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FORMAL AND ANALYTIC SOLUTIONS FOR A QUADRIC
ITERATIVE FUNCTIONAL EQUATION

PINGPING ZHANG

Abstract. In this article, we study a quadric iterative functional equation.
We prove the existence of formal solutions, and that every formal solution
yields a local analytic solution when the eigenvalue of the linearization for the
auxiliary function lying inside the unit circle, lying on the unit circle with a
Brjuno number, or a root of 1.

1. Introduction

Solving iterative functional equations is difficult since the unknown arises in
the iteration [5, 21]. Using Schauder fixed point theorem, Zhang [22] proved the
existence and uniqueness of solutions for a general iterative functional equation,
the so-called polynomial-like iterative functional equation,

λ1x(t) + λ2x
2(t) + · · ·+ λnxn(t) = F (t), t ∈ R.

Later various properties of solutions of iterative functional equations, such as conti-
nuity, differentiability, monotonicity, convexity, analyticity, stability, have received
much more attention; see e.g. [8]–[15], [17]–[20], [23]. Among these studies, the
existence of analytic solutions caused more concerns since it is closely related to
small divisors problem. In [13], analytic invariant curves for a planar map were
obtained by solving the iterative functional equation

x(z + x(z)) = x(z) + G(z) + H(z + x(z)), z ∈ C.

We notice that [13] and [11] are all based on eigenvalue of the linearization θ is
inside the unit circle or a Diophantine number by using Schröder conversion and
majorant series. On the other hand, Reich and his co-authors [8]-[10] have studied
the formal solutions of a quadric iterative functional equation, called the generalized
Dhombres functional equation,

f(zf(z)) = ϕ(f(z)), z ∈ C,

in the ring of formal power series C[[z]]. They described the structure of the set of
all formal solutions when the eigenvalue θ of linearization is not a root of 1, and
also showed every formal solutions yield a local analytic solutions when θ is not on

2000 Mathematics Subject Classification. 39B22, 34A25, 34K05.
Key words and phrases. Iterative functional equation; analytic solution; small divisor;
Brjuno condition.
c©2012 Texas State University - San Marcos.
Submitted December 21, 2011. Published March 23, 2012.

1



2 P. ZHANG EJDE-2012/46

the unit circle or a Diophantine number, as well as represent analytic solutions by
infinite products for θ ling in the unit circle. In 2008, Xu and Zhang [18] studied
the analytic solutions of a q-difference equation

k∑
j=0

∞∑
t=1

Ct,j(z)(x(qjz))t = G(z), z ∈ C, (1.1)

they obtained local analytic solutions under Brjuno condition, and proved no-
existence of analytic solutions when the eigenvalue θ of linearization satisfies Cremer
condition. Following that, Si and Li [15] discussed analytic solutions of the (1.1)
with a singularity at the origin.

In this article, we study the quadric iterative functional equation

x(az + bzx(z)) = H(z) (1.2)

in the complex field, where x(z) is unknown function, H(z) is a given holomorphic
function, a and b are nonzero complex parameters. It is a more complicated equa-
tion than the involutory function x2(t) = t, which is the Babbage equation with
n = 2. We discuss the existence of formal solutions for (1.2) when a is arbitrary
nonzero complex number. Moreover, every formal solution yields a local analytic
solution when a is lying inside the unit circle, lying on the unit circle with a Brjuno
number or a root of 1. Our idea comes from [15].

Let y(z) = az + bzx(z). Then

x(z) =
y(z)− az

bz
.

Therefore,

x(y(z)) =
y(y(z))− ay(z)

by(z)
,

Then (1.2) is equivalent to the functional equation

y(y(z))− ay(z) = by(z)H(z). (1.3)

Using the conversion y(z) = g(θ(g−1(z))), Equation (1.3) transforms into the
equation without functional iteration

g(θ2z)− ag(θz) = bg(θz)H(g(z)). (1.4)

Suppose

g(z) =
∞∑

n=1

anzn, H(z) =
∞∑

n=1

hnzn. (1.5)

Substituting (1.5) into (1.4), we obtain

(θ2 − aθ)a1z +
∞∑

n=1

(θ2(n+1) − aθn+1)an+1z
n+1

= b

∞∑
n=1

n∑
j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

θn+1−jan+1−jhmai1ai2 . . . aimzn+1.
(1.6)

