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EXISTENCE AND TOPOLOGICAL STRUCTURE OF SOLUTION
SETS FOR φ-LAPLACIAN IMPULSIVE DIFFERENTIAL

EQUATIONS

JOHNNY HENDERSON, ABDELGHANI OUAHAB, SAMIA YOUCEFI

Abstract. In this article, we present results on the existence and the topo-
logical structure of the solution set for initial-value problems for the first-order
impulsive differential equation

(φ(y′))′ = f(t, y(t)), a.e. t ∈ [0, b],

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . , m,

y′(t+k )− y′(t−k ) = Īk(y′(t−k )), k = 1, . . . , m,

y(0) = A, y′(0) = B,

where 0 = t0 < t1 < · · · < tm < tm+1 = b, m ∈ N. The functions Ik, Īk char-
acterize the jump in the solutions at impulse points tk, k = 1, . . . , m. For the
final result of the paper, the hypotheses are modified so that the nonlinearity
f depends on y′, but the impulsive conditions and initial conditions remain
the same.

1. Introduction

The dynamics of many processes in physics, population dynamics, biology and
medicine may be subject to abrupt changes such as shocks or perturbations (see
for instance [3, 9] and the references therein). These perturbations may be seen
as impulses. For instance, in the periodic treatment of some diseases, impulses
correspond to the administration of a drug treatment or a missing product. In
environmental sciences, impulses correspond to seasonal changes of the water level
of artificial reservoirs. Their models may be described by impulsive differential
equations. The mathematical study of boundary value problems for differential
equations with impulses was first considered in 1960 by Milman and Myshkis [11]
and then followed by a period of active research which culminated in 1968 with the
monograph by Halanay and Wexler [8].

Various mathematical results (existence, asymptotic behavior, and so on) have
been obtained so far (see [1, 2, 4, 7, 10, 13, 12] and the references therein).

In this paper we shall establish an existence theory for initial-value problems
with impulse effects. We will treat two cases. For the first case, the problem has
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the form

(φ(y′(t)))′ = f(t, y(t)), t ∈ J := [0, b], t 6= tk, k = 1, . . . ,m, (1.1)

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m, (1.2)

y′(t+k )− y′(t−k ) = Īk(y(t−k )), k = 1, . . . ,m, (1.3)

y(0) = A, y′(0) = B, (1.4)

where f : [0, b] × R → R is a given function, Ik, Īk ∈ C(R,R), φ : R → R is a
suitable monotone homeomorphism, and A,B ∈ R. For this setting, the proofs of
the two results presented, while involving some cases, are quite straight for word.
The second case is when the second member f may depend on y′, and the problem
has the the form

(φ(y′(t)))′ = f(t, y(t), y′(t)), t ∈ J := [0, b], t 6= tk, k = 1, . . . ,m, (1.5)

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m, (1.6)

y′(t+k )− y′(t−k ) = Īk(y(t−k )), k = 1, . . . ,m, (1.7)

y(0) = A, y′(0) = B, (1.8)

where f : [0, b]×R×R → R is a given function, Ik, Īk, φ and A,B are as in problem
(1.1)–(1.4). Because of the dependency on y′, the proof of the result presented is
somewhat more involved. Of course, the second case also covers the first case when
f is independent of y′.

The goals of this article are to provide some existence results and to establish
the compactness of solution sets of the above problems.

2. Preliminaries

In this section, we recall from the literature some notation, definitions, and
auxiliary results which will be used throughout this paper. Let J = [0, b] be an
interval of R. C([0, b],R) is the Banach space of all continuous functions from [0, b]
into R with the norm

‖y‖∞ = sup
t∈[0,b]

|y(t)|.

L1([0, b],R) denotes the Banach space of Lebesgue integrable functions, with the
norm

‖y‖L1 =
∫ b

0

|y(s)|ds.

Definition 2.1. A map f : [p, q]× R → R is said to be L1-Carathéodory if

(i) t→ f(t, y) is measurable for all y ∈ R,
(ii) y → f(t, y) is continuous for almost each t ∈ [p, q],
(iii) for each r > 0, there exists hr ∈ L1([p, q],R+) such that |f(t, y)| ≤ hr(t)

for almost each t ∈ [p, q] and for all |y| ≤ r.

Lemma 2.2 (Grönwall-Bihari [5]). Let I = [p, q] and let u, g : I → R be positive
continuous functions. Assume there exist c > 0 and a continuous nondecreasing
function h : [0,∞) → (0,+∞) such that

u(t) ≤ c+ g(s)h(u(s))ds, ∀t ∈ I.
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Then

u(t) ≤ H−1
( ∫ t

p

g(s)ds
)
, ∀t ∈ I,

provided ∫ +∞

c

dy

h(y)
>

∫ q

p

g(s)ds,

where H−1 refers to inverse of the function H(u) =
∫ u
c

dy
h(y) for u ≥ c.

3. Main results

Let J0 = [0, t1], Jk = (tk, tk+1], k = 1, . . . ,m, and let yk be the restriction of a
function y to Jk. To define solutions for (1.1)− (1.4), consider the space

PC =
{
y : [0, b] → R, yk ∈ C(Jk,R), k = 0, . . . ,m, such that

y(t−k ) and y(t+k ) exist and satisfy y(t−k ) = y(tk) for k = 1, . . . ,m
}
.

