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CROSS-CONSTRAINED PROBLEMS FOR NONLINEAR
SCHRÖDINGER EQUATION WITH HARMONIC POTENTIAL

RUNZHANG XU, CHUANG XU

Abstract. This article studies a nonlinear Schödinger equation with har-
monic potential by constructing different cross-constrained problems. By com-
paring the different cross-constrained problems, we derive different sharp cri-
terion and different invariant manifolds that separate the global solutions and
blowup solutions. Moreover, we conclude that some manifolds are empty due
to the essence of the cross-constrained problems. Besides, we compare the three
cross-constrained problems and the three depths of the potential wells. In this
way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrödinger equa-
tion with harmonic potential, Journal of Mathematical Physics, 47, 063503
(2006)], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlin-
ear Schrödinger equation with harmonic potential, Journal of Mathematical
Physics, 49, 043512 (2008)].

1. Introduction

In this paper, we study the following initial-value problem for the nonlinear
Schödinger equation with harmonic potential:

iϕt + ∆ϕ− |x|2ϕ+ |ϕ|p−1ϕ = 0, t > 0, x ∈ RN ,
ϕ(0, x) = ϕ0(x).

(1.1)

Hereafter we will use the following notation: ϕ(x, t) : RN× [0, Ta) → C is a complex
valued wavefunction; 0 < Ta 6 +∞ is the maximal existence time; N is the space
dimension; i =

√
−1; ∆ is the Laplace operator on RN ; p is the exponent of the

nonlinear function, 4
N + 1 < p 6 N+2

N−2 ; ‖ · ‖H1 is the norm of H1(RN ); ‖ · ‖Lp is
the norm of Lp(RN );

∫
·dx =

∫
RN ·dx; C is a positive constant that varies from

expression to expression.
Note a more general form of (1.1) is

iϕt + ∆ϕ− V (x)ϕ+ |ϕ|pϕ = 0, t > 0, x ∈ RN ,
ϕ(0, x) = ϕ0(x).

(1.2)
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It is well-known that

iϕt + ∆ϕ+ |ϕ|p−1ϕ = 0, t > 0, x ∈ RN ,
ϕ(0, x) = ϕ0(x),

(1.3)

is one of the basic evolution models for nonlinear waves in various branches of
physics. Many papers have studied equation (1.3). In [8], Ginibre and Velo es-
tablished the local existence of the Cauchy problems in the energy space H1(RN ).
Glassey [10], Tsutsumi [21], Ogawa and Tsutsumi [15, 16] proved that for some
initial data, especially for a class of sufficiently large data, the solutions of the
Cauchy problem for (1.3) blow up in finite time. Strauss and Cazenave also men-
tioned this topic in their monographs [20] and [4] respectively. There are also many
mathematicians who addressed these problems with harmonic potential. It is found
that for sufficiently small initial data, the solutions of the Cauchy problem for (1.3)
globally exist (cf. [9, 12, 13, 7, 11], etc). Zhang [26] studied the global existence of
(1.3) and the relationship between the Schrödinger equation and its ground state.
For (1.2), Fujiwara [6] proved the smoothness of Schrödinger kernel for potentials
of quadratic growth. It is shown that quadratic potentials are the highest order
potentials for local well-posedness of the equation [17]. Yajima [25] showed that for
super-quadratic potentials, the Schrödinger kernel is nowhere C1.

When p > 1 + 4/N , Cazenave [4], Tsurumi and Wadati [22] and Carles [2, 3]
showed that the solutions of the Cauchy problem of (1.1) blow up in finite time
for some initial data, especially for a class of sufficiently large initial data; while
the solutions of the Cauchy problem of (1.1) globally exist for other initial data,
especially for a class of sufficiently small initial data, see [2], [3] and [22]. When
1 < p < 1 + 4/N , Zhang [27] proved that global solutions of the Cauchy problem
of (1.1) exist for any initial data in the energy space. When p = 1 + 4/N , Zhang
[28] showed that there exists a sharp condition of the global existence. In [1], Chen
and Zhang derived a global existence condition for the supercritical case for (1.1).
Moreover, Shu and Zhang [19] also studied (1.1) for its global existence and blowup.

