\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 213, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/213\hfil Positive solutions to boundary-value problems] {Positive solutions to boundary-value problems of p-Laplacian fractional differential equations with a parameter in the boundary} \author[Z. Han, H. Lu, S. Sun, D. Yang \hfil EJDE-2012/213\hfilneg] {Zhenlai Han, Hongling Lu, Shurong Sun, Dianwu Yang } % in alphabetical order \address{Zhenlai Han \newline School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, China} \email{hanzhenlai@163.com} \address{Hongling Lu \newline School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, China} \email{lhl4578@126.com} \address{Shurong Sun \newline School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, China} \email{sshrong@163.com} \address{Dianwu Yang \newline School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, China} \email{ss\_yangdw@ujn.edu.cn} \thanks{Submitted September 5, 2012. Published November 27, 2012.} \subjclass[2000]{34A08, 34B18, 35J05} \keywords{Fractional boundary-value problem; positive solution; cone; \hfill\break\indent Schauder fixed point theorem; uniqueness; $p$-Laplacian operator} \begin{abstract} In this article, we consider the following boundary-value problem of nonlinear fractional differential equation with $p$-Laplacian operator \begin{gather*} D_{0+}^\beta(\phi_p(D_{0+}^\alpha u(t)))+a(t)f(u)=0, \quad 01$, $\phi_p^{-1}=\phi_q$, $1/p+1/q=1$, $0\leqslant\gamma<1$, $0\leqslant\xi\leqslant1$, $\lambda>0$ is a parameter, $a:(0,1)\to [0,+\infty)$ and $f:[0,+\infty)\to[0,+\infty)$ are continuous. By the properties of Green function and Schauder fixed point theorem, several existence and nonexistence results for positive solutions, in terms of the parameter $\lambda$ are obtained. The uniqueness of positive solution on the parameter $\lambda$ is also studied. Some examples are presented to illustrate the main results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Fractional differential equations have been of great interest. The motivation for those works stems from both the intensive development of the theory of fractional calculus itself and the applications such as economics, engineering and other fields \cite{Agarwal,Kilbas, machado, Meral, Oldham,Podlubny,Weitzner}. Recently, much attention has been focused on the study of the existence and multiplicity of solutions or positive solutions for boundary-value problems of fractional differential equations by the use of techniques of nonlinear analysis (fixed point theorems \cite{bai, chai,Chen21,Feng17, wang12,Wang14, xu16,Xu20, yang19, Zhao15, Zhao18, zhou13}, upper and lower solutions method \cite{Liang,Lu,Wang}, fixed point index \cite{Dix,Xu}, coincidence theory \cite{Chen22}, Banach contraction mapping principle \cite{Liu}, etc). Ma \cite{ma23} considered the boundary-value problem \begin{gather*} u''+a(t)f(u)=0, \quad 00$, $\eta\in(0,1)$, $\alpha\eta<1$ are given. Under some assumptions, it was shown that there exists $b^*>0$ such that the boundary-value problem has at least one positive solution for $0b^*$. Kong et al \cite{kong} studied the boundary-value problem with nonhomogeneous three-point boundary condition \begin{gather*} (\phi_p (u'))''+a(t)f(u)=0, \quad 01$, $\phi_p^{-1}=\phi_q$, $1/p+1/q=1$. $0\leqslant\xi<1$, $0\leqslant\eta\leqslant1$, $\lambda>0$ is a parameter, $a\in C(0,1)$ and $f\in C([0,+\infty))$ are nonnegative functions. Under some assumptions, several existence, nonexistence, and multiplicity results for positive solutions in terms of different values of the parameter $\lambda$ are derived. Zhao et