Endowed with the norm

‖y‖PC = max{‖yk‖∞, k = 0, . . . ,m}, ‖yk‖∞ = sup
t∈Jk

|y(t)|,

PC is a Banach space.

PC1 =
{
y ∈ PC : y′k ∈ C(Jk,R), k = 0, . . . ,m, such that

y′(t−k ) and y′(t+k ) exist and satisfy y′(t−k ) = y′(tk) for k = 1, . . . ,m
}
.

is a Banach space with the norm

‖y‖PC1 = max(‖y‖PC , ‖y′‖PC), or ‖y‖PC1 = ‖y‖PC + ‖y′‖PC .

Theorem 3.1 (Nonlinear Alternative [6]). Let X be a Banach space with C ⊂ X
closed and convex. Assume U is a relatively open subset of C with 0 ∈ U and
G : U → C is a compact map. Then either,

(i) G has a fixed point in U ; or
(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λG(u).

Theorem 3.2. Suppose that:
(H1) f : [0, b]× R → R is an Carathéodory function and Ik, Īk ∈ C(R,R).
(H2) There exist p ∈ L1(J,R+) such that |f(t, u)| ≤ p(t) for a.e. t ∈ J

are satisfied. Then (1.1)-(1.4) has at least one solution and the solutions set

S = {y ∈ PC([0, b],R) : y is a solution of (1.1)-(1.4)}
is compact.

Proof. The proof involves several steps.
Step 1: Consider the problem

(φ(y′))′ = f(t, y) t ∈ [0, t1],

y(0) = A, y′(0) = B,
(3.1)

and the map N1 : C([0, t1],R) → C([0, t1],R),

y 7→ (N1y)(t) = A+
∫ t

0

φ−1[φ(B) +
∫ s

0

f(τ, y)dτ ]ds.

Clearly the fixed points of N1 are solutions of the problem (3.1).
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To apply the nonlinear alternative of Leray-Schauder type, we first show that
N1 is completely continuous. The proof will be given in several steps.

Claim 1: N sends bounded sets into bounded sets in C([0, t1],R). Let

y ∈ D = {y ∈ C([0, t1],R) : ‖y‖∞ ≤ q}.
Then for each t ∈ [0, t1], we have

|(N1y)(t)| ≤ |A|+
∫ t

0

|φ−1[φ(B) +
∫ s

0

f(τ, y)]|dτ,

since

|φ(B) +
∫ s

0

f(τ, y)dτ | ≤ |φ(B)|+
∫ s

0

|f(τ, y)|dτ

≤ |φ(B)|+
∫ s

0

|p(τ)|dτ

≤ |φ(B)|+ (‖p‖L1)t1,

it follows that

[φ(B) +
∫ s

0

f(τ, y)dτ ] ∈ B(0, l1),

where l1 = |φ(B)|+ (‖p‖L1)t1. Since φ−1 is continuous,

sup
x∈B(0,l1)

|φ−1(x)| <∞.

Thus
‖N1(y)‖∞ ≤ |A|+ t1 sup

x∈B(0,l1)

|φ−1(x)| := r

Claim 2: N1 maps bounded sets into equicontinuous sets. Let l1, l2 ∈ [0, t1],
l1 < l2 and D be a bounded set of C([0, t1],R) as in Claim 1. Let y ∈ D. Then

|(N1y)′(t)| = |φ−1[φ(B) +
∫ t

0

f(s, y)ds]− φ−1(φ(B))|

≤ |φ−1[φ(B) +
∫ t

0

f(s, y)ds]|+ |B|

≤ sup
x∈B(0,l1)

|φ−1(x)|+ |B| := r′.

By the mean value theorem, we obtain

|(N1y)(l2)− (N1y)(l1)| = |(N1y)′(ξ)(l2 − l1)| ≤ r′|l2 − l1|.
As l2 → l1 the right-hand side of the above inequality tends to zero.

Claim 3: N1 is continuous. Let (yn)n∈N be a sequence such that yn → y in
C([0, t1],R). Then there is an integer q such that ‖yn‖∞ ≤ q for all n ∈ N and
‖y‖∞ ≤ q, yn ∈ D and y ∈ D. We have

|(N1yn)(t)− (N1y)(t)|

≤
∫ t

0

|φ−1[φ(B) +
∫ s

0

f(τ, yn)dτ ]− φ−1[φ(B) +
∫ s

0

f(τ, y)dτ ]|ds.

By the dominated convergence theorem, we have

|φ(B) +
∫ s

0

f(τ, yn)dτ − φ(B)−
∫ s

0

f(τ, y)dτ | → 0 as n→∞,
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and since φ−1 is continuous. Then by the dominated convergence theorem, we have

‖N1(yn)−N1(y)‖∞

≤
∫ t1

0

|φ−1[φ(B) +
∫ s

0

f(τ, yn)dτ ]− φ−1[φ(B) +
∫ s

0

f(τ, y)dτ ]|ds→ 0,

as n→∞. Thus N1 is continuous.
Claim 4: A priori estimate. Now we show that there exists a constant M0 such

that ‖y‖∞ ≤ M0 where y is a solution if the problem (3.1). Let y a solution of
(3.1):

y(t) = A+
∫ t

0

φ−1[φ(B) +
∫ s

0

f(τ, y(τ)dτ)]ds.

