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INFINITELY MANY LARGE ENERGY SOLUTIONS OF
SUPERLINEAR SCHRÖDINGER-MAXWELL EQUATIONS

LIN LI, SHANG-JIE CHEN

Abstract. In this article we study the existence of infinitely many large en-
ergy solutions for the superlinear Schrödinger-Maxwell equations

−∆u + V (x)u + φu = f(x, u) in R3,

−∆φ = u2, in R3,

via the Fountain Theorem in critical point theory. In particular, we do not
use the classical Ambrosetti-Rabinowitz condition.

1. Introduction and main results

In this article, we study the system of Schrödinger-Maxwell equations

−∆u + V (x)u + φu = f(x, u) in R3,

−∆φ = u2, in R3.
(1.1)

Such a system, also called Schrödinger-Poisson equations, arises in an interesting
physical context. In fact, according to a classical model, the interaction of a charge
particle with an electro-magnetic field can be described by coupling the nonlinear
Schrödinger’s and Maxwell’s equations (we refer the reader to [8] and the references
therein for more details on the physical aspects). In particular, if we are looking
for electrostatic-type solutions, we just have to solve (1.1).

In recent years, system (1.1) with V (x) ≡ 1 or being radially symmetric, has
been widely studied under various conditions on f , see for example [4, 13, 12,
15, 17, 21, 22, 28]. Specially, in [13, 12] it is proved the existence of a sequence
of radial solutions for system (1.1) by the Symmetric Mountain Pass Theorem in
[5]. The case of nonradial potential V (x) has been considered in [24], when f is
asymptotically linear at infinity, and in [4, 27], when f is superlinear at infinity.
Moreover, in [27], the authors considered system (1.1) with periodic potential V (x),
and the existence of infinitely many geometrically distinct solutions has been proved
by the nonlinear superposition principle established in [1]. By the way, we would
like to point out that nonexistence results for (1.1) can be found in [4, 14, 17, 21, 24].

The problem of finding infinitely many large energy solutions is a very classical
problem: there is an extensive literature concerning the existence of infinitely many
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large energy solutions of a plethora of problems via the Symmetric Mountain Pass
Theorem and Fountain Theorem (cf. Ambrosetti and Rabinowitz [3], Rabinowitz
[20], Bartsch [6], Bartsch and Willem [7], Struwe [23], Willem [25], etc). The
infinitely many large energy solutions for system (1.1) are obtained in [11] with the
following variant “Ambrosetti-Rabinowitz” type condition (AR for short),

(AR) There exist µ > 4 such that for all s ∈ R and x ∈ R3,

µF (x, s) := µ

∫ s

0

f(x, t) dt ≤ sf(x, s).

After that, Li et al. [18] study (1.1) without the (AR) condition. They use vari-
ant Fountain Theorem establish by Zou [29]. Later, some authors also study this
problem without the (AR) condition, see Alves et al. [2] and Yang and Han [26].

In this article, we use the Fountain Theorem (see Theorem 2.4) to find infin-
itely many large energy solutions to system (1.1). We can see that (1.1) can be
proved directly with the Fountain Theorem under Cerami condition. We assume
the following assumptions:

(V1) V ∈ C(R3, R) satisfies infx∈R3 V (x) ≥ a1 > 0, where a1 > 0 is a constant.
Moreover, for every M > 0, meas({x ∈ R3 : V (x) ≤ M}) < ∞, where meas
denote the Lebesgue measure in R3.

(F1) f ∈ C(R3 × R, R) and for some 2 < p < 2∗ = 6, a2 > 0,

|f(x, z)| ≤ a2(|z|+ |z|p−1),

for a.e. x ∈ R3 and all z ∈ R.

lim
z→0

f(x, z)
z

= 0

uniformly for x ∈ R3.
(F2) lim|z|→∞

F (x,z)
|z|4 = +∞, uniformly in x ∈ R3 and F (x, 0) ≡ 0, F (x, z) ≥ 0

for all (x, z) ∈ R3 × R.
(F3) There exits a constant θ ≥ 1 such that

θH(x, z) ≥ H(x, sz)

for all x ∈ R3, z ∈ R and s ∈ [0, 1], where H(x, z) = zf(x, z)− 4F (x, z).
(F4) f(x,−z) = −f(x, z) for any x ∈ R3 and all z ∈ R.
The main results of the present article are as follows.