Shu and Zhang [19] studied (1.1) by constructing a cross-constrained problem,
which originated from [29]. The main idea of the cross-constrained variational
method introduced in [29] can be described as follows. In the energy functional,
there are more than two terms, like

∫
|∇ϕ|2dx,

∫
|x|2|ϕ|2dx and

∫
|ϕ|p+1dx for

problem (1.1). It is well-known that the “nonlinear source” is controlled by the
“potential energy”, using the variational method. If the “potential energy” is not
as simple as being composed of just one term, then one can give some various
combinations of the terms and consider different cases of these combinations. For
instance, for problem (1.1), we can use various combinations of the terms

∫
|∇ϕ|2dx,∫

|x|2|ϕ|2dx and
∫
|ϕ|2dx to control the nonlinear term

∫
|ϕ|p+1dx. Then we de-

fine the corresponding Nehari functional and potential energy functional to con-
struct the variational problem, which is the so-called cross-constrained potential
well method. This approach seems to work in the sense of finding the relationships
between these different terms or functionals. But sometimes it may also arouse
some confusion because of the complex structure. It may explain the occurrence of
some self-contradiction criteria in [19]. Although Xu and Liu pointed out the self-
contradiction in [24], they still never make a clear statement about the relationships
among these different so-called cross-constrained problems. In other words, Xu and
Liu just found the problem, but they did not clarify the essence behind it. So in this
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paper we mainly aim at a comprehensive study of the so-called cross-constrained
problems, and finding the relations between the cross-constrained functionals and
cross-constrained manifolds. Then occurrence of all of the gaps and problems men-
tioned above can be well explained. In the end, we simply illustrate the spatial
structure by three concentric spheres.

In this paper, we study the Cauchy problem of (1.1) by constructing different
cross-constrained problems and therefore derive different sharp criteria for both
global existence and blowup. Moreover, we compare three different invariant man-
ifolds defined in order to separate the global solutions and the blowup solutions of
the Cauchy problem (1.1). We also dig the reason that some invariant manifolds
are empty, which was previously pointed out in [24].

The organization of this paper is as follows. In Section 2, we give some concerned
preliminaries. In Section 3, we construct three variational problems and invariant
manifolds. In Section 4, we derive sharp criteria for both global existence and
blowup. In Section 5, we compute the potential depth of one of the potential wells.
In Section 6, we compare the three variational problems, point out some of the
invariant manifolds are empty and explain why such phenomenon happens. Fur-
ther we reveal the relationships among these different cross-constrained variational
problems and the different manifolds.

2. Preliminaries

In this section, we like to introduce some functionals and a Hilbert space, which
will be used to construct different cross-constrained problems. For (1.1), we first
equip the following space

H =
{
ψ ∈ H1(RN ) :

∫
|x|2|ψ|2dx <∞

}
(2.1)

with the inner product

〈ψ, φ〉 :=
∫
∇ψ∇φ+ ψφ+ |x|2ψφdx, (2.2)

whose associated norm is ‖ · ‖H .
Further we define the energy functional

E(ϕ) =
∫

1
2
|∇ϕ|2 +

1
2
|x|2|ϕ|2 − 1

p+ 1
|ϕ|p+1dx, (2.3)

and the following four auxiliary functionals

P (ϕ) =
∫

1
2
|∇ϕ|2 +

1
2
|ϕ|2 +

1
2
|x|2|ϕ|2 − 1

p+ 1
|ϕ|p+1dx, (2.4)

I1(ϕ) =
∫
|∇ϕ|2 + |ϕ|2 + |x|2|ϕ|2 − N(p− 1)

2(p+ 1)
|ϕ|p+1dx, (2.5)

I2(ϕ) =
∫
|∇ϕ|2 + |ϕ|2 − N(p− 1)

2(p+ 1)
|ϕ|p+1dx, (2.6)

I3(ϕ) =
∫
|∇ϕ|2 + |x|2|ϕ|2 − N(p− 1)

2(p+ 1)
|ϕ|p+1dx. (2.7)

In the above four functionals, P (ϕ) is composed of both energy and mass. And
Ii(ϕ) (i = 1, 2, 3) can be considered as Nehari functionals. Throughout this paper,
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we assume

1 +
4
N

< p <
N + 2
N − 2

, for N > 3;

1 +
4
N

< p < +∞, for N = 1, 2.
(2.8)

We now state the local well-posedness.

