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NUMERICAL APPROACH FOR A RELAXED MINIMIZATION
PROBLEM ARISING IN TOMOGRAPHIC RECONSTRUCTION

ALI SROUR, MOUHAMMAD JRADEH

Abstract. The purpose of this article is to develop a numerical scheme for
a system of optimality conditions for a smooth minimization problem that

arises in tomographic reconstruction of binary axially symmetric objects. The

density function of the object with the Lagrange multipliers is seen as a saddle
point of an associated Lagrangian, then we use the Usawa scheme mixed with

descent gradient method to give the corresponding numerical scheme.

1. Introduction

The applied mathematics is nowadays dedicating a great attention to the tomo-
graphic reconstruction, especially through the most eminent strategy entitled the
variational method. In this article, we consider the problem

minimize Fo(u) :=
1
2
‖Hu− g‖2L2(Ω) + λJ(u),

u ∈ D,
(1.1)

where
D = {u ∈ BV (Ω) : u(u− 1) = 0 a.e. in Ω},

and BV (Ω) denotes the space of the functions of bounded variation space defined
by

BV (Ω) = {u ∈ L1(Ω) : J(u) <∞},
with

J(u) = sup
{∫

Ω

u(x) div(φ(x))dx : φ ∈ C1
c (Ω,R2), ‖φ‖∞ ≤ 1

}
.

Here C1
c (Ω,R2) denotes the space of the C1 functions with compact support in

Ω with value in R2. In the following, we shall denote ‖ · ‖ the L2(Ω)-norm. In
the same way, (·, ·)2 denotes the L2(Ω)- scalar product, (·, ·)H1 denotes the H1(Ω)-
scalar product and 〈·, ·〉V ′,V , the duality product between V ′ and V , where V is a
Banach space and V ′ is the dual space of V . H is a projection operator which is
detailed in the next section, and g is the density of the observed image.
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Figure 1. Experimental step [1]

Problem (1.1) is a non-regular minimization problem which has been obtained
by Abraham et al [1], in order to reconstruct the density of a binary axially sym-
metric object by using the variational method. The problem (1.1) has two main
difficulties, the first one is the lack of differentiability and the second is the non-
convexity constraint. Considering these difficulties, we could not apply the classical
optimization methods to prove the optimality system condition associated to (1.1).

In [5], the first author and Bergounioux have relaxed the binary constraint and
regularized (1.1) to obtain a smooth minimization problem (3.2) without a convexity
constraint and then prove the optimality system associated to (3.2). In this article,
we will prove that through these modifications, we obtain an appropriate numerical
result for the reconstruction of our symmetrical object.

The outline of this article is as follows: in the second section, we introduce and
analyze the tomographic model; the setting of the problem is stated in section 3.
In fourth section, we use a Lagrangien method based on a Uzawa method and the
descent gradient method to develop a stable numerical scheme. The fifth section
is dedicated to present our numerical scheme. Finally we discuss it by using some
numerical test.

2. Our model of tomographic reconstruction

In [1], the authors tried to use the tomographic technology to reconstruct the
volume of a three-dimensional-axially-symmetrical object from a two-dimensional
projection; that is, if an object is exposed to a beam of electrons, every point of
this object is characterized by its attenuation coefficient. The tomographic recon-
struction method consists of gathering these 2D projections of an X-ray radiography
through an object and using these projections to rebuild the structure of this object
in 3D (Figure 1).

Frequently, by using a sufficient number of projections, we can build the density
of the object (see for instance [6]), however in [1] the authors used a single X-
ray to rebuild the density of a binary axially-symmetrical object composed of one
homogeneous material (drawn in black), and of some holes (in white) (see Figure
2(a)). With this hypothesis, it is sufficient to consider a plane section, and after
making a rotation around the axle of symmetry, we obtained the 3D object.

Our work example, shown in Figure 2(a) represents a symmetric object contain-
ing all standard difficulties that may appear, such as:

• Several disconnected holes.
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(a) the real object u (b) the projection g (c) Reconstruction H−1(g)

Figure 2. Instability of reconstruction by using H−1

• Small holes located on the symmetry axis (where details are expected to
be difficult to recover because the noise variance is maximal around the
symmetric axis after reconstruction).
• Smaller details on the boundary of the top holes serve as a test for lower

bound detection.

Assuming that u is the density of the initial object, and g is the density of the
observed image. The problem of reconstruction consists of finding u such that
Hu = g where H is the projection operator from L2(Ω) to L2(Ω) given for a
symmetric axial object by

Hu(y, z) =
∫ +∞

|y|
u(r, z)

r√
r2 − y2

dr. (2.1)

Here, Ω is a regular open bounded in R2 which represents the domain of image
(Ω = [0, a]× (−a, a), a > 0).