Theorem 1.1. Assume that (V1), (F1)–(F4) hold, then system (1.1) has infinitely
many solutions {(uk, φk)} in H1(R3)×D1,2(R3) satisfying
1
2

∫
R3

(
|∇uk|2 + V (x)u2

k

)
dx− 1

4

∫
R3
|∇φk|2 dx +

1
2

∫
R3

φku2
k dx−

∫
R3

F (x, uk) dx

→ +∞.

Remark 1.2. Obviously, (F2) can be derived from (AR). Under (AR), any (PS)
sequence of the corresponding energy functional is bounded, which plays an im-
portant role of the application of variational methods. Indeed, there are many
superlinear functions which do not satisfy the (AR) condition. For instance the
function

f(x, z) = z3 ln(1 + |z|) (1.2)
does not satisfy the (AR) condition. But it is easy to see this function satisfies
(F2) and (F3). There are many functions which satisfy (F3), but do not satisfy
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condition (AR) for any µ > 4. However, we can not deduce condition (F3) from
condition (AR). For example, let

f(x, u) = 5|u|4
∫ u

0

|t|1+sin tt dt + |u|6+sin uu,

then

F (x, z) = |z|5
∫ z

0

|t|1+sin tt dt .

It is easy to see that f(x, u) satisfies condition (AR) for µ = 5, but it does not
satisfy (F3). Thus, (F3) is also superlinear conditions and complement with (AR).

Remark 1.3. In [26], Yang and Han used

(F3’) f(x,u)
u3 is increasing for u > 0 and decreasing for u < 0, for all x ∈ R3.

to obtain a bounded Cerami sequence. Li et al. [18], used
(F3”) H(x, s) ≤ H(x, t) for all (s, t) ∈ R+ × R+, s ≤ t and a.e. x ∈ R3

to solve the problem (1.1). (F3’) implies that (F3”), as we can see in [19, Lemma
2.2]. We see that our condition (F3) is more general than (F3”). If θ = 1 we can
get that H(x, z) is increasing in R+ with respect to z. Moreover, (F3) gives some
general sense of monotony when θ > 1 and we can find some examples that satisfy
(F3) but do not satisfy (F3”). For example, let

f(x, z) = 4z3 ln(1 + z4) + 2 sin z,

it follows that

H(x, z) = 4z4 − 4 ln(1 + z4) + 2z sin z + 8 cos z.

Let θ = 100, we can prove by some simple computation that f satisfies (F3) but
does not satisfy (F3”) any more.

2. Variational settings and preliminary results

Before stating our main results, we give several notations. Define the function
space

H1(R3) := {u ∈ L2(R3) : ∇u ∈ L2(R3)}
with the usual norm

‖u‖H1 :=
( ∫

R3

(
|∇u|2 + u2

)
dx

)1/2

,

and define the function space

D1,2(R3) := {u ∈ L2∗(R3) : ∇u ∈ L2(R3)}

with the norm

‖u‖D1,2 :=
( ∫

R3
|∇u|2 dx

)1/2

.

Let

E := {u ∈ H1(R3) :
∫

R3
(|∇u|2 + V (x)u2) dx < ∞}.

Then E is a Hilbert space with the inner product

(u, v)E =
∫

R3
(∇u · ∇v + V (x)uv) dx
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and the norm ‖u‖E = (u, u)1/2
E . Obviously, the embedding E ↪→ Ls(R3) is contin-

uous, for any s ∈ [2, 2∗].

Lemma 2.1 ([30, Lemma 3.4]). Under assumption (V1), the embedding

E ↪→ Ls(R3)

is compact for any s ∈ [2, 2∗).

It is clear that system (1.1) is the Euler-Lagrange equations of the functional
J : E ×D1,2(R3) → R defined by

J(u, φ) =
1
2
‖u‖2E − 1

4

∫
R3
|∇φ|2 dx +

1
2

∫
R3

φu2 dx−
∫

R3
F (x, u) dx.

Evidently, the action functional J belongs to C1(E ×D1,2(R3), R) and its critical
points are the solutions of (1.1). It is easy to know that J exhibits a strong
indefiniteness, namely it is unbounded both from below and from above on infinitely
dimensional subspaces. This indefiniteness can be removed using the reduction
method described in [9], by which we are led to study a one variable functional
that does not present such a strongly indefinite nature.