al \cite{Zhao25} studied the existence of positive solutions for the boundary-value problem of nonlinear fractional differential equations \begin{gather*} D_{0+}^\alpha u(t)+\lambda f(u(t))=0, \quad 01$, $\phi_p^{-1}=\phi_q$, $1/p+1/q=1$, $0\leqslant\gamma<1$, $0\leqslant\xi\leqslant1$, $\lambda>0$ is a parameter, $a:(0,1)\to [0,+\infty)$ and $f:[0,+\infty)\to[0,+\infty)$ are continuous. By the properties of Green function and Schauder fixed point theorem, several new existence and nonexistence results for positive solutions in terms of different values of the parameter $\lambda$ are obtained. The uniqueness of positive solution is also obtained for fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2}. As applications, examples are presented to illustrate our main results. The rest of this paper is organized as follows. In Section 2, we shall introduce some definitions and lemmas to prove our main results. In Section 3, we investigate the existence of positive solution for boundary-value problems \eqref{e1.1} and \eqref{e1.2}. In Section 4, the uniqueness of positive solution on the parameter $\lambda$ is studied. In Section 5, we consider the nonexistence of positive solution for boundary-value problems \eqref{e1.1} and \eqref{e1.2}. As applications, examples are presented to illustrate our main results in Section 3, Section 4 and Section 5, respectively. \section{Preliminaries and lemmas} For the convenience of the reader, we give some background material from fractional calculus theory to facilitate analysis of problem \eqref{e1.1} and \eqref{e1.2}. These results can be found in the recent literature, see \cite{diethelm,Kilbas,Podlubny,Wang14}. \begin{definition}[\cite{Kilbas}]\label{d2.1}\rm The Riemann-Liouville fractional integral of order $\alpha>0$ of a function $y:(0,+\infty)\to \mathbb{R}$ is given by $$ I_{0+}^\alpha y(t)=\frac{1}{\Gamma(\alpha)}\int_{0}^t(t-s)^{\alpha-1}y(s)ds $$ provided the right side is pointwise defined on $(0,+\infty)$. \end{definition} \begin{definition}[\cite{Kilbas}]\label{d2.2}\rm The Caputo fractional derivative of order $\alpha>0$ of a continuous function $y:(0,+\infty)\to \mathbb{R}$ is given by $$ D_{0+}^\alpha y(t)=\frac{1}{\Gamma(n-\alpha)} \int_0^t\frac{y^{(n)}(s)}{(t-s)^{\alpha-n+1}}ds, $$ where $n$ is the smallest integer greater than or equal to $\alpha$, provided that the right side is pointwise defined on $(0,+\infty)$. \end{definition} \begin{remark}[\cite{Podlubny}]\label{r2.1}\rm By Definition \ref{d2.2}, under natural conditions on the function $f(t)$, for $\alpha\to n$ the Caputo derivative becomes a conventional $n$-th derivative of the function $f(t)$. \end{remark} \begin{remark}[\cite{Kilbas}]\label{r2.2} \rm As a basic example, $$ D_{0^+}^\alpha t^\mu=\mu(\mu-1)\dots (\mu-n+1)\frac{\Gamma(1+\mu-n)}{\Gamma(1+\mu-\alpha)}t^{\mu-\alpha},\quad \text {for } t\in(0,\infty). $$ In particular $D_{0^+}^\alpha t^\mu=0$, $\mu=0,1,\dots,n-1$, where $D^\alpha_{0^+}$ is the Caputo fractional derivative, $n$ is the smallest integer greater than or equal to $\alpha$. \end{remark} From the definition of the Caputo derivative and Remark \ref{r2.2}, we can obtain the following statement. \begin{lemma}[\cite{Kilbas}]\label{l2.1}\rm Let $\alpha>0$. Then the fractional differential equation $$ D_{0+}^\alpha u(t)=0 $$ has a unique solution $$ u(t)=c_0+c_1t+c_2t^2+\dots+c_{n-1}t^{n-1}, \quad c_i\in \mathbb{R},\, i=0,1,2,\dots,n-1, $$ where $n$ is the smallest integer greater than or equal to $\alpha$. \end{lemma} \begin{lemma}[\cite{Kilbas}]\label{l2.2}\rm Let $\alpha>0$. Assume that $u\in C^n[0,1]$. Then $$ I_{0+}^\alpha D_{0+}^\alpha