Then

|y(t)| ≤ |A|+
∫ t

0

|φ−1[φ(B) +
∫ s

0

f(τ, y(τ))dτ ]|ds

≤ |A|+
∫ t

0

|φ−1[φ(B) +
∫ s

0

p(τ)dτ ]|ds

≤ |A|+
∫ t

0

|φ−1[φ(B) + ‖p‖1t1]|ds

≤ |A|+ sup
x∈B(0,l1)

∫ t

0

ds

≤ |A|+ t1 sup
x∈B(0,l1)

=: M0.

Thus, ‖y‖∞ = supt∈[0,t1] |y(t)| ≤M0. Set

U = {y ∈ C([0, t1],R) : ‖y‖∞ < M0 + 1}.
As a consequence of Claims 1–4 and the Ascoli-Arzela theorem, we can conclude
that the map N1 : U → C([0, t1],R) is compact. From the choice of U there is no
y ∈ ∂U such that y = λN1y for any λ ∈ (0, 1). As a consequence of the nonlinear
alternative of Leray-Schauder we deduce that N1 has a fixed point denoted by
y0 ∈ U which is solution of the problem (3.1).

Step 2: Consider the problem

(φ(y′))′ = f(t, y) t ∈ (t1, t2],

y(t+1 ) = y0(t−1 ) + I1(y0(t−1 )),

y′(t+1 ) = y′0(t
−
1 ) + Ī1(y0(t−1 )).

(3.2)

It is clear that all solutions of (3.2) are fixed points of the multi-valued operator
N2 : C∗ → C∗, defined by

(N2y)(t) = A1 +
∫ t

t1

φ−1[φ(B1) +
∫ s

t1

f(τ, y)dτ ]ds,

where
C∗ = {y ∈ C((t1, t2]) : y(t+1 ), y′(t+1 ) exist}

and
A1 = y1(t1) + I1(y1(t1)), B1 = y′1(t1) + Ī(y1(t1)).

As in Step 1, we can prove that N2 at least one fixed point which is a solution of
(3.2).
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Step 3: We continue this process taking into account that ym := y
∣∣
(tm,b]

is a
solution of the problem

(φ(y′))′ = f(t, y) t ∈ (tm, b],

y(t+m) = ym−1(t−m) + Im(ym−1(t−m)),

y′(t+m) = y′m−1(t
−
m) + Īm(ym−1(t−m)).

(3.3)

A solution y of problem (1.1)-(1.4) is ultimately defined by

y(t) =


y0(t), if t ∈ [0, t1],
y2(t), if t ∈ (t1, t2],
. . .

ym(t), if t ∈ (tm, tm+1].

Step 3: Now we show that the set

S = {y ∈ PC([0, b],R) : y is a solution of (1.1)-(1.4)}

is compact. Let (yn)n∈N be a sequence in S. We put B = {yn : n ∈ N} ⊆
PC([0, b],R). Then from earlier parts of the proof of this theorem, we conclude
that B is bounded and equicontinuous. Then from the Ascoli-Arzela theorem, we
can conclude that B is compact.

Recall that J0 = [0, t1] and Jk = (tk, tk+1], k = 1, . . . ,m. Hence:
• yn|J0 has a subsequence

(ynm)nm∈N ⊂ S1 = {y ∈ C([0, t1],R) : y is a solution of (3.1)}

such that ynm converges to y. Let

z0(t) = A+
∫ t

0

φ−1[φ(B) +
∫ s

0

f(τ, y)dτ ]ds,

and

|ynm(t)− z0(t)|

≤
∫ t

0

|φ−1[φ(B) +
∫ s

0

f(τ, ynm
)dτ ]− φ−1[φ(B) +

∫ s

0

f(τ, y)dτ ]|ds.

As nm → +∞, ynm
(t) → z0(t), and then

y(t) = A+
∫ t

0

φ−1[φ(B) +
∫ s

0

f(τ, y)dτ ]ds.

• yn|J1 has a subsequence relabeled as (ynm) ⊂ S2 converging to y in C∗ where

S2 = {y ∈ C∗ : y is a solution of (3.2)}.

Let

z1(t) = A1 +
∫ t

t1

φ−1[φ(B1) +
∫ s

t1

f(τ, y)dτ ]ds,

|ynm(t)− z1(t)|

≤
∫ t

t1

|φ−1[φ(B1) +
∫ s

t1

f(τ, ynm)dτ ]− φ−1[φ(B1) +
∫ s

t1

f(τ, y)dτ ]|ds.
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As nm → +∞, ynm(t) → z1(t), and then

y(t) = A1 +
∫ t

t1

φ−1[φ(B1) +
∫ s

t1

f(τ, y)dτ ]ds.

• We continue this process, and we conclude that {yn | n ∈ N} has subsequence
converging to

zm(t) = Am +
∫ t

tm

φ−1[φ(Bm) +
∫ s

tm

f(τ, y)dτ ]ds, t ∈ (tm, b].