Lemma 2.1 ([14]). Let ϕ0 ∈ H. Then there exists a unique solution ϕ of the
Cauchy problem (1.1) in C([0, T ];H) for some T ∈ (0,∞] (maximal existence time),
and either T = ∞ (global existence) or else T <∞ and

lim
t→T

‖ϕ‖H = ∞ (blowup).

Now we have the conservation laws for both energy and mass.

Lemma 2.2 ([5, 10, 23]). Let ϕ0 ∈ H and ϕ be a solution of the Cauchy problem
(1.1) in C([0, T ];H). Then one has∫

|ϕ|2dx =
∫
|ϕ0|2dx, (2.9)

E(ϕ) ≡ E(ϕ0), (2.10)

P (ϕ) ≡ P (ϕ0). (2.11)

We introduce the following lemma, which will be used for proving the blowup
phenomenon in Section 4.

Lemma 2.3. Let ϕ0 ∈ H and ϕ be a solution of the Cauchy problem (1.1) in
C([0, T ];H), Set J(t) =

∫
|x|2|ϕ|2dx. Then one has

J ′′(t) = 8
∫ (

|∇ϕ|2 − |x|2|ϕ|2 − N(p− 1)
2(p+ 1)

|ϕ|p+1
)
dx. (2.12)

3. Three variational problems and invariant manifolds

First we define the following three Nehari manifolds,

M1 := {ψ ∈ H\{0} : I1(ψ) = 0},
M2 := {ψ ∈ H\{0} : I2(ψ) = 0},
M3 := {ψ ∈ H\{0} : I3(ψ) = 0}.

Now we consider the following cross-constrained problems

d1 = inf
ψ∈M1

P (ψ), (3.1)

d2 = inf
ψ∈M2

P (ψ), (3.2)

d3 = inf
ψ∈M3

P (ψ), (3.3)

respectively. First we have the following lemma.

Lemma 3.1. di > 0 for i = 1, 2, 3.

Proof. (i) For any ϕ ∈M1 ∪M2, we have∫
|∇ϕ|2 + |ϕ|2dx 6

N(p− 1)
2(p+ 1)

∫
|ϕ|p+1dx.
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By Sobolev embedding inequality, this implies∫
|∇ϕ|2 + |ϕ|2dx > C.

Note by assumption (2.8),

1
2
− 1
p+ 1

· 2(p+ 1)
N(p− 1)

> 0.

Hence P (ϕ) > C > 0, which verifies di > 0 (i = 1, 2).
(ii) For ϕ ∈M3, we have

‖∇ϕ‖2
2 6

N(p− 1)
2(p+ 1)

∫
|ϕ|pdx,

which implies from Gagliardo-Nirenberg inequality and Cauchy-Schwartz inequality
that there exists a constant C(p,N) > 0 such that

C(p,N) 6 ‖∇ϕ‖
Np−(N+4)

2
2 · ‖ϕ‖

(N+2)−(N−2)p
2

2

6
1
2

(
‖∇ϕ‖Np−(N+4)

2 + ‖ϕ‖(N+2)−(N−2)p
2

)
.

This yields ‖∇ϕ‖2 > C > 0 or ‖ϕ‖2 > C > 0. Thus

P (ϕ) =
1
2
‖ϕ‖2

2 +
Np− (N + 4)

2N(p− 1)

[
‖∇ϕ‖2 +

∫
|x|2|ϕ|2dx

]
> C > 0,

which proves d3 > 0. �

Next we give the invariance of some manifolds.