u(t)=u(t)+c_0+c_1t+c_2t^2+\dots+c_{n-1}t^{n-1}, $$ for some $c_i\in \mathbb{R}$, $i=0,1,2,\dots,n-1$, where $n$ is the smallest integer greater than or equal to $\alpha$. \end{lemma} \begin{lemma}\label{l2.3} Let $y\in C[0,1]$ and $0<\alpha\leqslant1$. Then fractional differential equation boundary-value problem \begin{gather}\label{e2.1} D_{0+}^\alpha u(t)=y(t),\quad 00$ such that \begin{equation}\label {e2.7} f(x)\leqslant\sigma L\phi_p(x), \quad \text{for } 0\leqslant x\leqslant c, \end{equation} where $L$ satisfies \begin{equation}\label {e2.8} 00$ such that \begin{equation} \label{e2.9} f(x)\leqslant M\phi_p(x), \quad \text{for } d0$ such that \begin{equation}\label {e2.11} f(x)\geqslant N\phi_p(x), \quad \text{for } e\Big[\phi_p \Big(c_\delta\int_0^1\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q(s^{\beta-1})ds\Big) \int_\delta^1H(1,\tau)a(\tau)d\tau\Big]^{-1}; \end{equation} with \begin{equation}\label {e2.13} c_\delta=\int_0^\delta\alpha(1-s)^{\alpha-1}\phi_q(s^{\beta-1})ds\in(0,1); \end{equation} \item[(H5)] $f(x)$ is nondecreasing in $x$; \item[(H6)] there exist $0\leqslant\theta<1$ such that \begin{equation}\label {e2.14} f(kx)\geqslant(\phi_p(k))^\theta f(x), \quad \text{for any $00$ be given in (H2). Define $$ K_1=\{u\in C[0,1] : 0\leqslant u(t)\leqslant c \text{ on } [0,1]\} $$ and an operator $T_\lambda : K_1\to C[0,1]$ by \begin{equation}\label{e3.1} \begin{aligned} T_\lambda u(t) &=\int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds+ \frac{\lambda}{1-\gamma}. \end{aligned} \end{equation} Then, $K_1$ is a closed convex set. From Lemma \ref{l2.4}, $u$ is a solution of fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} if and only if $u$ is a fixed point of $T_\lambda$. Moreover, a standard argument can be used to show that $T_\lambda$ is compact. For any $u\in K_1$, from \eqref{e2.7} and \eqref{e2.8}, we obtain $$ f(u(t))\leqslant\sigma L\phi_p(u(t))\leqslant\sigma L\phi_p(c), \quad \text{on } [0,1], $$ and $$ \frac{1+\gamma(\xi^\alpha-1)}{\Gamma(\alpha+1)(1-\gamma)}\phi_q(L) \phi_q\Big(\int_0^1H(1,\tau)a(\tau)d\tau\Big)\leqslant1. $$ Let $0<\lambda\leqslant(1-\gamma)(1-\phi_q(\sigma))c$. Then, from Lemma \ref{l2.5} and \eqref{e3.1}, it follows that \begin{align*} 0\leqslant T_\lambda u(t) &\leqslant\int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(1,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(1,\tau)a(\tau)f(u(\tau))d\tau\Big)ds+ \frac{\lambda}{1-\gamma}\\ &\leqslant\frac{1}{\Gamma(\alpha+1)} \phi_q\Big(\int_0^1H(1,\tau)a(\tau)f(u(\tau))d\tau\Big)\\ &\quad +\frac{\gamma\xi^\alpha}{\Gamma(\alpha+1)(1-\gamma)} \phi_q\Big(\int_0^1H(1,\tau)a(\tau)f(u(\tau))d\tau\Big)+ (1-\phi_q(\sigma))c\\ &=\frac{1+\gamma(\xi^\alpha-1)}{\Gamma(\alpha+1)(1-\gamma)} \phi_q\Big(\int_0^1H(1,\tau)a(\tau)f(u(\tau))d\tau\Big)+ (1-\phi_q(\sigma))c\\ &\leqslant\frac{1+\gamma(\xi^\alpha-1)}{\Gamma(\alpha+1)(1-\gamma)}\phi_q(L) \phi_q\Big(\int_0^1H(1,\tau)a(\tau)d\tau\Big)\phi_q(\sigma)c+ (1-\phi_q(\sigma))c\\ &\leqslant\phi_q(\sigma)c+(1-\phi_q(\sigma))c=c,\quad t\in[0,1]. \end{align*} Thus, $T_\lambda(K_1)\subseteq K_1$, By Schauder fixed point theorem, $T_\lambda$ has a fixed point $u\in K_1$; that is, the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has at least one positive solution. The proof is complete. \end{proof} \begin{corollary}\label{c3.1} Assume that {\rm (H1)} holds and $f_0=0$. Then the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has at least one positive solution for sufficiently small $\lambda>0$. \end{corollary} \begin{theorem}\label{t3.2} Assume that {\rm (H1), (H3)} hold. Then the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has at