Hence S is compact. �

Next we replace (H2) in Theorem 3.2 by
(H3) There exists a continuous nondecreasing function ψ : [0,∞) → [0,∞) and

p ∈ L1(J,R+) such that

|f(t, u)| ≤ p(t)ψ(|u|) a.e. t∈ J and u ∈ R.

Theorem 3.3. Under assumption (H3), problem (1.1)-(1.4) has at least one solu-
tion and the solution set is compact.

Proof. As in the proof of Theorem 3.2 we can show that (1.1)-(1.4) has at least one
solution by an application of the nonlinear alternative of Leray-Schauder. We show
only the estimation of a solution y of (1.1)-(1.4).
• For t ∈ [0, t1], we have

y(t) = A+
∫ t

0

φ−1[φ(B) +
∫ s

0

f(τ, y)dτ ]ds.

We put m(r) = max{|y(r)| : r ∈ [0, t1]}, and

|y(t)| ≤ |A|+
∫ t

0

|φ−1[φ(B) +
∫ s

0

f(τ, y)dτ ]|ds

≤ |A|+
∫ t

0

|φ−1[φ(B) +
∫ s

0

p(τ)ψ(|y(τ)|)dτ ]|ds

≤ |A|+
∫ t

0

|φ−1[φ(B) +
∫ s

0

p(τ)ψ(m(r))dτ ]|ds

≤ |A|+
∫ t

0

|φ−1[φ(B) + t1‖p‖L1ψ(m(r))]|ds.

Then

m(t) ≤ |A|+
∫ t

0

ψ1(m(s))ds, t ∈ [0, t1],

where ψ1 = (φ−1◦ψ̃) and ψ̃(u) = φ(B)+t1(‖p‖L1)ψ(u). By the nonlinear Grönwall-
Bihari inequality (Lemma 2.2), we infer the bound

m(t) ≤ H−1(t) ≤M0,

where H(t) =
∫ t
|A|

dτ

(φ−1◦ eψ)(τ)
.

• For t ∈ (t1, t2], we have

y(t) = A1 +
∫ t

t1

φ−1[φ(B1) +
∫ s

t1

f(τ, y)dτ ]ds.
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We put m(r) = max{|y(r)| : r ∈ (t1, t2]}, and

|y(t)| ≤ |A1|+
∫ t

t1

|φ−1[φ(B1) +
∫ s

t1

f(τ, y)dτ ]|ds

≤ |A1|+
∫ t

t1

|φ−1[φ(B1) +
∫ s

t1

p(τ)ψ(|y(τ)|)dτ ]|ds

≤ |A1|+
∫ t

t1

|φ−1[φ(B1) +
∫ s

t1

p(τ)ψ(m(r))dτ ]|ds

≤ |A1|+
∫ t

t1

|φ−1[φ(B1) + t2(‖p‖L1)ψ(m(r))]|ds.

Then

m(t) ≤ |A1|+
∫ t

t1

ψ1(m(s))ds, t ∈ [t1, t2],

where ψ1 = (φ−1 ◦ ψ̃) and ψ̃(u) = φ(B1) + t2(‖p‖L1)ψ(u).
By the nonlinear Grönwall-Bihari inequality (Lemma 2.2), we infer the bound

m(t) ≤ H−1(t) ≤M1,

where H(t) =
∫ t
|A1|

dτ

(φ−1◦ eψ)(τ)
.

• For t ∈ (tm, b], we have

y(t) = Am +
∫ t

tm

φ−1[φ(Bm) +
∫ s

tm

f(τ, y)dτ ]ds.

As in the pattern, there exists Mm > 0 such that

m(t) ≤ H−1(t) ≤Mm,

where H(t) =
∫ t
|Am|

dτ

(φ−1◦ eψ)(τ)
. Hence

‖y‖PC ≤ max(M0,M1, . . . ,Mm) = M.

The proof is complete. �

For the next theorem we use the assumptions:
(H4) f : [0, b]× R× R → R is a continuous function.
(H5) There exist a continuous nondecreasing function ψ : R+ × R+ → (0,∞)

and p ∈ L1(J,R) such that

|f(t, x, y)| ≤ p(t)ψ(|x|, |y|) for all x, y ∈ R, t ∈ J
with ∫ b

0

p(s)ds <
∫ ∞

|A|+c|B|

du

(φ−1 ◦ ψ)(u, u)
.

Theorem 3.4. Under assumptions (H4), (H5), problem (1.5)-(1.8) has at least one
solution.

Prior to the proof of Theorem 3.4, we present a useful lemma.

Lemma 3.5. The operator L : D → PC(J,R) defined by L(y) = (φ(y′))′ where
D = {y ∈ PC1(J,R) : y(t+k ) = y(tk)+ Ik(y(tk)), y′(t+k ) = y′(tk)+ Īk(y(tk)), y(tk) =
y(t−k ), y′(tk) = y′(t−k ), k = 1, . . . ,m, y(0) = A, y′(0) = B}. Assume that L is well
defined. Then L is bijective and L−1 is completely continuous.
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Proof. Step 1: L is bijective.
• L is injective. Let y1, y2 ∈ D be such that L(y1) = L(y2). Then

(φ(y′1(t)))
′ = (φ(y′2(t)))

′, t ∈ [0, t1],

and thus

φ(y′1(t))− φ(y′1(0)) = φ(y′2(t))− φ(y′2(0)), t ∈ [0, t1],

φ(y′1(t))− φ(B) = φ(y′2(t))− φ(B), t ∈ [0, t1].