In [1, Lemma 1], the author proved that H is a continuous operator from L2(Ω)
to L2(Ω). Now, to find u, we will use the inverse operator H−1 given in [1] by:

u(r, z) = H−1g(r, z) = − 1
π

∫ a

r

∂g
∂y (y, z)√
y2 − r2

dy, (2.2)

for all (r, z) ∈ Ω. Since the operator H−1 contains a derivative term, it cannot
be extended as a continuous linear operator from Lp(Ω) to Lq(Ω). Then, applying
H−1 provides a deficient and imperfect reconstruction of the original image; see
Figure 2.

Because of the experiment step, there is an additional noise perturbation to the
given image g. This perturbation assumed to be an addition of Gaussian white
noise, denoted τ , of zero mean, and of standard deviation στ . Other perturbations,
such as blur due to the detector response, and X-ray source spot size, or blur motion,
are not taken into account in our study. With these assumptions, the projection of
an object u is:

g = Hu+ τ.
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3. Variational method: The relaxed problem

To avoid the instability of the inverse projection method, we will use the varia-
tional method technique of finding the density u of the initial object, it consists to
find u as a minimum of the problem (1.1).

Aubert and Kornprobst [4], Acar and Vogel et al [2, 10] studied closed problems.
In our model, we faced two supplementary difficulties, the first one comes from the
fact that, the domain D is not convex, and its interior is empty for most usual
topologies. The second difficulty is that, the total variation J(u) of a function u in
BV (Ω) is not Frchet differentiable. According to these difficulties, we cannot apply
the classical theory of optimization to obtain an optimality system of (1.1).

To study numerically this problem, Bergounioux and the first author have mod-
ified problem (1.1) through numerically-accepted modifications [5]. Firstly, to pre-
serve the differentiability of J , we replace the total variation J(u) by the L2(Ω)-
norm of the gradient of u ∈ H1(Ω) and considering the H1(Ω) as an underlying
space instead of BV (Ω). For the second difficulty, we relaxed the domain D by
considering the domain

Dα := {u ∈ H1(Ω) : 0 ≤ u ≤ 1, (u, 1− u)2 ≤ α}, (3.1)

where α > 0, this relaxation of the binary constraint is motivated and justified
numerically, indeed, it is not possible to ensure (u, 1− u)2 = 0 during computation
but rather (u, 1− u)2 ≤ α where α may be chosen small as wanted.

After theses modifications, we consider the smooth relaxed problem

minimize F (u) :=
1
2
‖Hu− g‖2 +

λ

2
‖∇u‖2,

u ∈ Dα
(3.2)

In [5], we proved that the problem (3.2) has at least one solution in H1(Ω), however
since the constraint Dα is also not convex, it is not possible to find the “admissible”
directions to compute derivatives, then we use general mathematical programming
problems results and optimal control in Banach spaces (Zowe and Kurcyusz [7],
and Trltzsch [9, 8]) to derive optimality conditions for (3.2).

To apply the method of mathematical programming to (3.2), we introduce a
virtual control variable, we can write problem (3.2) as

minimize F (u)

(u, v) ∈ Cα,
(3.3)

where (uα, vα = 1−uα) denoted the solution of (3.2) in H1(Ω)×L2(Ω). Using the
mathematical programming method and after a step of penalization, we derive the
following optimality conditions.

Theorem 3.1. Assume uα is a solution to (3.2) and vα = 1− uα. There exists a
Lagrange multiplier (qα, rα) ∈ M(Ω) × R+ such that for all u ∈ H1(Ω) ∩ L∞(Ω)
with u ≥ 0,(
H∗(Huα − g) + rαvα, u− uα

)
2

+ λ
(
∇uα,∇(u− uα)

)
2

+ 〈qα, u− uα〉M,L∞ ≥ 0,
(3.4)

〈qα, v − vα〉M,L∞ + rα(uα, v − vα)2 ≥ 0, ∀v ∈ Vad ∩ L∞(Ω), (3.5)

rα[(uα, vα)2 − α] = 0, (3.6)
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where

Vad = {v ∈ H1(Ω) : v ≥ 0 a.e}.

Now, we will use the above optimality system to establish a numerical scheme for
(3.2) by considering the couple (solution, Lagrangian multipliers) as a saddle-point
of a Lagrangian function associated to (3.2).

4. Saddle-point formulation

Let Lα be the Lagrangian function associated with (3.2), defined on H1(Ω) ×
L2(Ω)×M(Ω)× R by

Lα(u, v, q, r) =
1
2
‖Hu− g‖2 +

λ

2
‖∇u‖2 + 〈q, u+ v − 1〉M,L∞ + r[(u, v)2 − α]

For the rest of this article, we denote

F (u) =
1
2
‖Hu− g‖2 +

λ

2
‖∇u‖2.

