\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 128, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/128\hfil Lyapunov-type inequalities] {Lyapunov-type inequalities for nonlinear systems involving the $(p_1,p_2,\dots ,p_n)$-Laplacian} \author[D. \c{C}akmak, M. F. Akta\c{s}, A. Tiryaki \hfil EJDE-2013/128\hfilneg] {Devrim \c{C}akmak, Mustafa Fahri Akta\c{s}, Aydin Tiryaki} % in alphabetical order \address{Devrim \c{C}akmak \newline Gazi University, Faculty of Education\\ Department of Mathematics Education\\ 06500 Teknikokullar, Ankara, Turkey} \email{dcakmak@gazi.edu.tr} \address{Mustafa Fahri Akta\c{s} \newline Gazi University, Faculty of Sciences\\ Department of Mathematics\\ 06500 Teknikokullar, Ankara, Turkey} \email{mfahri@gazi.edu.tr} \address{Aydin Tiryaki \newline Izmir University, Faculty of Arts and Sciences\\ Department of Mathematics and Computer Sciences\\ 35350 Uckuyular, Izmir, Turkey} \email{aydin.tiryaki@izmir.edu.tr} \thanks{Submitted August 20, 2012. Published May 27, 2013.} \subjclass[2000]{26D10, 34A40, 34C10} \keywords{ Lyapunov-type inequality; lower bound; $(p_1,p_2,\dots ,p_n)$-Laplacian} \begin{abstract} We prove some generalized Lyapunov-type inequalities for $n$-di\-mensional Dirichlet nonlinear systems. We extend the results obtained by \c{C}akmak and Tiryaki \cite{Cakmak-1} for a parameter $10$ and $12$ for $k=1,2,\dots ,n$, then the function $h(x)=x^{p_k-1}$ is convex for $x>0.$ Thus, the inequality \eqref{e18} is reversed, i.e. \begin{equation} \frac{1}{(c_k-a)^{p_k-1}}+\frac{1}{(b-c_k)^{p_k-1}}\geq 2^{2-p_k} \big[ \frac{1}{c_k-a}+\frac{1}{b-c_k}\big] ^{p_k-1}=m_2( c_k)\label{18c} \end{equation} for $p_k>2$, $k=1,2,\dots ,n$. Moreover, if we obtain the minimum of the right hand side of inequalities \eqref{e18} and \eqref{18c} for $c_k\in ( a,b)$, $k=1,2,\dots ,n$, then it is easy to see that \begin{equation} \min_{a0 $ for $k=1, 2,\dots ,n$ of \c{C}akmak and Tiryaki \cite{Cakmak-1} can be obtained by using the inequality \eqref{11-} under the following conditions \begin{equation} F_k(t,x_1,x_2,\dots ,x_n) =f_k(t)g_k( x_1,x_2,\dots ,x_n),\quad k=1,2,\dots ,n, \label{11b} \end{equation} where $g_k(x_1,x_2,\dots ,x_n)=| z_k( x_1,x_2,\dots ,x_n)| $ with \begin{equation} \begin{gathered} z_1(x_1,x_2,\dots ,x_n)=| x_1| ^{\alpha _1-2}x_1| x_2| ^{\alpha _2}\dots |x_n| ^{\alpha _n} \\ z_2(x_1,x_2,\dots ,x_n)=| x_1|^{\alpha _1}| x_2| ^{\alpha _2-2}x_2\dots | x_n| ^{\alpha _n} \\ \dots \\ z_n(x_1,x_2,\dots ,x_n)=| x_1| ^{\alpha _1}| x_2| ^{\alpha _2}\dots | x_n| ^{\alpha _n-2}x_n, \end{gathered}\label{11c} \end{equation} where $\alpha _k\geq 0$ for $k=1,2,\dots ,n$ such that $\sum_{k=1}^{n} \frac{\alpha _k}{p_k}=1$. It is easy to see from \eqref{8a} that the nondecreasing condition on each variable of $g_k$ with \eqref{11c} for $k=1,2,\dots ,n$ is not satisfied. Therefore, \cite[Remarks 1--3, Corollary 3]{Yang} fail. So, \cite[Corollary 3]{Yang} does not apply to this example. Now, we present the following hypothesis instead of (C1): \begin{itemize} \item[(C1*)] There exist the functions $ f_k\in C([ a,b] ,[0,\infty ))$ and $g_k\in C(\mathbb{R}^{n},[0,\infty ))$ for $k=1,2,\dots ,n$ such that \begin{equation} | F_k(t,x_1,x_2,\dots ,x_n)| \leq f_k(t)g_k(| x_1| ,|x_2| ,\dots ,| x_n| )\label{11e} \end{equation} and $g_k(u_1,u_2,\dots ,u_n)$ is monotonic nondecreasing in each variable $u_i$, such that either $g_k(0,0,\dots ,0)=0$ or $g_k(u_1,u_2,\dots ,u_n)>0$ for at least one $u_i\neq 0$ for $i=1,2,\dots ,n$, for $k=1,2,\dots ,n$. \end{itemize} It is clear that if the hypothesis (C1) is replaced by (C1*) for system \eqref{8}, then \eqref{e4} with $f_k(t)>0$ for $ k=1, 2,\dots ,n$ of \c{C}akmak and Tiryaki \cite{Cakmak-1} obtain by using inequality \eqref{11-} under the condition $\alpha _k\geq 1$ for $k=1, 2,\dots ,n$. In this article, our purpose is to obtain Lyapunov-type inequalities for system \eqref{8} similar to the ones given in Yang et al \cite{Yang} by imposing somewhat different conditions on the function $F_k$ for $ k=1,2,\dots ,n$, and improve and generalize the results of \c{C}akmak and Tiryaki \cite{Cakmak-1} when $10$ for at least one $u_i\neq 0$, $i=1,2,\dots ,n$,} \end{equation} for $k=1,2,\dots ,n$. \end{itemize} One of the main results of this article is the following theorem, whose proof is different from the that of \cite[Theorem 1]{Yang} and modified that of \cite[Theorem 2.1]{Sim}. \begin{theorem} \label{thm2.1} Assume that hypothesis {\rm (C2)} is satisfied. If \eqref{8} has a real nontrivial solution $(x_1(t),x_2(t),\dots ,x_n(t))$ satisfying the boundary condition \eqref{*}, then the inequalities \begin{equation} \int_a^bf_k^{+}(s)ds\geq 2^{2-p_k}\big[ \frac{1}{ c_k-a}+\frac{1}{b-c_k}\big] ^{p_k-1}M_kH_k \label{r1} \end{equation} hold, where $f_k^{+}(t)=\max \{ 0,f_k(t)\} $, and $H_k$, $M_k$ for $k=1,2,\dots ,n$ are as in \eqref{11a}. Moreover, at least one inequality in \eqref{r1} is strict. \end{theorem} \begin{proof} Let the boundary condition \eqref{*} hold; i.e., $x_k(a)=0=x_k(b)$ for $k=1,2,\dots ,n$ where $n\in \mathbb{N}$, $a,b\in\mathbb{R}$ with $a2$, for $k=1,2,\dots ,n$, then inequality \eqref{r4} is better than \eqref{r1} in the sense that \eqref{r1} follows from \eqref{r4}, but not conversely. Moreover, if $p_k=2$ or $c_k=\frac{a+b}{2}$ for $k=1,2,\dots ,n$, then Theorem \ref{thm2.1} is exactly the same as Theorem \ref{thm2.2}. \end{remark} By using \eqref{10} in Theorem \ref{thm2.1} or \ref{thm2.2}, we obtain the following result. \begin{theorem} \label{thm2.3} Let all the assumptions of Theorem \ref{thm2.1} hold. Then the inequality \begin{equation} \int_a^bf_k^{+}(s)ds\geq \frac{2^{^{p_k}}}{(b-a)^{p_k-1}}M_kH_k \label{22a} \end{equation} holds, where $f_k^{+}(t)$, $H_k$ and $M_k$ for $k=1,2,\dots ,n$ are as in Theorem \ref{thm2.1}. Moreover, at least one inequality in \eqref{22a} is strict. \end{theorem} Now, we present the following hypothesis which gives the importance of our theorems for system \eqref{e1}. \begin{itemize} \item[(C3)] There exist the