Now, we recall this method.
For any u ∈ E, the Lax-Milgram theorem (see [16]) implies there exists a unique

φu ∈ D1,2(R3) such that
−∆φu = u2

in a weak sense. We can write an integral expression for φu in the form:

φu =
1
4π

∫
R3

u2(y)
|x− y|

dy, (2.1)

for any u ∈ E (for detail, see section 2 of [11]). The functions φu possess the
following properties:

Lemma 2.2 ([11, Lemma 2.2]). For any u ∈ E, we have:
(1) ‖φu‖D1,2 ≤ a3‖u‖2L12/5 , where a3 > 0 does not depend on u. As a conse-

quence there exists a4 > 0 such that∫
R3

φuu2 dx ≤ a4‖u‖4E ;

(2) φu ≥ 0.

So, we can consider the functional I : E → R defined by I(u) = J(u, φu). After
multiplying −∆φu = u2 by φu and integration by parts, we obtain∫

R3
|∇φu|2 dx =

∫
R3

φuu2 dx.

Therefore, the reduced functional takes the form

I(u) =
1
2
‖u‖2E +

1
4

∫
R3

φuu2 dx−
∫

R3
F (x, u) dx.

From Lemma 2.2, I is well defined. Furthermore, it is well known that I is C1

functional with derivative given by

〈I ′(u), v〉 =
∫

R3

(
∇u · ∇v + V (x)uv + φuuv − f(x, u)v

)
dx. (2.2)

Now, we can apply Theorem 2.3 of [9] to our functional J and obtain:
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Proposition 2.3. The following statements are equivalent:

(1) (u, φ) ∈ E × D1,2(R3) is a critical point of J (i.e. (u, φ) is a solution of
(1.1));

(2) u is a critical point of I and φ = φu.

For reader’s convenience, we introduce the Cerami condition, which was estab-
lished by Cerami [10].

Definition 2.4. Assume functional Φ is C1 and c ∈ R, if any sequence {un}
satisfying Φ(un) → c and (1 + ‖un‖)‖Φ′(un)‖ → 0 has a convergence subsequence,
we say Φ satisfies Cerami condition at the level c.

To complete the proof of our theorems, we need the following critical point
theorem.

Theorem 2.5 (Fountain Theorem under Cerami conditon). Let X be a Banach
space with the norm ‖·‖ and let Xj be a sequence of subspace of X with dim Xj < ∞
for each j ∈ N. Further, X = ⊕j∈NXj, the closure of the direct sum of all Xj.
Set Wk = ⊕k

j=0Xj, Zk = ⊕∞j=kXj. Consider an even functional Φ ∈ C1(X, R) (i.e.
Φ(−u) = Φ(u) for all u ∈ E). If, for every k ∈ N, there exist ρk > rk > 0 such
that

(Φ1) ak := maxu∈Wk,‖u‖=ρk
Φ(u) ≤ 0,

(Φ2) bk := infu∈Zk,‖u‖=rk
Φ(u) → +∞, as k →∞,

(Φ3) the Cerami condition holds at any level c > 0.

Then Φ has an unbounded sequence of critical values.

Remark 2.6. Cerami condition is weaker than the (PS) condition. However, it
was shown in [5] that from Cerami condition a deformation lemma follows and, as
a consequence, we can also get minimax theorems.

3. Proof of Theorem 1.1

We choose an orthogonal basis {ej} of X := E and define Wk := span{e1, · · · , ek},
Zk := W⊥

k−1. To complete the proof of our theorems, we need the following lemma.

Lemma 3.1 ([11, Lemma 2.5]). For any 2 ≤ p < 2∗, we have that

βk := sup
u∈Zk,‖u‖E=1

‖u‖Lp → 0, k →∞.

Now, we show that the functional I satisfies the Cerami condition.

Lemma 3.2. Under the assumptions (F1)–(F3), the functional I(u) satisfies the
Cerami condition at any positive level.