Theorem 3.2. For i = 1, 2, 3, define

Gi := {ψ ∈ H : P (ψ) < di, Ii(ψ) > 0} ∪ {0} (3.4)

Then Gi is an invariant manifold of (1.1); that is, if ϕ0 ∈ Gi, then the solution
ϕ(x, t) of the Cauchy problem (1.1) also satisfies ϕ(x, t) ∈ Gi for any t ∈ [0, T ).

Proof. If ϕ0 = 0, from the mass conservation law; i.e., (2.9), we can find that ϕ = 0
for t ∈ [0, T ); i.e., ϕ(x, t) ∈ Gi. If ϕ0 6= 0, we have ϕ0 ∈ Gi\{0}; i.e., P (ϕ0) < di
and Ii(ϕ0) > 0. By Lemma 2.1, there exists a unique ϕ(x, t) ∈ C([0, T );H) with
0 < T 6 ∞ such that ϕ(x, t) is a solution of problem (1.1). Now we shall show that
ϕ(x, t) ∈ Gi for any t ∈ [0, T ). By (2.11), we have

P (ϕ(x, t)) = P (ϕ0) > di. (3.5)

Next we show Ii(ϕ) > 0 for t ∈ [0, T ). Note that Ii(ϕ0) > 0. Arguing by
contradiction, by the continuity of Ii(ϕ), suppose that there were a t2 ∈ [0, T ) such
that Ii(ϕ(x, t2)) = 0. If ϕ(x, t2) = 0, then by (2.9), we have 0 =

∫
|ϕ(x, t2)|2dx =∫

|ϕ0|2dx, which indicates ϕ0 = 0. Contradiction. So ϕ(x, t2) 6= 0, by the definition
of di, we have P (ϕ(x, t2)) > di, which contradicts (3.5). Therefore Ii(ϕ) > 0 for all
t ∈ [0, T ).

Combining all of the analysis above, we arrive at ϕ(x, t) ∈ Gi for any t ∈ [0, T ).
The proof is complete. �

By a similar argument, we can obtain the following result.
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Theorem 3.3. For i = 1, 2, 3, define

Bi := {ψ ∈ H : P (ψ) < di, Ii(ψ) < 0}

Then Bi is an invariant manifold of (1.1).

4. Sharp conditions for global existence

Theorem 4.1. If ϕ0 ∈ Gi (i = 1, 2, 3), then the solution ϕ(x, t) of the Cauchy
problem (1.1) globally exists on t ∈ [0,∞).

Proof. Here we prove only the case ϕ0 6= 0, for ϕ0 = 0 is a trivial case. For any
nontrivial ϕ0 ∈ Gi (i = 1, 2, 3), let ϕi(x, t) be the solution of the Cauchy problem
(1.1) with initial condition ϕi(x, 0) = ϕ0, and 0 < T 6 ∞ be the maximal existence
time. It follows from Theorem 3.2 that ϕi(x, t) ∈ Gi (i = 1, 2, 3) for all t ∈ [0, T ).
Fix t ∈ [0, T ), and simply denote ϕi(x, t) by ϕi, then the definition of Gi implies
that

di > P (ϕi), Ii(ϕi) > 0 (i = 1, 2, 3).

For i = 1, 2, 3, it always follows from Ii(ϕi) > 0 that

1
p+ 1

|ϕi|p+1dx <
2

N(p− 1)

∫
|∇ϕi|2 + |ϕi|2 + |x|2|ϕi|2dx

Thus we obtain
di > P (ϕi)

=
∫

1
2
|∇ϕi|2 +

1
2
|ϕi|2 +

1
2
|x|2|ϕi|2 −

1
p+ 1

|ϕi|p+1dx

>
(1

2
− 2
N(p− 1)

) ∫
|∇ϕi|2 + |ϕi|2 + |x|2|ϕi|2dx,

(4.1)

which yields ∫
|∇ϕi|2 + |ϕi|2 + |x|2|ϕi|2dx <

2N(p− 1)di
N(p− 1)− 4

.