Theorem 4.1. Let (uα, vα) be a solution of (3.2), then (uα, vα, qα, rα) satisfies

Lα(uα, vα, qα, rα) ≥ Lα(uα, vα, q, r) ∀(q, r) ∈M× R+. (4.1)

and

∇u,vLα(uα, vα, qα, rα)(u− uα, v − vα) ≥ 0, (4.2)

for all (u, v) ∈ Uad ∩ L∞ × Vad ∩ L∞.

Proof. The first assertion comes from the fact that for all (q, r) ∈M× R+,

Lα(uα, vα, q, r) = F (uα) + r[(uα, vα)− α] ≤ F (uα),

and

F (uα) = Lα(uα, vα, qα, rα).

Moreover, adding (3.4) and (3.5), we obtain exactly the second part of the theorem.
�

We denote

A = Uad ∩ L∞ × Vad ∩ L∞ ×M× R+.

Because of the bilinear term (u, v)2 − α, the Lagrangian Lα is not convex and the
theorem 4.1 is not sufficient to ensure the existence of a saddle point of Lα. But,
it is easy to see that this theorem is still valid if we replace Lα by the linearized
Lagrangian function Lα,

Lα(u, v, q, r) = F (u) + (q, u+ v − 1)M,L∞ + r[(u, vα)2 + (uα, v)2 − 2α].

More precisely, we have the following statement.

Theorem 4.2. The couple (uα, vα, qα, rα) (solution, Lagrange multiplier) is a sad-
dle point of the linearized Lagrangian function Lα on A:

Lα(uα, vα, q, r) ≤ Lα(uα, vα, qα, rα) ≤ Lα(u, v, qα, rα) for all (u, v, q, r) ∈ A.
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Proof. We get first the left hand part of the above inequality since for any (q, r) ∈
M ∈ R+,

Lα(uα, vα, q, r) = F (uα) + 2r[(uα, vα)2 − α] ≤ F (uα) = Lα(uα, vα, qα, rα).

The right hand part comes from

∇u,vLα(uα, vα, qα, rα) = ∇u,vLα(uα, vα, qα, rα),

and the convexity of Lα. �

In the case where the bilinear constraint is inactive (uα, vα) < α we obtain
rα = 0. In this case, it is easy to see that ∇u,vLα(uα, vα, qα, rα) is then equal that
∇u,vLα(uα, vα, qα, rα) and the above theorem yields

Lα(uα, vα, qα, rα) ≤ Lα(u, v, qα, rα),

and then (uα, vα, qα, rα) is a saddle point of Lα on A.

Remark 4.3. As in our initial problem (3.2), we look for the couple (uα,vα) such
that uα · vα = uα(1 − uα) is close to 0, it will be interesting to study numerically
the case when the constraint (u, v)2 is inactive i.e:

(u, v)2 < α.

5. Numerical scheme and discretization

The basic method to compute a saddle point is the Uzawa algorithm and the
descent gradient method [3]. In this method, we look for the couple (solution,
Lagrangian multiplier) as the following way.

Algorithm (A).

Step 0 Initialization. Set n = 0, choose u0 ∈ Uad, q
0 ∈ L2(Ω), v−1 ∈ Vad.

Step 1 Compute:

un = argmin Lα(u, vn−1, qn, rn) on Uad,

vn = argmin Lα(un, v, qn, rn) on Vad.

Step 2 Compute qn:

qn+1 = qn + ρ1(un + vn − 1), ρ1 ≥ 0.

Step 3 Compute rn:

rn+1 = rn + ρ2[(un, vn)2 − α]+, ρ2 ≥ 0.

Step 4 Criterion of stopping: Stop the process as soon as ‖un+1−un‖∞ < tol and
‖qn+1 − qn‖∞ < tol, where tol is a positive real number.

To calculate the first step, we use the gradient descent method: we look for un

and vn as follows

un+1 = [un − µn∇uLα(un, vn, rn, qn)]+,

vn+1 = [vn − δn∇vLα(un, vn, rn, qn)]+,

where µn and δn are two positive real numbers.
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In addition, as the study of a measure is too hard from a numerical point of view,
we consider in step 2, the term qα as a function in L2(Ω). With gradient descent
method, the numerical scheme becomes

un+1 =
[
un − µn

(
H?Hun +H?gi,j − λ∆un + qn + rnvn−1

)]
+
,

vn =
[
vn−1 − δn(vn−1 + rnun

]
+
,

qn+1 = qn + ρ1(un + vn − 1),

rn+1 = rn + ρ2[(un, vn)2 − α]+,

(5.1)

where µn, δn, ρ1, ρ2 are positive real numbers. The discretization process is the
standard Finite Difference Method. For the projection operator H, we use its
explicit formula to find the matrix associated to this operator as claimed in the
following theorem.