Proof. We suppose that {un} is the Cerami sequence, that is for some c ∈ R+

I(un) =
1
2
‖un‖2E +

1
4

∫
R3

φunu2
n dx−

∫
R3

F (x, un) dx → c (n →∞) (3.1)

and

(1 + ‖un‖E)I ′(un) → 0 (n →∞). (3.2)
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From (3.1) and (3.2), for n large enough, we have

1 + c ≥ I(un)− 1
4
〈I ′(un), un〉

=
1
4
‖un‖2E +

1
4

∫
R3

f(x, un)un dx−
∫

R3
F (x, un) dx.

(3.3)

We claim that {un} is bounded. Otherwise there should exist a subsequence of {un}
satisfying ‖un‖E →∞ as n →∞. Denote wn = un

‖un‖E
, then {wn} is bounded. Up

to a subsequence, for some w ∈ E, we obtain

wn ⇀ w in E,

wn → w in Lt(R3), 2 ≤ t < 2∗,

wn(x) → w(x) a.e. in R3.

(3.4)

Suppose, w 6= 0 in E. Dividing by ‖un‖4E in both sides of (3.1), by (1) of lemma
2.2 we obtain∫

R3

F (x, un)
‖un‖4E

dx =
1

2‖un‖2E
+

∫
R3 φunu2

n dx− c

4‖un‖4E
+ o(‖un‖−4

E ) ≤ a5 < ∞, (3.5)

where a5 is a positive constant. We consider this situation, Ω := {x ∈ R3|w(x) 6= 0},
by (F2), for all x ∈ Ω,

F (x, un)
‖un‖4E

=
F (x, un)
|un|4

w4
n(x) → +∞ (n →∞).

Since |Ω| > 0, using Fatou’s Lemma, we obtain∫
R3

F (x, u(x)n)
‖u(x)n‖4E

dx → +∞ (n →∞).

This contradicts (3.5).
On the another hand, if w(x) = 0, we can define a sequence {tn} ⊂ R:

I(tnun) = max
t∈[0,1]

I(tun).

Fix any m > 0, let wn =
√

4m un

‖un‖E
=
√

4mwn. By (F1),

|f(x, z)| ≤ a2|z|+ a2|z|p−1,

for a.e. x ∈ R3 and all z ∈ R. By the equality F (x, z) =
∫ 1

0
f(x, tz)z dt we obtain

F (x, z) ≤ a2

2
|z|2 + a6|z|p (3.6)

for any x ∈ R3 and all z ∈ R, where a6 = a2
p . Due to (3.5), we obtain

lim
n→∞

∫
R3

F (x,wn) dx ≤ lim
n→∞

(
a2

2

∫
R3
|wn|2 dx + a6

∫
R3
|wn|p dx

)
= 0.

Then for n large enough,

I(tnun) ≥ I(wn)

= 2m +
1
4

∫
R3

φwnw2
n dx−

∫
R3

F (x,wn) dx ≥ m.
(3.7)
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Due to (3.7), limn→∞ I(tnun) = +∞. Since I(0) = 0, and I(un) → c, then
0 < tn < 1 if n large enough, we have∫

R3
(∇tnun∇tnun + V (x)tnuntnun + φtnuntnuntnun − f(x, tnun)tnun) dx

= 〈I ′(tnun), tnun〉

= tn
d
dt

∣∣∣∣
t=tn

I(tun) = 0.

Thus, by (F3) we obtain

I(un)− 1
4
〈I ′(un), un〉

=
1
4
‖un‖2E +

∫
R3

[
1
4
f(x, un)un − F (x, un)

]
dx

=
1
4
‖un‖2E +

1
4

∫
R3

H(x, un) dx

≥ 1
4θ
‖tnun‖2E +

1
4θ

∫
R3

H(x, tnun) dx

=
1
4θ
‖tnun‖2E +

1
θ

∫
R3

[
1
4
f(x, tnun)tnun − F (x, tnun)

]
dx

=
1
θ
I(tnun)− 1

4θ
〈I ′(tnun), tnun〉 → +∞.

This contradicts (3.3). So {un} is bounded. Going if necessary to a subsequence,
we can assume that un ⇀ u in E. In view of Lemma 2.1, un → u in Ls(R3) for any
s ∈ [2, 2∗). By (2.2), we easily get

‖un − u‖2E = 〈I ′(un)− I ′(u), un − u〉+
∫

R3
(f(x, un)− f(x, u))(un − u) dx

−
∫

R3
(φunun − φuu)(un − u) dx.