least one positive solution for all $\lambda>0$. \end{theorem} \begin{proof} Let $\lambda>0$ be fixed and $d>0$ be given in (H3). Define $D=\max_{0\leqslant x\leqslant d}f(x)$. Then \begin{equation}\label{e3.2} f(x)\leqslant D, \quad \text{for } 0\leqslant x\leqslant d. \end{equation} From \eqref{e2.10}, we have $$ \frac{1+\gamma(\xi^\alpha-1)}{\Gamma(\alpha+1)(1-\gamma)}2^{q-1}\phi_q(M) \phi_q\Big(\int_0^1H(1,\tau)a(\tau)d\tau\Big)<1. $$ Thus, there exists $d^*>d$ large enough so that \begin{equation}\label{e3.3} \frac{1+\gamma(\xi^\alpha-1)}{\Gamma(\alpha+1)(1-\gamma)}2^{q-1} (\phi_q(D)+\phi_q(M)d^*) \phi_q\Big(\int_0^1H(1,\tau)a(\tau)d\tau\Big)+\frac{\lambda}{1-\gamma} \leqslant d^*. \end{equation} Let $$ K_2=\{u\in C[0,1] : 0\leqslant u(t)\leqslant d^* \text{ on } [0,1]\}. $$ For $u\in K_2$, define \begin{gather*} I_1^u=\{t\in [0,1] : 0\leqslant u(t)\leqslant d\},\\ I_2^u=\{t\in [0,1] : d0$ (see, for example, \cite{hardy}), we obtain \begin{align*} 0&\leqslant T_\lambda u(t)\\ &\leqslant \frac{1+\gamma(\xi^\alpha-1)}{\Gamma(\alpha+1)(1-\gamma)}2^{q-1} (\phi_q(D)+\phi_q(M)d^*) \phi_q\Big(\int_0^1H(1,\tau)a(\tau)d\tau\Big) +\frac{\lambda}{1-\gamma}\leqslant d^*. \end{align*} Thus, $T_\lambda : K_2\to K_2$. Consequently, by Schauder fixed point theorem, $T_\lambda$ has a fixed point $u\in K_2$, that is, the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has at least one positive solution. The proof is complete. \end{proof} \begin{corollary}\label{c3.2} Assume that {\rm (H1)} holds and $f_\infty=0$. Then the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has at least one positive solution for all $\lambda>0$. \end{corollary} \begin{example} \label{examp3.1} \rm Consider the boundary-value problem \begin{gather} \label{e3.5} D_{0+}^{5/2}(\phi_p(D_{0+}^{1/2} u(t)))+tu^2=0, \quad 00$. \end{example} \section{Uniqueness} \begin{definition}[\cite{guo27}] \label{d4.1}\rm A cone $P$ in a real Banach space $X$ is called solid if its interior $P^o$ is not empty. \end{definition} \begin{definition}[\cite{guo27}] \label{d4.2} \rm Let $P$ be a solid cone in a real Banach space $X, T : P^o\to P^o$ be an operator, and $0\leqslant\theta< 1$. Then T is called a $\theta$-concave operator if $$ T(ku)\geqslant k^\theta Tu\quad \text{for any $00$. \end{theorem} \begin{proof} Define $P=\{u\in C[0,1] : u(t)\geqslant0 \text {on } [0,1]\}$. Then $P$ is a normal solid cone in $C[0,1]$ with $$ P^o=\{u\in C[0,1] : u(t)>0\ \text{ on } [0,1]\}. $$ For any fixed $\lambda>0$, let $T_\lambda : P\to C[0,1]$ be defined by \eqref{e3.1}. Define $T : P\to C[0,1]$ by \begin{align*} Tu(t)&=\int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds \end{align*} Then from (H5), we have $T$ is increasing in $u\in P^o$ and $$ T_\lambda u(t)=Tu(t)+\frac{\lambda}{1-\gamma}. $$ Clearly, $T_\lambda : P^o\to P^o$. Next, we prove that $T_\lambda$ is a $\theta$-concave increasing operator. In fact, for $u_1, u_2\in P$ with $u_1(t)\geqslant u_2(t)$ on $[0,1]$, we obtain \begin{equation*} T_\lambda u_1(t)\geqslant Tu_2(t)+\frac{\lambda}{1-\gamma}=T_\lambda u_2(t); \end{equation*} i.e., $T_\lambda$ is increasing. Moreover, (H6) implies \begin{align*} T_\lambda (ku)(t) &\geqslant k^\theta\int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\quad +k^\theta\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds+ \frac{\lambda}{1-\gamma}\\ &=k^\theta Tu(t)+\frac{\lambda}{1-\gamma}\\ &\geqslant k^\theta (Tu(t)+\frac{\lambda}{1-\gamma})=k^\theta T_\lambda u(t); \end{align*} i.e., $T_\lambda$ is $\theta$-concave. By Lemma \ref{l4.1}, $T_\lambda$ has a unique fixed point $u_\lambda$ in $P^o$, that is, the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has