Hence y′1(t) = y′2(t) for t ∈ [0, t1]. By integration of this equality, we obtain∫ t

0

y′1(s)ds =
∫ t

0

y′2(s)ds, t ∈ [0, t1]

which implies y1(t)−y1(0) = y2(t)−y2(0), t ∈ [0, t1]. This implies that y1(t) = y2(t),
t ∈ [0, t1].

Next,

φ(y′1(t))− φ(y′1(t1) + Ī1(y1(t1))) = φ(y′2(t))− φ(y′2(t1) + Ī1(y2(t1))), t ∈ (t1, t2]

implies y′1(t) = y′2(t), t ∈ (t1, t2], and so∫ t

t1

y′1(s)ds =
∫ t

t1

y′2(s)ds, t ∈ (t1, t2]

implies y1(t)− (y1(t1) + I1(y1(t1))) = y2(t)− (y2(t1) + I1(y2(t1))), t ∈ (t1, t2], and
then

y1(t) = y2(t), t ∈ (t1, t2].

Continuing this pattern,

φ(y′1(t))−φ(y′1(tm)+ Īm(y1(tm))) = φ(y′2(t))−φ(y′2(tm)+ Īm(y2(tm))), t ∈ (tm, b]

implies y′1(t) = y′2(t), t ∈ (tm, b], and so∫ t

tm

y′1(s)ds =
∫ t

tm

y′2(s)ds, t ∈ (tm, b]

implies y1(t)− (y1(tm) + Im(y1(tm))) = y2(t)− (y2(tm) + Im(y2(tm))), t ∈ (tm, b],
and hence y1(t) = y2(t), t ∈ (tm, b]. This implies that y1 = y2.
• L is surjective. Let h ∈ PC(J,R), then we define

y(t) =


L0(h)(t), if t ∈ [0, t1],
L1(h)(t), if t ∈ (t1, t2],
. . .

Lm−1(h)(t), if t ∈ (tm, b],

(3.4)

where

L0(h)(t) = A+
∫ t

0

φ−1
[
φ(B) +

∫ s

0

h(τ)dτ
]
ds, t ∈ [0, t1],

L1(h)(t) = L0(h)(t1) + I1(L0(h)(t1))

+
∫ t

t1

φ−1
[
φ(L′0(h)(t1) + Ī1(L0(h)(t1))) +

∫ s

t1

h(τ)dτ
]
ds, t ∈ (t1, t2],
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L2(h)(t) = L1(h)(t2) + I2(L1(h)(t2))

+
∫ t

t2

φ−1
[
φ(L′1(h)(t2) + Ī2(L1(h)(t2))) +

∫ s

t2

h(τ)dτ
]
ds, t ∈ (t2, t3],

. . .

Lm(h)(t) = Lm−1(h)(tm) + Im(Lm−1(h)(tm)) +
∫ t

tm

φ−1
[
φ(L′m−1(h)(tm)

+ Īm(Lm−1(h)(tm))) +
∫ s

tm

h(τ)dτ
]
ds, t ∈ (tm, b].

From (3.4) we can easily check that

y(t) = A+
∑

0<tk<t

Ik(Lk−1(h)(tk))

+
∫ t

0

φ−1
[
φ(B +

∑
0<tk<t

Īk(Lk−1(h)(tk))) +
∫ s

0

h(τ)dτ
]
ds, t ∈ J.

Hence

y′(t) = φ−1
[
φ(B +

∑
0<t2<t

Īk(Lk−1(h)(tk))) +
∫ s

0

h(s)ds
]
.

From the definition of y and y′ we can prove that y(0) = A, y′(0) = B, y(t+k ) =
y(tk) + Ik(y(tk)), y′(t+k ) = y′(tk) + Īk(y(tk)) and y(tk) = yt−k

, k = j, . . . ,m and by
using the fact that Ik, Īk are continuous we can easily prove that y, y′ ∈ PC(J,R).

Step 2: L−1 is completely continuous.
Claim 1: L−1 is continuous. Let hn ∈ PC(J,R) be such that hn converges

to h in PC(J,R) as n → ∞. We show that L−1(hn) converges to L−1(h). Let
{yn}n∈N ⊂ D such that {L(yn)}n∈N = {hn}n∈N. Then:
• For t ∈ [0, t1], we have

y′n(t) = φ−1
[
φ(B) +

∫ t

0

hn(s)ds
]
,

and

yn(t) = A+
∫ t

0

φ−1
[
φ(B) +

∫ s

0

hn(τ)dτ
]
ds = A+

∫ t

0

y′n(s)ds.