Therefore, it follows from Lemma 2.1 that ϕ globally exists on t ∈ [0,∞). At this
point, we proved this theorem. �

Theorem 4.2. If ϕ0 ∈ Bi (i = 1, 2, 3), then the solution ϕ(x, t) of the Cauchy
problem (1.3) blows up in finite time.

Proof. We prove this theorem case by case.
Case I: ϕ0 ∈ B1 ∪ B2. In this case, Theorem 3.2 implies that the solution ϕ(x, t)
of the Cauchy problem (1.3) satisfies that ϕ(x, t) ∈ B1 ∪ B2 for t ∈ [0, T ). For
J(t) =

∫
|x|2|ϕ|2dx, the definitions of P (ϕ) and Ii(ϕ) (i = 1, 2) imply that

J ′′(t) < −8
∫
|ϕ|2dx. (4.2)

Then

J ′(t) < J ′(0)− 8
( ∫

|ϕ|2dx
)
t.

Further we have

J(t) < J(0) + J ′(0)t− 4
( ∫

|ϕ|2dx
)
t2.
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Note that I1(ϕ) < 0 yields
∫
|ϕ|2dx > 0. Therefore there exists a T1 ∈ (0,∞) such

that J(t) > 0 for t ∈ [0, T1) and J(T1) = 0. By the inequality (see [23])

‖ϕ‖2 6
2
N
‖∇ϕ‖ · ‖xϕ‖

we obtain limt→T1 ‖∇ϕ‖ = ∞, which indicates

lim
t→T1

‖ϕ‖H = ∞.

Case ii: ϕ0 ∈ B3. In this case, Theorem 3.2 implies that the solution ϕ(x, t) of
the Cauchy problem (1.3) satisfies that ϕ(x, t) ∈ B3 for t ∈ [0, T ). For J(t) =∫
|x|2|ϕ|2dx, (2.4) and (2.7) imply that

J ′′(t) < −16
∫
|x|2|ϕ|2dx. (4.3)

Now we show that there exists a T1 ∈ (0,∞) such that J(t) > 0 for t ∈ [0, T1)
and J(T1) = 0. Arguing by contradiction, suppose ∀t ∈ [0,∞), J(t) > 0. Set

g(t) =
J ′(t)
J(t)

.

It is easy to show that

g′(t) =
J ′′(t)
J(t)

−
(J ′(t)
J(t)

)2

< −16− g2(t). (4.4)

Next we like to show g(t) 6= 0 for any t ∈ [0,∞). Arguing by contradiction again,
suppose there is a t0 such that g(t0) = 0. By (4.4), we have g(t) < 0 for t ∈ (t0,∞).
For any fixed t1 > t0, dividing (4.4) by g2(t), we have

g′(t)
g2(t)

< − 16
g2(t)

− 1 < −1.

Further we derive ∫ t

t1

g′(τ)
g2(τ)

dτ <

∫ t

t1

−1dτ,

namely,
1
g(t)

>
1

g(t1)
+ (t− t1), (4.5)

which indicates that there exists a t2 > t1 such that

g(t) > 0 for any t ∈ (t2,∞) (4.6)

This contradicts g(t) < 0 for t ∈ (t0,∞). Hence we have g(t) 6= 0 for any t ∈ [0,∞).
By (4.5), for t ∈ (0,∞) , we have

1
g(t)

>
1
g(0)

+ t.

Hence, J ′(t) > 0 for t ∈ (| 1
g(0) |,∞). Therefore J(t) is increasing in (| 1

g(0) |,∞). Let
t0 = | 1

g(0) |. By
J ′′(t) < −16J(t) < 0,

we have for t > t0,

J ′(t) < J ′(t0) + 16J(t0)t0 − 16J(t0)t.

Further
J(t)− J(0) < (J ′(t0) + 16J(t0)t0)t− 8J(t0)t2;
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i.e.,
J(t) < J(0) + (J ′(t0) + 16J(t0)t0)t− 8J(t0)t2,

which implies that there exists 0 < T1 6 t0 such that J(t) > 0 for t ∈ [0, T1) and
J(T1) = 0. Again by the inequality (see [23])

‖ϕ‖2 6
2
N
‖∇ϕ‖ · ‖xϕ‖

we obtain
lim
t→T1

‖∇ϕ‖ = ∞.