a unique positive solution. The proof is complete. \end{proof} \begin{example} \label{examp4.1} \rm Consider the boundary-value problem \begin{gather} \label{e4.1} D_{0+}^{5/2}(\phi_p(D_{0+}^{1/2} u(t)))+t^2\sqrt[3]{u}=0, \quad 00$. \end{example} \section{Nonexistence} In this section, we let the Banach space $C[0,1]$ be endowed with the norm $\|u\|=\max_{0\leqslant t\leqslant1}|u(t)|$. \begin{lemma}\label{l5.1} Assume {\rm (H1)} holds and let $0<\delta<1$ be given in {\rm (H4)}. Then the unique solution $u(t)$ of fractional differential equation boundary-value problem \eqref{e2.3} and \eqref{e2.4} satisfies $$ u(t)\geqslant c_\delta\|u\|\quad \text{for } \delta\leqslant t\leqslant1, $$ where $c_\delta$ is defined by \eqref{e2.13}. \end{lemma} \begin{proof} In view of Lemma \ref{l2.5} and \eqref{e2.5}, we have \begin{align*} u(t) &\leqslant\int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(1,\tau)y(\tau)d\tau\Big)ds\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)y(\tau)d\tau\big)ds+ \frac{\lambda}{1-\gamma}\\ &\leqslant\frac{1}{\Gamma(\alpha+1)} \phi_q\Big(\int_0^1H(1,\tau)y(\tau)d\tau\Big)\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)y(\tau)d\tau\Big)ds+ \frac{\lambda}{1-\gamma} \end{align*} for $t\in[0,1]$, and \begin{align*} u(t) &\geqslant\int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1s^{\beta-1}H(1,\tau)y(\tau)d\tau\Big)ds\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)y(\tau)d\tau\Big)ds+ \frac{\lambda}{1-\gamma}\\ &=\int_0^t\alpha(t-s)^{\alpha-1}\phi_q(s^{\beta-1})ds\frac{1}{\Gamma(\alpha+1)} \phi_q\Big(\int_0^1H(1,\tau)y(\tau)d\tau\Big)\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)y(\tau)d\tau\Big)ds+ \frac{\lambda}{1-\gamma}\\ &\geqslant c_\delta\frac{1}{\Gamma(\alpha+1)} \phi_q\Big(\int_0^1H(1,\tau)y(\tau)d\tau\Big)\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)y(\tau)d\tau\Big)ds+ \frac{\lambda}{1-\gamma}\\ &\geqslant c_\delta\big[\frac{1}{\Gamma(\alpha+1)} \phi_q\Big(\int_0^1H(1,\tau)y(\tau)d\tau\Big)\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)y(\tau)d\tau\Big)ds+ \frac{\lambda}{1-\gamma}\big] \end{align*} for $t\in[\delta,1]$. Therefore, $u(t)\geqslant c_\delta\|u\|$ for $\delta\leqslant t\leqslant1$. The proof is complete. \end{proof} \begin{theorem}\label{t5.1} Assume that {\rm (H1), (H4)} hold. Then the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has no positive solution for $\lambda>(1-\gamma)e$. \end{theorem} \begin{proof} Assume, to the contrary, the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has a positive solution $u(t)$ for $\lambda>(1-\gamma)e$. Then by Lemma \ref{l2.4}, we have \begin{align*} u(t)&=\int_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\quad +\frac{\gamma}{1-\gamma}\int_0^\xi\frac{(\xi-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds+ \frac{\lambda}{1-\gamma} \end{align*} Therefore, $u(t)>e$ on [0,1]. In view of \eqref{e2.11} and \eqref{e2.12}, we obtain \begin{gather*} f(u(t))\geqslant N\phi_p(u(t))\quad \text{on } [0,1],\\ c_\delta \phi_q(N)\phi_q\Big(\int_\delta^1H(1,\tau)a(\tau)d\tau\Big) \int_0^1\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}\phi_q(s^{\beta-1})ds>1. \end{gather*} Then by Lemmas \ref{l2.5} and \ref{l5.1}, we obtain $$ \begin{array}{ll} \|u\|=u(1) &>\int_0^1\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} \phi_q\Big(\int_0^1H(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\geqslant\int_0^1\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}\phi_q(s^{\beta-1})ds \phi_q\Big(\int_0^1H(1,\tau)a(\tau)f(u(\tau))d\tau\Big)\\ &\geqslant\int_0^1\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}\phi_q(s^{\beta-1})ds\phi_q(N) \phi_q\Big(\int_\delta^1H(1,\tau)a(\tau)\phi_p(u(\tau))d\tau\big)\\ &\geqslant\|u\|c_\delta\int_0^1\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}\phi_q(s^{\beta-1})ds\phi_q(N) \phi_q\Big(\int_\delta^1H(1,\tau)a(\tau)d\tau\Big)\\ &>\|u\|. \end{array} $$ This contradiction completes the proof \end{proof} \begin{corollary}\label{c5.1} Assume that {\rm (H1)} holds and $f_\infty=+\infty$. Then the fractional differential equation boundary-value problem \eqref{e1.1} and \eqref{e1.2} has no positive solution for sufficiently large $\lambda>0$. \end{corollary} \begin{example} \label{examp5.1} \rm Consider the boundary-value problem \begin{gather} \label{e5.1} D_{0+}^{5/2}(\phi_p(D_{0+}^{1/2} u(t)))+tu^2=0, \quad 0222.2104$. Let $N=e=223$. Then, (H4) is satisfied. Thus, by Theorem \ref{t5.1} the fractional differential equation boundary-value problem \eqref{e5.1} and \eqref{e5.2} has no positive solution for $\lambda>111.5$. \end{example} \subsection*{Acknowledgments} This research is supported by grants: 11071143, 60904024, 61174217 from the Natural Science Foundation of China; JQ201119 from the Natural Science Outstanding Youth Foundation of Shandong Province; ZR2012AM009, ZR2010AL002 from the Shandong Provincial Natural Science Foundation; J11LA01 from the Natural Science Foundation of Educational Department of Shandong Province. \begin{thebibliography}{99} \bibitem{Agarwal} R. P. Agarwal; \emph{Formulation of Euler-Larange equations for fractional variational problems}, J. Math. Anal. Appl. 272 (2002) 368--379. \bibitem{bai} Z. Bai, H. L\"{u}; \emph{Positive solutions for boundary-value problem of nonlinear fractional differential equation}, J. Math. Anal. Appl. 311 (2005) 495--505. \bibitem{chai} G. Chai; \emph{Positive solutions for boundary-value problem of fractional differential equation with $p$-Laplacian operator}, Boundary Value Problems 2012 (2012) 1--18. \bibitem{Chen21} T. Chen, W. Liu; \emph{An anti-periodic boundary-value problem for fractional differential equation with $p$-Laplacian operator}, Appl. Math. Lett. (2012). doi: 10. 1016/j. aml. 2012. 01. 035. \bibitem{Chen22} T. Chen, W. Liu, Z. Hu; \emph{A boundary-value problem for fractional differential equation with $p$-Laplacian operator at resonance}, Nonlinear Anal. 75 (2012) 3210--3217. \bibitem{diethelm} K. Diethelm; \emph{The Analysis of Fractional Differential Equations}, Springer-Verlag, Berlin, 2010. \bibitem{Dix} J. G. Dix, G. L. Karakostas; \emph{A fixed-point theorem for S-type operators on Banach spaces and its applications to boundary-value problems}, Nonlinear Anal. 71 (2009) 3872--3880. \bibitem{Feng17} W. Feng, S. sun, Z. Han, Y. Zhao; \emph{Existence of solutions for a singular system of nonlinear fractional differential equations}, Comput. Math. appl. 62 (2011) 1370--1378. \bibitem{guo27} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press, Orlando, 1988. \bibitem{hardy} G. H. Hardy, J. E. Littlewood, G. P\'{o}lya; \emph{Inequalities}, Reprint of the 1952 Edition, Cambridge University Press, Cambridge, 1988. \bibitem{Kilbas} A. A. Kilbas, H. H. Srivastava, J. J. Trujillo; \emph{Theory and Applications of Fractional Differential Equations}, Amsterdam, Elsevier Science B. V. 2006. \bibitem{kong} L. Kong, D. Piao, L. Wang; \emph{Positive solutions for third boundary-value problems with $p$-Laplacian}, Result. Math. 55 (2009) 111--128. \bibitem{Liang} S. Liang, J. Zhang; \emph{Positive solutions for boundary-value problems of nonlinear fractional differential equation}, Nonlinear Anal. 71 (2009) 5545--5550. \bibitem{Liu} X. Liu, M. Jia, X. Xiang; \emph{On the solvability of a fractional differential equation model involving the $p$-Laplacian operator}, Comput. Math. Appl. (2012), doi: 10. 