Hence

|y′n(t)| ≤
∣∣∣φ−1

[
φ(B) +

∫ t

0

hn(s)ds
]∣∣∣,

since

|φ(B) +
∫ t

0

hn(s)ds| ≤ |φ(B)|+
∫ t

0

|hn(s)|ds

≤ |φ(B)|+ t1‖hn‖PC
≤ |φ(B)|+ t1M∗ = K,

where ‖hn‖PC ≤M∗ for all n ∈ N. Then [φ(B)+
∫ t
0
hn(s)ds] ∈ B(0,K). Since φ−1

is continuous and B(0,K) is compact,

sup
x∈B(0,K)

|φ−1(x)| <∞.
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Then
‖y′n‖∞ ≤ sup

x∈B(0,K)

|φ−1(x)| := M0,

and
‖yn‖∞ ≤ |A|+M0t1 := M0.

So, {yn}n∈N and {y′n}n∈N are bounded uniformly in C([0, t1],R).
We put C = {yn : n ∈ N} ⊆ C([0, t1],R). We can easily show that C is bounded

and equicontinuous, and then from the Ascoli-Arzela theorem we conclude that C
is compact. Then yn has a subsequence (ynm

) converging to y. Let

z(t) = A+
∫ t

0

φ−1
[
φ(B) +

∫ s

0

h(τ)dτ
]
ds

so that

|ynm(t)− z(t)| ≤
∫ t1

0

|φ−1
[
φ(B) +

∫ s

0

hnm(τ)dτ
]
− φ−1

[
φ(B) +

∫ s

0

h(τ)dτ
]
|ds.

Since φ−1 is continuous and as nm →∞, ynm → z(t), then

y(t) = A+
∫ t

0

φ−1
[
φ(B) +

∫ s

0

h(τ)dτ
]
ds.

By the same technique, we can prove that {y′n} converges to y′(t) for t ∈ [0, t1].
• For t ∈ (t1, t2], we have

y′n(t) = y′n(t1) + φ−1
[
φ(y′n(t1) + Ī1(yn(t1))) +

∫ t

t1

hn(s)ds
]

and

yn(t) = yn(t1) + I1(yn(t1)) +
∫ t

t1

φ−1
[
φ(y′n(t1) + Ī1(yn(t1))) +

∫ s

t1

hn(τ)dτ
]

= yn(t1) + I1(yn(t1)) +
∫ t

t1

y′n(s)ds.

Hence

|y′n(t)| ≤ |y′n(t1)|+
∣∣∣φ−1

[
φ(y′n(t1) + Ī1(yn(t1))) +

∫ t

t1

hn(s)ds
]∣∣∣

≤M0 +
∣∣∣φ−1

[
φ(y′n(t1) + Ī1(yn(t1))) +

∫ t

t1

hn(s)ds
]∣∣∣.

Since

|φ(y′n(t1) + Ī1(yn(t1))) +
∫ t

t1

hn(s)ds| ≤ |φ(M0 + sup
x∈B(0,M0)

|Ī1(x)|)|+ t2K = K∗,

then

|φ(y′n(t1) + Ī1(yn(t1))) +
∫ t

t1

hn(s)ds| ∈ B(0, |φ(M0 + sup
x∈B(0,M0)

|Ī1(x)|)|+ t2K).

Since φ−1 is continuous and B(0, |φ(M0 +supx∈B(0,M0)
|Ī1(x)|)|+ t2K) is compact,

‖y′n‖∞ ≤M0 + sup
x∈B(0,|φ(M0+supx∈B(0,M0) |Ī1(x)|)|+t2K)

|φ−1(x)| := M1,
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and
‖yn‖∞ ≤M0 + sup

x∈B(0,M0)

|I1(z)|+M1t2 := M1.

Then {yn}n∈N and {y′n}n∈N are bounded uniformly in C((t1, t2],R). We put C =
{yn : n ∈ N} ⊆ C((t1, t2],R). We can easily show again that C is bounded and
equicontinuous, and then from the Ascoli-Arzela theorem we conclude that C is
compact. Then yn has a subsequence (ynm

) converging to y.
Now, let

z(t) = y(t1) + I1(y(t1)) +
∫ t

t1

φ−1
[
φ(y′(t1) + Ī1(y(t1))) +

∫ s

t1

h(τ)dτ
]
ds.

Then

|ynm(t)− z(t)| ≤ |ynm(t1)− y(t1)|+ |I1(ynm(t1))− I1(y(t1))|∫ t

t1

|φ−1
[
φ(y′nm

(t1) + Ī1(ynm(t1))) +
∫ s

t1

hnm(τ)dτ
]

− φ−1
[
φ(y′(t1) + Ī1(y(t1))) +

∫ s

t1

h(τ)dτ
]
|ds,

Since φ−1 is continuous, {yn}n∈N and {y′n}n∈N converge to y and y′, respectively,
for t ∈ [0, t1], and as nm →∞, ynm → z(t), then

y(t) = y(t1) + I1(y(t1)) +
∫ t

t1

φ−1
[
φ(y′(t1) + Ī1(y(t1))) +

∫ s

t1

h(τ)dτ
]
ds.

By the same technique, we can prove that {y′n} converges to y′(t) for t ∈ (t1, t2].
• We continue this process until we get, for every t ∈ (tm, b], that yn(t) converges

to y(t) and y′n(t) converges to y′(t). We conclude that L(y) = h, and this implies
that L−1 is continuous.

Claim 2: L−1 is compact. Let D be a bounded set of PC(J,R) and {yn}n∈N ⊂
L−1(D). Then there exists {hn}n∈N ⊂ D such that L(yn) = hn, for all n ∈ N.