Comparing coefficients, we obtain

(θ2 − aθ)a1 = 0, (1.7)
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and

(θ2(n+1) − aθn+1)an+1 = b

n∑
j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

θn+1−jan+1−jhmai1ai2 . . . aim . (1.8)

Under a1 6= 0, the equality (1.7) implies that θ = a, then (1.8) turns into

(θn − 1)θn+2an+1 = b

n∑
j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

θn+1−jan+1−jhmai1ai2 . . . aim . (1.9)

This means the sequence {an}∞n=2 can be determined successively from (1.9) in
a unique manner for any a1 6= 0; that is, (1.4) has formal solution for arbitrary
nonzero complex number a. Noticing that the function H(z) is holomorphic in a
neighborhood of the origin, we assume

|hn| ≤ 1.

The reason for this, is that (1.4) and hypothetic conditions g(0) = 0, g′(0) = a1

still hold under the transformations

H(z) = ρ−1F (ρ z), g(z) = ρ−1G(ρ z)

for |hn| ≤ ρn. We prove analyticity of solutions to (1.4) under varius hypotheses:

(A1) (elliptic case) θ = e2πiα, α ∈ R\Q is a Brjuno number; i.e., B(α) =∑∞
k=0

log qk+1
qk

< ∞, where {pk

qk
} denotes the sequence of partial fraction

of the continued fraction expansion of α;
(A2) (parabolic case) θ = e2πi q

p for some integer p ∈ N with p ≥ 2, q ∈ Z\{0},
and θ 6= e2πi l

k for all 1 ≤ k ≤ p− 1, l ∈ Z\{0}.
(A3) (hyperbolic case) 0 < |θ| < 1.

2. Existence of analytic solutions for (1.4)

When (A1) is satisfied, that is, θ = e2πiα with α irrational, small divisors arises
inevitably. Since (θn − 1) appears in the denominator and the powers of θ form a
dense subset, there will be n such that 1

θn−1 is arbitrarily large, see [6]. In 1942,
Siegel [16] showed a Diophantine condition that α satisfies

|α− p

q
| > γ

qδ

for some positive γ and δ. In 1965, Brjuno [2] put forward Brjuno number which
satisfies

B(α) =
∑

n

log qn+1

qn
< ∞

and improved Diophantine condition, he showed that as long as α is a Brjuno
number, small divisors is still dealt with tactfully. In the sequel we discuss the
analytic solution of (1.4) with Brjuno number α. For this purpose, the Davie’s
Lemma is necessary.

Lemma 2.1 (Davie’s Lemma [3]). Assume K(n) = n log 2+
∑k(n)

k=0 gk(n) log(2qk+1),
then the function K(n) satisfies
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(a) There is a universal constant τ > 0 (independent of n and of α), such that

K(n) ≤ n
( k(n)∑

k=0

log qk+1

qk
+ τ

)
;

(b) for all n1 and n2, we have K(n1) + K(n2) ≤ K(n1 + n2);
(c) − log |θn − 1| ≤ K(n)−K(n− 1).

Theorem 2.2. Under assumption (A1), (1.4) has an analytic solution of the form

g(z) =
∞∑

n=1

anzn, a1 6= 0. (2.1)

Proof. We prove the formal solution (2.1) is convergent in a neighborhood of the
origin. From (1.9), we have

|an+1| ≤ |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

| θn+1−j

(θn − 1)θn+2
||an+1−j ||hm||ai1 ||ai2 | . . . |aim

|

= |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

1
|θn − 1|

|an+1−j ||hm||ai1 ||ai2 | . . . |aim
|

≤ |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

1
|θn − 1|

|an+1−j ||ai1 ||ai2 | . . . |aim
|.

(2.2)

To construct a majorant series, we define {Bn}∞n=1 by B1 = |a1| and

Bn+1 = |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

Bn+1−jBi1Bi2 . . . Bim , n = 1, 2, . . . .

We denote

G(z) =
∞∑

n=1

Bnzn. (2.3)

Then

G(z) = |a1|z +
∞∑

n=1

Bn+1z
n+1

= |a1|z + |b|
∞∑

n=1

n∑
j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

Bn+1−jBi1Bi2 . . . Bimzn+1

= |a1|z + |b|
∞∑

n=1

n∑
j=1

G(z)−Gj+1(z)
1−G(z)

·Bn+1−j · zn+1−j

= |a1|z + |b|G
2(z)− (1− z)G3(z)−G4(z)

(1− z)(1−G(z))(1−G2(z))
.

