0. This means f1 and tjf1 (j = 1, 2, . . . n− 1)
are the solutions of (1.2), as asserted in part (2).

Case 2. If F (z) 6≡ 0, then

F (z) = fn−1
2

(f1
f2
− t1

)(f1
f2
− t2

)
. . .
(f1
f2
− tn−1

)
. (3.3)

Then equation (3.3) gives
F (z)
fn−1
2

= P (
f1
f2

),

where P is a polynomial in f1/f2 of degree n−1 with constant coefficients. Applying
Valiron-Mohon’ko theorem and (3.2) to the above equation, we have

(n− 1)T (r,
f1
f2

) = T (r,
F (z)
fn−1
2

) = (n− 1)T (r, f2) + S(r, f1) + S(r, f2). (3.4)

Using the same way, we obtain

(n− 1)T (r,
f2
f1

) = T (r,
F (z)
fn−1
1

) = (n− 1)T (r, f1) + S(r, f1) + S(r, f2) (3.5)

as well. Combining (3.4) and (3.5), we have

T (r, f1) + S(r, f1) = T (r, f2) + S(r, f2).

Thus, S(r, f1) = S(r, f2). Moreover, substituting S(r, f1) = S(r, f2) into (3.4), we
see

T (r,
f1
f2

) = T (r, f2) + S(r, f2),

hence S(r, f1f2 ) = S(r, f2). Assume now that z0 such that f1(z0)
f2(z0)

= tj , then either
F (z0) = 0 or f2(z0) =∞ by (3.1). That means that

N(r,
1

f1
f2
− tj

) = S(r, f2)
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by the assumption and equation (3.2). From the arguments above and the second
main theorem, we obtain

(n− 3)T (r,
f1
f2

) ≤
n−1∑
j=1

N
(
r,

1
f1
f2
− tj

)
= S(r, f2) = S

(
r,
f1
f2

)
,

which contradicts the assumption that n ≥ 4. Completing the proof of the part
(1). �

Proof of Theorem 1.4. If L(z, f) ≡ 0, then the conclusion follows. In the following,
we suppose L(z, f) 6≡ 0. Since f(z) is a meromorphic solution of (1.2), with finite
order, it follows from Lemma 2.1 that

T (r, L(z, f)) ≤ (k + 1)T (r, f) + S(r, f). (3.6)

From (1.2), we obtain

T (r,H) ≤ T (r, fn) + T (r, L(z, f)) + S(r, f). (3.7)

Combining (3.6) and (3.7), and applying Lemma 2.3, we know that, for α > 1,
there exists a value r0 > 0, such that

T (r,H) ≤ (n+ k + 1)T (αr, f) + S(r, f)

for r > r0. By the definition of σ(f), we conclude that σ(H) ≤ σ(f). Next, we
investigate the special cases. By the conclusion above, it suffices to show that
σ(H) ≥ σ(f).

Case 1. If n ≥ k + 2, then (1.2) gives

T (r, fn) ≤ T (r,H) + T (r, L(z, f)) + S(r, f). (3.8)

Substituting (3.6) into (3.8), and from Lemma 2.3, we obtain that for α > 1 there
exists a value r0 > 0, such that

(n− k − 1)T (r, f) ≤ T (αr,H) + S(r, f)

for r > r0. By the assumption that n ≥ k + 2 and the definition of σ(f), it follows
that σ(H) ≥ σ(f).

Case 2. If N(r, f) = S(r, f), then by Lemma 2.2, we obtain

T (r, L(z, f)) = m(r, L(z, f)) ≤ m(r,
L(z, f)
f

) +m(r, f) + S(r, f)

≤ T (r, f) + S(r, f).
(3.9)

Substituting (3.9) into (3.8), and using the same way as in Case 1, we have

(n− 1)T (r, f) ≤ T (αr,H) + S(r, f)

for r > r0. The conclusion follows. �

Proof of Theorem 1.5. If H(z) is infinite order, then (1.4) has no meromorphic
solution with finite order, by comparing the growth of both sides of the equation.
It remains to consider that H(z) is finite order. Suppose, contrary to the assertion,
that f(z) is a transcendental meromorphic function with finite order satisfying
(1.4). Then we will distinguish two cases:

Case 1. If T (r,H) 6= S(r, f). Then from (1.4), we obtain

fm(z + c) =
H′

H (f ′(z))n − ((f ′(z))n)′
(fm(z+c))′

fm(z+c) −
H′

H

. (3.10)
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First of all, we affirm that (fm(z+c))′

fm(z+c) −
H′

H cannot vanish identically. Indeed, if
(fm(z+c))′

fm(z+c) −
H′

H ≡ 0, then we see

H(z) = Afm(z + c),

where A is a non-zero constant. Combining the above equality and equation (1.4),

(f ′(z))n = (A− 1)fm(z + c)

follows. By Lemma 2.1 and the above equation, we obtain

mT (r, f) ≤ 2nT (r, f) + S(r, f),

or f ′(z) ≡ 0, which contradicts the assumptions.
From equation (3.10), we obtain that

T (r, fm(z + c)) = mT (r, f) + S(r, f) ≤ m(r, (f ′(z))n) +m
(
r,
H ′

H
− ((f ′(z))n)′

(f ′(z))n
)

+N
(
r,
H ′

H
(f ′(z))n − ((f ′(z))n)′

)
+m

(
r,

(fm(z + c))′

fm(z + c)
− H ′

H

)
+N

(
r,

(fm(z + c))′

fm(z + c)
− H ′

H

)
+ S(r, f).

(3.11)

Then, Lemma 2.1 together with equation (1.4), implies that

T (r,H) ≤ (m+ 2n)T (r, f) + S(r, f),

which means all meromorphic functions a(z) that satisfy T (r, a) = S(r,H) must be
S(r, f). To apply Lemma 2.1, Lemma 2.2 and the Lemma on logarithmic derivative
to equation (3.11), we obtain that

mT (r, f) ≤ nm(r, f) +N
(
r,
H ′

H
(f ′(z))n − ((f ′(z))n)′

)
+N

(
r,

(fm(z + c))′

fm(z + c)
− H ′

H

)
+ S(r, f).

(3.12)

We will estimate N
(
r, H

′

H (f ′(z))n−((f ′(z))n)′
)

and N
(
r, (fm(z+c))′

fm(z+c) −
H′

H

)
next. Set

M(z) =
H ′

H
(f ′(z))n − ((f ′(z))n)′, (3.13)

G(z) =
(fm(z + c))′

fm(z + c)
− H ′

H
. (3.14)

From (1.4) and (3.13), we know the poles of M(z) are at the zeros of H(z), and at
the poles of f(z), f(z+ c). If z0 is a zero of H(z) or z0 is a pole of f(z+ c) but not
a pole of f(z), then z0 is at most a simple pole of M(z) by (3.13). If z0 is a pole of
f(z) but not a pole of f(z+ c), then z0 is at most a simple pole of M(z) by (3.10).
If z0 is a pole of f(z) with multiplicity p and a pole of f(z+ c) with multiplicity q,
then z0 is a pole of M(z) with the multiplicity no more than n(p+ 1) + 1 by (3.13).
From above arguments and our assumption, we conclude that

N(r,M) ≤ N(r,
1
H

) +N(r, (f ′(z))n) +N(r, f(z + c)) + S(r, f)

≤ nN(r, f ′(z)) +N(r, f(z + c)) + S(r, f).
(3.15)
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On the other hand, by Lemma 2.4 and our assumption, it follows that

N(r,G) ≤ N(r,
1
H

) +N(r, f) +N(r,
1

f(z + c)
) + S(r, f)

≤ N(r, f) +N(r,
1

f(z + c)
) + S(r, f).

(3.16)

From equations (3.12), (3.15) and (3.16), we have

mT (r, f) ≤ nm(r, f) + n(N(r, f) +N(r, f)) +N(r, f)

+N(r, f(z + c)) +N(r,
1

f(z + c)
) + S(r, f)

≤ (2n+ 3)T (r, f) + S(r, f),

which contradicts the assumption that m ≥ 2n+ 4.
Case 2. If T (r,H) = S(r, f), then applying Lemma 2.1 to equation (1.4), we

have
mT (r, f) ≤ 2nT (r, f) + S(r, f),

which contradicts the assumption that m ≥ 2n + 4. We get a conclusion as well,
completing the proof of Theorem 1.5. �
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