Theorem 5.1. The matrix associated to the projection operator is given by

hi,j =
2
N

(
√
j2 − (i− 1)2 −

√
(j − 1)2 − (i− 1)2 for j ≥ i (5.2)

and

hi,j = 0 for j < i. (5.3)

Proof. For all function u ∈ L∞(Ω), Ω = (−a,+a)× (−a,+a) where a is a positive
real, the projection operator H is given by

Hu(y, z) = 2
∫ a

|y|
u(r, z)

r√
r2 − y2

dr.

In a discrete space, we suppose that for all j = 1 : N , and for all i = 1 : N , u(., yj)
is constant in the interval [ih, (i+ 1)h], then

Hu(ih, jh) = 2
∫ Nh

ih

u(r, hj)
r√

r2 − (ih)2
dr

= 2
N−1∑
k=i

∫ (k+1)h

kh

uk,j
r√

r2 − (ih)2

(where uk,j is the value of u on [kh, (k + 1)h])

= 2
N−1∑
k=i

uk,j

∫ (k+1)h

kh

r√
r2 − (ih)2

= 2
N−1∑
k=i

[
√
r2 − (ih)2](k+1)h

kh

= 2
N−1∑
k=i

uk,j [
√

(k + 1)2h2 − (ih)2 −
√

(kh)2 − (ih)2

= 2
N−1∑
k=i

uk,jh[
√

(k + 1)2 − (i)2 −
√

(k)2 − (i)2].

By taking h = 1/N and using the previous formula, we conclude the proof. �



8 A. SROUR, M. JRADEH EJDE-2013/133

The Laplacian term, can be discretized as

∆un(xi, yj) =
uni+1,j + uni−1,j − 2uni,j

h2
+
uni,j+1 + uni,j−1 − 2uni,j

h2
(5.4)

Replacing (5.4) in (5.1), we obtain

un+1
i,j = [uni,j − µn[H?Huni,j +H?gi,j − λ

(uni+1,j + uni−1,j − 2uni,j
h2

+
uni,j+1 + uni,j−1 − 2uni,j

h2

)
+ qni,j + rnvni,j ]+,

vni,j = [vn−1
i,j − δn(qni,j + rnuni,j)]+,

qn+1
i,j = qni,j + ρ1(uni,j + vni,j − 1),

rn+1 = rn + ρ2[(un, vn)2,i,j − α]+,

where H?Huni,j is the discretization of H?Hun and H?gi,j is that of H?g.
The discretized image is represented by a N × N array identified with a N2

vector. Due to the symmetry, it suffices to deal with half image of size N ×N/2. In
our study, the projected image(observed data) is perturbed with a Gaussian noise
τ with standard deviation στ ,

τ(x) =
1√

2πστ
e
− |x|

2

2σ2
τ .

With this perturbation, the observed image is given by:

g = Huorig + τ. (5.5)

(a) real object (b) observed image g (c) λ = 10−3

(d) λ = 1
900 (e) λ = 2.10−3 (f) λ = 2.5.10−3

Figure 3. Reconstruction for some small values of λ with α =
10−2 and tol= 0.001
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(a) real object (b) observed image g (c) λ = 1

(d) λ = 0.2 (e) λ = 0.1 (f) λ = 0.066

(g) λ = 0.01 (h) λ = 0.02 (i) λ = 0.0133

Figure 4. Reconstruction for different values of λ with α = 10−2

and tol= 0.001

6. Interpretation and sensitivity of numerical results

The algorithm (A) depends on two parameters λ and α. Next we show that
there is a strong sensibility of the results with respect to λ and weak with respect
to α.

6.1. Sensitivity with respect to λ. The aim of the constant λ before the reg-
ularization term ‖u‖2 is to increase or decrease the smoothness of the function u,
more precisely if λ is too small, we recover some information on the original image,
but we do not succeed in abolishing efficiently the Gaussian noise with the standard
deviation στ . These theoretical predictions are confirmed numerically as shown in
Figure 3.
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(a) real object (b) observed image g

(c) α = 0.01 (d) α = 0.002 (e) α = 0.001

Figure 5. Reconstruction for different values of α and with λ = 0.1

However, when λ is large, the solution becomes regular and this may imply an
important loss of information (the image of the mouth for example turns to an arc
of circle) (see Figure 4).

So the best λ will be not too small in order to “erase” the noise and not too
large to keep all the important parts of the original image.

6.2. Sensitivity with respect to α. The algorithm (A) has a low sensibility
with respect to the parameter α, this weak dependence is due to the fact that
the integral (u, v)2 converges rapidly to zero, and by consequence, the inactive
assumption (u, v)2 < α is always verified from a small number of iterations. The
Figure 5 confirms this claim.
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