It is clear that
〈I ′(un)− I ′(u), un − u〉 → 0.

According to assumptions (F1), there exists a6 > 0 such that

f(x, u) ≤ a2

2
|u|+ a6|u|p−1

for a.e. x ∈ R3, and all z ∈ R. Using the Hölder inequality, we obtain∫
R3

(f(x, un)− f(x, u))(un − u) dx

≤
∫

R3

[a2

2
(|un|+ |u|) + a6

(
|un|p−1 + |u|p−1

)]
|un − u|dx

≤ a2

2
(
‖un‖2L2 + ‖u‖2L2

)
‖un − u‖2L2 + a6

(
‖un‖p−1

Lp + ‖u‖p−1
Lp

)
‖un − u‖Lp

Since un → u in Ls(R3) for any s ∈ [2, 2∗), we have∫
R3

(f(x, un)− f(x, u))(un − u) dx → 0, as n →∞.
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By the Hölder inequality, Sobolev inequality and Lemma 2.2, we have∣∣ ∫
R3

φunun(un − u) dx
∣∣ ≤ ‖φunun‖L2‖un − u‖L2

≤ ‖φun‖L6‖un‖L3‖un − u‖L2

≤ a8‖φun
‖D1,2‖un‖L3‖un − u‖L2

≤ a4a8‖un‖2L12/5‖un‖L3‖un − u‖L2 ,

where a8 > 0 is a constant. Again using un → u in Ls(R3) for any s ∈ [2, 2∗), we
have ∫

R3
φun

un(un − u) dx → 0, as n →∞.

Similarly, we obtain ∫
R3

φuu(un − u) dx → 0, as n →∞.

Thus, ∫
R3

(φun
un − φuu)(un − u) dx → 0, as n →∞,

so that ‖un − u‖E → 0. We get that I(u) satisfies Cerami condition. �

Proof of Theorem 1.1. Due to Lemma 3.2, I(u) satisfies Cerami condition. Next,
we verify that I(u) satisfies the rest conditions of Theorem 2.5.

First, we verify that I(u) satisfies (Φ1). It follows from (F2) that for any M > 0,
there exists δ(M) > 0, such that for all x ∈ R3, |z| ≥ δ, we have

F (x, z) ≥ 1
4
M |z|4. (3.8)

Taking M̃ := sup|z|<δ

(
1
4M |z|4 − F (x,z)

|z|2
)
, then by (3.8) we obtain

F (x, z) ≥ 1
4
M |z|4 − M̃ |z|2

for a.e. x ∈ R3, and all z ∈ R. Hence we have

I(u) ≤ 1
2
‖u‖2E +

a4

4
‖u‖4E − 1

4
M‖u‖4L4 + M̃‖u‖2L2 .

Since, on the finitely dimensional space Wk all norms are equivalent, we have that

I(u) ≤ 1
2
‖u‖2E +

a4

4
‖u‖4E − 1

4
Ma10‖u‖4E + M̃a10‖u‖2E ,

where a10 is a constant. Now since a4
4 − 1

4Ma10 < 0, when M is large enough, it
follows that

ak := max
u∈Wk,‖u‖E=ρk

I(u) ≤ 0

for some ρk > 0 large enough.
Secondly, we prove that I(u) satisfies (Φ2). Due to (3.6), we have

I(u) ≥ 1
2
‖u‖2E − ε‖u‖2L2 − a6‖u‖p

Lp

≥
(1

2
− ε

a1

)
‖u‖2E − a6βk

p‖u‖p
E ,
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where a1 is a lower bound of V (x) from (V1) and βk are defined in Lemma 3.1.
Choosing rk := (a6pβp

k)1/(2−p), we obtain

bk = inf
u∈Zk,‖u‖E=rk

I(u)

≥ inf
u∈Zk,‖u‖E=rk

[(1
2
− ε

a1

)
‖u‖2E − a6βk

p‖u‖p
E

]
≥

(1
2
− ε

a1
− 1

p

)
(a6pβp

k)
2

2−p .

Because βk → 0 as k → 0 and p > 2, we have

bk ≥
(1

2
− ε

a1
− 1

p

)
(a6pβp

k)
2

2−p → +∞

for enough small ε. This proves (Φ2). Now, we apply Theorem 2.5 to complete the
proof o Theorem 1.1. �
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