1016/j. camwa. 2012. 03. 001. \bibitem{Lu} H. Lu, Z. Han; \emph{Existence of positive solutions for boundary-value problem of fractional differential equation with p-laplacian operator}, American Jouranl of Engineering and Technology Research, 11 (2011) 3757--3764. \bibitem{ma23} R. Ma; \emph{Positive solutions for second-order three-point boundary-value problems}, Appl. Math. Lett. 14 (2001) 1--5. \bibitem{machado} J. T. Machado, V. Kiryakova, F. Mainardi; \emph{Recent history of fractional calculus}, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1140--1153. \bibitem{Meral} F. C. Meral, T. J. Royston, R. Magin; \emph{Fractional calculus in viscoelasticity}, An experimental study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 939--945. \bibitem{Oldham} K. B. Oldham, J. Spanier; \emph{The Fractional Calculus}, New York, Academic Press, 1974. \bibitem{Podlubny} I. Podlubny; \emph{Fractional Differential Equations}, New York/London/Toronto, Academic Press, 1999. \bibitem{wang12} G. Wang, L. Zhang, Sotiris K. Ntouyas; \emph{Existence of multiple positive solutions of a nonlinear arbitrary order boundary-value problem with advanced arguments}, Electron. J. Qual. Theory Differ. Equ. 15 (2012) 1--13. \bibitem{Wang} J. Wang, H. Xiang; \emph{Upper and lower solutions method for a class of singular fractioal boundary-value problems with p-laplacian operator}, Abs. Appl. Anal. 2010 (2010), Article ID 971824, 1--12. \bibitem{Wang14} J. Wang, H. Xiang, Z. Liu; \emph{Existence of concave positive solutions for boundary-value problem of nonlinear fractional differential equation with p-laplacian operator}, Int. J. Math. Math. Sci. 2010 (2010) Article ID 495138, 1--17. \bibitem{Weitzner} H. Weitzner, G. M. Zaslavsky; \emph{Some applications of fractional equations}, Commun. Nonlinear Sci. Numer. Simul. 8 (2003) 273--281. \bibitem{xu16} X. Xu, D. Jiang, C. Yuan; \emph{Multiple positive solutions to singular positone and semipositone Dirichlet-type boundary-value problems of nonlinear fractional differential equations}, Nonlinear Anal. 74 (2011) 5685--5696. \bibitem{Xu20} X. Xu, D. Jiang, C. Yuan; \emph{Multiple positive solutions for the boundary-value problem of a nonlinear fractional differential equation}, Nonlinear Anal. 71 (2009) 4676--4688. \bibitem{Xu} J. Xu, Z. Wei, W, Dong; \emph{Uniqueness of positive solutions for a class of fractional boundary-value problems}, Appl. Math. Lett. 25 (2012) 590--593. \bibitem{yang19} X. Yang, Z. Wei, W. Dong; \emph{Existence of positive solutions for the boundary-value problem of nonlinear fractional differential equations}, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 85--92. \bibitem{Zhao15} Y. Zhao, S. Sun, Z. Han, M. Zhang; \emph{Positive solutions for boundary-value problems of nonlinear fractional differential equations}, Appl. Math. Comput. 217 (2011) 6950--6958. \bibitem{Zhao18} Y. Zhao, S. Sun, Z. Han, Q. Li; \emph{The existence of multiple positive solutions for boundary-value problems of nonlinear fractional differential equations}, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 2086--2097. \bibitem{Zhao25} Y. Zhao, S. Sun, Z. Han, Q. Li; \emph{Positive solutions to boundary-value problems of nonlinear fractional differential equations}, Abs. Appl. Anal. 2011 (2011) Article ID 390543, 1--16. \bibitem{zhou13} Y. Zhou, F. Jiao, J. Li; \emph{Existence and uniqueness for p-type fractional neutral differential equations}, Nonlinear Anal. 71 (2009) 2724--2733. \end{thebibliography} \end{document}