functions $f_k\in C([ a,b] ,\mathbb{R})$ and $g_k\in C(\mathbb{R}^{n},[0,\infty ))$ such that \begin{equation} F_k(t,x_1,x_2,\dots ,x_n)x_k =f_k(t) g_k(| x_1| ,| x_2|,\dots ,| x_n| )\label{22b} \end{equation} and \begin{equation} \parbox{9cm}{$g_k(u_1,u_2,\dots ,u_n)$ is monotonic nondecreasing in each variable $u_i$ such that either $g_k(0,0,\dots ,0)=0$ or $g_k(u_1,u_2,\dots ,u_n)>0$ for at least one $u_i\neq 0$ for $i=1,2,\dots ,n$,} \end{equation} where $g_k(| x_1| ,| x_2|,\dots ,| x_n| )=x_kz_k( x_1,x_2,\dots ,x_n)$ with \eqref{11c} for $k=1,2,\dots ,n$ such that $\alpha _k\geq 0$ and $\sum_{k=1}^{n}\frac{\alpha _k}{p_k}=1$. \end{itemize} It is easy to see that system \eqref{8} with hypothesis (C3) reduces to system \eqref{e1}. Since \begin{equation} \prod_{k=1}^{n}(M_kH_k)^{\alpha _k/p_k}=1, \label{22ba} \end{equation} we have the following results from Theorems \ref{thm2.1} and \ref{thm2.2}, respectively. \begin{theorem} \label{thm2.4} Assume that hypothesis {\rm (C3)} is satisfied. If\eqref{8} has a real nontrivial solution $(x_1(t),x_2(t),\dots ,x_n(t))$ satisfying the boundary condition \eqref{*}, then \begin{equation} \prod_{k=1}^{n}\Big(\int_a^bf_k^{+}(s)ds\Big)^{\alpha _k/p_k} \geq \prod_{k=1}^{n}\big[ 2^{2-p_k}( \frac{1}{c_k-a}+\frac{1}{b-c_k})^{p_k-1}\big] ^{\alpha_k/p_k}, \label{22c} \end{equation} where $| x_k(c_k)| =\max_{a2$ for $k=1,2,\dots ,n$, then \eqref{25} is better than \eqref{22c} in the sense that \eqref{22c} follows from \eqref{25}, but not conversely. \end{remark} \begin{remark} \label{rmk2.4}\rm It is easy to see that inequality \eqref{22d} is exactly the same as \eqref{25}, and \eqref{22e} is exactly the same as \eqref{e4}. \end{remark} \begin{remark} \label{rmk2.5}\rm When $\alpha _k=p_k$ for $k=1, 2,\dots ,n$, and for $i\neq k$, $\alpha _i=0$ for $i=1, 2,\dots ,n$ in system \eqref{e1}, we obtain the result for the case of a single equation from Theorems \ref{thm2.4}, \ref{thm2.5} or Corollary \ref{coro2.1}. \end{remark} \begin{remark} \label{rmk2.6}\rm Since $| f(x)|\geq f^{+}(x)$, the integrals of $\int_a^bf_k^{+}(s)ds$ for $k=1,2,\dots ,n$ in the above results can also be replaced by $\int_a^b| f_k(s)| ds$ for $k=1, 2,\dots ,n$, respectively. \end{remark} \section{Applications} In this section, we present some applications of the Lyapunov-type inequalities obtained in Section 2. Firstly, we give the same example of Yang et al \cite{Yang} which gives the importance of our results. Note that our Corollary \ref{coro2.1} is applicable to the following example, but \cite[Corollary 3]{Yang} is not applicable to it, since the nondecreasing condition on each variable of $g_k$ for $k=1,2,\dots ,n$ is not satisfied. \begin{example}\label{examp3.1} \rm Consider the quasilinear system \begin{equation} \begin{gathered} (\phi _{p_1}(x_1'))'+f_1(t)(3+\sin 2x_1)| x_1| ^{\alpha _1-2}x_1| x_2| ^{\alpha _2-1}x_2=0 \\ (\phi _{p_2}(x_2'))'+f_2(t)(1+\sin ^{2}2x_2)| x_1| ^{\alpha _1-1}x_1| x_2| ^{\alpha _2-2}x_2=0, \end{gathered} \label{s1} \end{equation} where $\phi _{\alpha }(u)=| u| ^{\alpha-2}u$, $p_1,p_2>1$, $\alpha _1,\alpha _2\geq 0$ with $\frac{\alpha _1}{p_1}+\frac{\alpha _2}{p_2}=1$, $f_1$ and $f_2$ are nonnegative continuous functions on $[ a,b] $. Assume that system \eqref{s1} has a real nontrivial solution $(x_1(t),x_2(t))$ satisfying the Dirichlet boundary condition $x_1(a)=x_1(b)=0=x_2(a)=x_2(b)$. Since \begin{equation} \begin{gathered} F_1(t,x_1,x_2)x_1\leq 4f_1(t)|x_1| ^{\alpha _1}| x_2| ^{\alpha _2}\quad \text{and}\\ F_2(t,x_1,x_2)x_2\leq 2f_2(t)| x_1| ^{\alpha _1}|x_2| ^{\alpha _2}, \end{gathered} \label{s2} \end{equation} where $g_k(u_1,u_2)=u_1^{\alpha _1}u_2^{\alpha _2} $ for $k=1,2$ which are satisfied the nondecreasing condition on each variable $u_i$ for $i=1,2$, we have the following inequalities \begin{equation} 4\int_a^bf_1(s)ds>\frac{2^{^{p_1}}}{(b-a)^{p_1-1}} M_1H_1,\quad 2\int_a^bf_2(s)ds>\frac{ 2^{^{p_2}}}{(b-a)^{p_2-1}}M_2H_2 \label{s4} \end{equation} with $M_1H_1=M_1^{p_1-\alpha _1}M_2^{-\alpha _2}$ and $ M_2H_2=M_1^{-\alpha _1}M_2^{p_2-\alpha _2}$ from Theorem \ref{thm2.4}. Hence, we have \begin{equation} \Big(\int_a^bf_1(s)ds\Big)^{\frac{\alpha _1}{p_1}} \Big(\int_a^bf_2(s)ds\Big)^{\frac{\alpha _2}{p_2}} >\frac{2^{\alpha _1+\alpha _2-\frac{\alpha _1}{p_1}-1}}{ (b-a)^{\alpha _1+\alpha _2-1}} \label{s6} \end{equation} from Corollary \ref{coro2.1}. \end{example} Secondly, we give another application of the Lyapunov-type inequalities obtained for system \eqref{e1}. Note that the lower bounds are found by using inequality \eqref{22d} in Theorem \ref{thm2.5} coincide with that of \cite[Theorem 9]{Cakmak-1}. Now, we present new lower bounds by using inequality \eqref{22c} in Theorem \ref{thm2.4} which give a better lower bound for the eigenvalues of following system than that of \cite[Theorem 9]{Cakmak-1} when $10$ for $k=1,2,\dots ,n$ and all $t\in\mathbb{R}$ reduces to the system \begin{equation} \begin{gathered} -(| x_1'| ^{p_1-2}x_1')^{\prime }=\lambda _1\alpha _1r(t)| x_1| ^{\alpha _1-2}x_1| x_2| ^{\alpha _2}\dots | x_n| ^{\alpha _n} \\ -(| x_2'| ^{p_2-2}x_2')'=\lambda _2\alpha _2r(t)| x_1| ^{\alpha _1}| x_2| ^{\alpha _2-2}x_2\dots | x_n| ^{\alpha _n} \\ \dots \\ -(| x_n'| ^{p_n-2}x_n')'=\lambda _n\alpha _nr(t)| x_1| ^{\alpha _1}| x_2| ^{\alpha _2}\dots | x_n| ^{\alpha _n-2}x_n\,. \end{gathered} \label{u1} \end{equation} By using similar techniques to the technique in \cite{Cakmak-1}, we obtain the following result which gives lower bounds for the $n$-th eigenvalue $ \lambda _n$. The proof of following theorem is based on above generalization of the Lyapunov-type inequality, as in that of \cite[Theorem 9]{Cakmak-1} and hence is omitted. \begin{theorem} \label{thm3.1} There exist a function $k_1(\lambda _1,\lambda _2,\dots ,\lambda _{n-1})$ such that \begin{equation} \lambda _n\geq k_1(\lambda _1,\lambda _2,\dots ,\lambda _{n-1}) \label{u1a} \end{equation} for every generalized eigenvalue $(\lambda _1,\lambda _2,\dots ,\lambda _n)$ of system \eqref{u1}, where $|x_k(c_k)| =\underset{a