We show that |L−1
0 (hn)(l2) − L−1(hn)(l1)| tends to zero as l2 → l1. Since

L0(yn)(t) = hn(t), t ∈ [0, t1], it follows that

y′n(t) = φ−1
[
φ(B) +

∫ t

0

hn(s)ds
]
, t ∈ [0, t1].

Using the fact that hn is bounded, thus there exist M0 > 0 such that

‖yn‖∞, ‖y′n‖∞ ≤M0, for all n ∈ N.
• Let l1, l2 ∈ [0, t1], l1 < l2. Then, by the mean value theorem,

|yn(l2)− yn(l1)| = |y′n(ξn)(l2 − l1)| ≤M0|l2 − l1|,
and

|φ(y′n)(l2)− φ(y′n)(l1)| =
∣∣∣ ∫ l2

l1

hn(s)ds
∣∣∣ ≤ ∫ l2

l1

|hn(s)|ds ≤ |l2 − l1|M∗,

where ‖hn‖PC ≤M∗ for all n ∈ N. As l2 → l1 the right hand side of the above in-
equality tends to zero. Then {yn(·)}n∈N is equicontinuous and {yn}n∈N is bounded.
By the Ascoli-Arzela theorem there exist y0, z0 ∈ C([0, t1],R) such that yn and
φ(y′n) converge, respectively, to y0 and z0. Since φ−1 is a continuous function,

y′n(t) → φ−1(z0)(t), n→∞.



EJDE-2012/56 EXISTENCE AND TOPOLOGICAL STRUCTURE 13

Set

y∗(t) = A+
∫ t

0

φ−1(z0(s))ds, t ∈ [0, t1],

and from

yn(t) = A+
∫ t

0

y′n(s)ds, t ∈ [0, t1],

we have

‖yn − y∗‖∞ ≤
∫ t1

0

|y′n(s)− φ−1(z0)(s)|ds.

From the Lebesgue dominated convergence theorem, we deduce that {yn}n∈N con-
verges to y∗ in C([0, t1],R), and this implies that

y0(t) = A+
∫ t

0

φ−1(z0(s))ds, t ∈ [0, t1] ⇒ y′0(t) = φ−1(z0(t)), t ∈ [0, t1].

Then yn converges to y0 in C1([0, t1],R).
For t ∈ (t1, t2],

y′n(t) = φ−1
[
φ(y′n(t1) + Ī1(yn(t1))) +

∫ t

t1

hn(s)ds
]
, t ∈ (t1, t2].

Using the fact that hn is bounded, there exists M1 > 0 such that

‖yn‖∞, ‖y′n‖∞ ≤M1, for all n ∈ N.

• Let l1, l2 ∈ (t1, t2], l1 < l2. Then

|yn(l2)− yn(l1)| = |y′n(ξn)(l2 − l1)| ≤M1|l2 − l1|,

and
|φ(y′n)(l2)− φ(y′n)(l1)| ≤M∗|l2 − l1|.

As l2 → l1 the right hand side of the above inequality tends to zero, then {yn(·)}
and {φ(y′n)(·)} are equicontinuous. By Ascoli-Arzela theorem there exist y1, z1 ∈
C([0, t1],R) such that yn and φ(y′n) converge, respectively, to y1, z1. Since φ−1 and
I1 are a continuous functions, then y′n(t) → φ−1(z1)(t) as n→∞. Set

y∗∗(t) = y0(t1) + I1(y0(t1)) +
∫ t

t1

φ−1(z1(s))ds, t ∈ (t1, t2].

From

yn(t) = y0(t1) + I1(y0(t1)) +
∫ t

t1

y′n(s)ds, t ∈ (t1, t2],

we have

‖yn − y∗∗‖∞ ≤
∫ t1

0

|y′n(s)− φ−1(z1)(s)|ds.

From the Lebesgue dominated convergence theorem, we deduce that {yn}n∈N con-
verges to y∗∗ in C1 = {y ∈ C1((t1, t2],R) : y(t+1 ), y′(t+1 ) exist}. This implies that

y1(t) = y0(t1) + I1(y0(t1)) +
∫ t

t1

φ−1(z0(s))ds, t ∈ [0, t1]

implies y′1(t) = φ−1(z1(t)), t ∈ (t1, t2]. Then yn converges to y1 in C1.
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• We continue this process until we have that there exists ym ∈ C1((tm, b],R)
such that yn converge to ym in Cm = {y ∈ C1((tm, b],R)|y(t+m), y′(t+m) exist}. We
define

y(t) =


y0(t), if t ∈ [0, t1],
y1(t), if t ∈ (t1, t2],
. . .

ym(t), if t ∈ (tm, b].

(3.5)

It is clear that {yn}n∈N ⊂ PC and yn converges to y in PC. Using the fact that
L−1 is continuous, thus

hn = L−1(yn) → L−1(y) = h as n→∞

in PC1. Then L(y) = h. Hence L−1 is compact. This completes the proof. �

Proof of Theorem 3.4. We consider the following fixed point problem that is equiv-
alent to problem (1.5)–(1.8),

y = (L−1 ◦ F )(y),

where L−1 : PC(J,R) → D and F is the Nemystki operator given by F (t, y) =
f(t, y, y′). From Lemma 3.5 we can prove that (L−1 ◦F ) is compact. Now we show
that y 6= λ(L−1 ◦ F )(y).