Let

R(z, ζ) = ζ − |a1|z − |b| ζ2 − (1− z)ζ3 − ζ4

(1− z)(1− ζ)(1− ζ2)
= 0. (2.4)
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We regard (2.4) as an implicit functional equation, since R(0, 0) = 0, R′
ζ(0, 0) = 1 6=

0. We know that (2.4) has a unique analytic solution ζ(z) in a neighborhood of the
origin such that ζ(0) = 0, ζ ′(0) = |a1| and R(z, ζ(z)) = 0, so we have G(z) = ζ(z).
Naturally, there exists constant T > 0 such that Bn ≤ Tn, n = 1, 2, . . . . We now
deduce by induction on n that

|an+1| ≤ Bn+1e
k(n), n ≥ 0. (2.5)

In fact, |a1| = B1, since k(0) = 0. We assume that |ai+1| ≤ Bi+1, i < n, n =
1, 2, . . . . Then

|an+1|

≤ |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

1
|θn − 1|

|an+1−j ||ai1 ||ai2 | . . . |aim
|

≤ |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

1
|θn − 1|

Bn+1−je
k(n−j)Bi1e

k(i1−1)Bi2e
k(i2−1) . . . Bimek(im−1)

= |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

1
|θn − 1|

Bn+1−jBi1Bi2 . . . Bim
ek(n−m)

=
1

|θn − 1|
Bn+1e

k(n−m)

≤ 1
|θn − 1|

Bn+1e
k(n−1)

≤ 1
|θn − 1|

Bn+1e
log |θn−1|+k(n) = Bn+1e

k(n),

by means of Davie’s Lemma, thus (2.5) is proved. Note that

K(n) ≤ n(B(α) + τ)

for some universal constant τ > 0. Then

|an+1| ≤ Tn+1en(B(α)+τ);

that is,

lim
n→∞

sup(|an+1|)1/(n+1) ≤ lim
n→∞

sup(Tn+1en(B(α)+τ))1/(n+1) = TeB(α)+τ .

This implies that th radius of convergence for (2.1) is at least (TeB(α)+τ )−1, the
proof is complete. �

In what follows, we consider the case that the constant θ is not only on the unit
circle, but also a root of unity. Denote the right side of (1.9) as

Λ(n, θ) = b

n∑
j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

θn+1−jan+1−jhmai1ai2 . . . aim .

Theorem 2.3. Assume (A2) holds and

Λ(vp, θ) ≡ 0, v = 1, 2, . . . . (2.6)
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Then (1.4) has an analytic solution of the form

g(z) = a1z +
∑

n=vp, v∈N
ζvpz

n +
∑

n 6= vp, v∈N
bnzn, a1 6= 0, N = {1, 2, . . . } (2.7)

in a neighborhood of the origin for some ζvp. Otherwise, (1.4) has no analytic
solutions in any neighborhood of the origin.

Proof. In this parabolic case θ = e2πi q
p , the eigenvalue θ is a pth root of unity.

If Λ(vp, θ) 6= 0, for some natural number v, then (1.9) does not hold since
θvp − 1 = 0, naturally, (1.4) has no formal solutions.

If Λ(vp, θ) ≡ 0, for all natural number v, (1.4) has formal solution (2.1). To
prove (2.1) yields a local analytic solution, we define the sequence {Cn}∞n=1 satisfies
C1 = |a1| and

Cn+1 = |b|Γ
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

Cn+1−jCi1Ci2 . . . Cim , n = 1, 2, . . . , (2.8)

where Γ = max{1, |θi − 1|−1 : i = 1, 2, . . . , p− 1}. Clearly, the convergence of series∑∞
n=1 Cnzn can be proved similar as in Theorem 2.2.
When (2.6) holds for all natural number v, the coefficients avp have infinitely

many choices in C, choose avp = ζvp arbitrarily such that

|avp| ≤ Cvp, v = 1, 2, . . . . (2.9)

Furthermore, we can prove

|an| ≤ Cn, n 6= vp. (2.10)

In fact, |a1| = C1. If we suppose that |ai+1| ≤ Ci+1, i < n (n 6= vp), then

|an+1| ≤ |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

| θn+1−j

(θn − 1)θn+2
||an+1−j ||hm||ai1 ||ai2 | . . . |aim

|

≤ |b|Γ
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

Cn+1−jCi1Ci2 . . . Cim

= Cn+1.