For t ∈ [0, t1], we have

y′(t) = φ−1
[
φ(B) +

∫ t

0

f(s, y(s), y′(s))ds
]
,

y(t) = A+
∫ t

0

y′(s)ds.

Thus

|y′(t)| ≤
∣∣∣φ−1

[
φ(B) +

∫ s

0

p(s)ψ(|y(s)|, |y′(s)|)ds
]∣∣∣,

|y(t)| ≤ |A|+
∫ t

0

|y′(s)|ds

≤ |A|+
∫ t

0

∣∣∣φ−1
[
φ(B) +

∫ s

0

p(τ)ψ(|y(τ)|, |y′(τ)|)dτ
]∣∣∣ds.

Let m(r) = max(supt∈[0,t1] |y(t)|, supt∈[0,t1] |y
′(t)|), then

|y(t)| ≤ |A|+
∫ t

0

∣∣∣φ−1
[
φ(B) +

∫ s

0

p(τ)ψ(m(r),m(r))dτ
]∣∣∣ds

≤ |A|+
∫ t

0

∣∣∣φ−1[φ(B) + t1‖p‖L1ψ(m(r),m(r))]
∣∣∣ds.

Then

m(t) ≤ |A|+
∫ t

0

ψ1(m(s))ds,

with ψ1 = φ−1 ◦ ψ̃ and ψ̃(u) = φ(B) + t1(‖p‖L1)ψ(u). By the nonlinear Grönwall-
Bihari inequality (Lemma 2.2), we infer the bound

m(t) ≤ H−1(t) ≤M0,
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where

H(t) =
∫ t

|A|

dτ

(φ−1 ◦ ψ̃)(τ)
.

For t ∈ (t1, t2], we have

y′(t) = y′(t1) + φ−1
[
φ(y′(t1) + Ī1(y(t1))) +

∫ t

t1

f(s, y(s), y′(s))ds
]
,

y(t) = y(t1) + I1(y(t1)) +
∫ t

t1

y′(s)ds.

Thus

|y′(t)| ≤ |y′(t1)|+
∣∣∣φ−1

[
φ(y′(t1) + Ī1(y(t1))) +

∫ t

t1

f(s, y(s), y′(s))ds
]∣∣∣.

Let
m(r) = max( sup

t∈[0,t1]

|y(t)|, sup
t∈[0,t1]

|y′(t)|),

and then

|y(t)| ≤ |y(t1)|+ |I1(y(t1))|+ t2|y′(t1)|

+
∫ t

t1

∣∣∣φ−1
[
φ(y′(t1) + Ī1(y(t1))) +

∫ s

t1

p(τ)ψ(|y(τ)|, |y′(τ)|)dτ
]∣∣∣ds

≤M0 + |I1(y(t1))|+ t2|y′(t1)|∫ t

t1

∣∣∣φ−1
[
φ(y′(t1) + Ī1(y(t1))) +

∫ s

t1

p(τ)ψ(m(r),m(r))dτ
]∣∣∣ds.

Then m(t) ≤M∗ +
∫ t
t1
ψ1(m(s))ds, where

M∗ = (1 + t2)M0 + sup
z∈B(0,M0)

|I1(z)|,

ψ1 = φ−1 ◦ ψ̃,

ψ̃(u) = φ(y′(t1) + Ī1(y(t1))) + t2(‖p‖L1)ψ(u, u).

By the nonlinear Grönwall-Bihari inequality (Lemma 2.2), we infer the bound

m(t) ≤ H−1(t) ≤M1,

where

H(t) =
∫ t

M∗

dτ

(φ−1 ◦ ψ̃)(τ)
.

For t ∈ (tm, b], we have

y′(t) = y′(tm) + φ−1
[
φ(y′(tm) + Īm(y(tm))) +

∫ t

tm

f(s, y(s), y′(s))ds
]
,

y(t) = y(tm) + Im(y(tm))

+
∫ t

tm

φ−1
[
φ(y′(tm) + Īm(y(tm))) +

∫ s

tm

f(τ, y(τ), y′(τ))dτ
]
ds.

So, there exists Mm > 0 such that m(t) ≤ H−1(t) ≤Mm, where

H(t) =
∫ t

M∗∗

dτ

(φ−1 ◦ ψ̃)(τ)
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and
M∗∗ = (1 + b)Mm−1 + sup

z∈B(0,Mm−1)

|Im(z)|.

Hence
‖y‖∞ ≤ max(M0,M1, . . . ,Mm) := M.

Let
U = {y ∈ PC1(J,R) : ‖y‖PC1 < M + 1}.

Then L−1 ◦ F : U → PC1(J,R is relatively compact. Assume that there exists
λ ∈ (0, 1) and y ∈ ∂U such that y = λ(L−1 ◦ F )(y). Then ‖y‖PC1 = M + 1, but
‖y‖PC1 ≤ M . Thus by the nonlinear alternative of Leray-Schauder, we conclude
that L−1 ◦ F has a fixed point which is a solution of (1.5)-(1.8). �
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