From (2.9), (2.10) and the convergence of series
∑∞

n=1 Cnzn, the formal solution
(2.1) yields a local analytic solution (2.7) in a neighborhood of the origin. This
completes the proof. �

Theorem 2.4. Suppose (A3) holds, then (1.4) has an analytic solution of the form

g(z) =
∞∑

n=1

anzn, a1 6= 0.
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Proof. We prove the formal solution (2.1) is convergent in a neighborhood of the
origin. Since 0 < |θ| < 1, so limn→∞

1
θn−1 = 1, From (1.9), we have

|an+1| ≤ |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

| θn+1−j

(θn − 1)θn+2
||an+1−j ||hm||ai1 ||ai2 | . . . |aim

|

≤ |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

1
|θ1+j |

|an+1−j ||ai1 ||ai2 | . . . |aim
|.

(2.11)

Let {Dn}∞n=1 be defined by D1 = |a1| and

Dn+1 = |b|
n∑

j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

1
|θ1+j |

Dn+1−jDi1Di2 . . . Dim
, n = 1, 2, . . . .

Denote

F (z) =
∞∑

n=1

Dnzn. (2.12)

Then

F (z) = |a1|z +
∞∑

n=1

Dn+1z
n+1

= |a1|z + |b|
∞∑

n=1

n∑
j=1

∑
i1+i2+···+im=j;

m=1,2,...,j

1
|θ1+j |

Dn+1−jDi1Di2 . . . Dimzn+1

= |a1|z + |b|
∞∑

n=1

n∑
j=1

1
|θ1+j |

· F (z)− F j+1(z)
1− F (z)

·Dn+1−j · zn+1−j

= |a1|z + |b| θF 2(z)
(θ2 − 1)(θ − F (z))

.

Let

Q(z, ξ) = ξ − |a1|z − |b| θξ2

(θ2 − 1)(θ − ξ)
= 0. (2.13)

Since Q(0, 0) = 0, Q′
ξ(0, 0) = 1 6= 0, then (2.13) has a unique analytic solution ξ(z)

in a neighborhood of the origin such that ξ(0) = 0, ξ′(0) = |a1| and Q(z, ξ(z)) = 0,
so we have F (z) = ξ(z). Similar as in Theorem 2.3, we can prove

|an| ≤ Dn, n = 1, 2, . . . , (2.14)

by induction. Then the local analytic solution (2.1) is existent in a neighborhood
of the origin by means of the convergence of

∑∞
n=1 Dn and inequality (2.14). This

completes the proof. �

3. Formal solutions and analytic solutions of (1.2)

In this section we prove the existence of formal solutions and analytic solutions
of (1.2).
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Theorem 3.1. Equation (1.3) has a formal solution y(z) = g(θ g−1(z)) in a neigh-
borhood of the origin, where g(z) is formal solution of (1.4). Under one of the
conditions in Theorems 2.2–2.4, every formal solution yields an analytic solution
of the form y(z) = g(θ g−1(z)), where g(z) is analytic solution of (1.4).

Proof. Since g′(0) = a1 6= 0, the inverse g−1(z) exists in a neighborhood of g(0) = 0.
If we define y(z) = g(θ g−1(z)), then

y(y(z))− ay(z) = g(θ(g−1(gθ(g−1(z)))))− ag(θ(g−1(z)))

= g(θ2(g−1(z)))− ag(θ(g−1(z)))

= b(gθ(g−1(z))H(g−1(z))

= by(z)H(z).

(3.1)

as required, so (1.3) has a formal solution y(z) = g(θ g−1(z)) in a neighborhood of
the origin.

Under one of the conditions in Theorems 2.2–2.4, the inverse g−1(z) exists and
is analytic in a neighborhood of g(0) = 0, we obtain analytic solutions of (1.3) in a
neighborhood of the origin. The proof is completed. �

Suppose that
y(z) = θz + b2z

2 + b3z
3 + . . . ,

since a = θ and x(z) = y(z)−az
bz , it follows that

x(z) =
b2

b
z +

b3

b
z2 +

b4

b
z3 + . . . . (3.2)

That is, (1.2) has a unique formal solution with the form (3.2) in a neighborhood
of the origin. The formal solution also is analytic solution when y(z) is analytic in
a neighborhood of the origin.
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