So far we have shown that for the initial data ϕ ∈ Bi, the solution of the Cauchy
problem (1.1) blows up in finite time. This completes the proof of the theorem. �

Remark 4.3. It is clear that

{ψ ∈ H,P (ψ) < di} = Gi ∪ Bi,

which indicates Theorem 4.1 and Theorem 4.2 are sharp.

By Theorem 3.3, we obtain another condition for global existence of the solution
of (1.1).

Corollary 4.4. If ϕ0 satisfies ‖ϕ0‖2
H < 2di, then the solution ϕ of the Cauchy

problem (1.1) globally exists on t ∈ [0,∞).

Proof. We consider only the nontrivial case. Suppose ϕ0 6= 0, from ‖ϕ0‖2
H < 2di,

we have P (ϕ0) < di. Moreover, we claim that Ii(ϕ0) > 0. Otherwise, there is a
0 < µ 6 1 such that Ii(µϕ0) = 0. Thus P (µϕ0) > di. On the other hand,

‖µϕ0‖2
H = µ2‖ϕ0‖2

H < 2µ2di < 2di.

It follows that P (µϕ0) < di. This is a contradiction. Therefore we have ϕ0 ∈ Gi.
Thus Theorem 3.3 implies this corollary. �

5. Computing d1

In this section, we compute d1 using the method definded by Payne and Sattinger
[18]. Since M1 is a closed nonempty set, there exists an ω1 ∈M1 such that

P (ω1) = inf
ψ∈M1

P (ψ) = d1,

where ω1 is a solution of the following Euler equation

∆ω − |x|2ω + |ω|p−1ω − ω = 0.

We define

Cp,1 =

( ∫
|∇ω1|2 + |ω1|2 + |x|2|ω1|2dx

)1/2( ∫
|ω1|p+1dx

) 1
p+1

= inf
ψ∈M1

( ∫
|∇ψ|2 + |ψ|2 + |x|2|ψ|2dx

)1/2( ∫
|ψ|p+1dx

) 1
p+1

be the Sobolev constant from H to Lp+1(RN ). By I1(ω1) = 0, we derive

d1 = P (ω1) =
N(p− 1)− 4

4(p+ 1)

∫
|ω1|p+1dx. (5.1)
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Using the definition of Cp,1, we obtain( ∫
|ω1|p+1dx

) 1
p+1

=
(2(p+ 1)C2

p,1

N(p− 1)

) 1
p−1

. (5.2)

Combining (5.1) and (5.2), we have

d1 =
N(p− 1)− 4

4(p+ 1)

(2(p+ 1)C2
p,1

N(p− 1)

) p+1
p−1

. (5.3)

6. Cross-constrained problems and some trivial manifolds

In this section, we like to address the relations of some cross-constrained various
manifolds for problem (1.1).

Next we define three manifolds as follows. First, we define some new potential
well depths. For i < j, i, j = 1, 2, 3,

di,j = min{di, dj} (6.1)

and
d1,2,3 = min{d1, d2, d3}. (6.2)

Second, we define the following manifolds. Note similar as the proof of Theorem 3.2,
it is trivial to show that these manifolds are also invariant. For i < j, i, j = 1, 2, 3,

Gi,j := {ψ ∈ H : P (ψ) < di,j , Ii(ψ) > 0, Ij(ψ) > 0} ∪ {0}, (6.3)

V+i,−j := {ψ ∈ H : P (ψ) < di,j , Ii(ψ) > 0, Ij(ψ) < 0}, (6.4)

V−i,+j := {ψ ∈ H : P (ψ) < di,j , Ii(ψ) < 0, Ij(ψ) > 0}, (6.5)

Bi,j := {ψ ∈ H : P (ψ) < di,j , Ii(ψ) < 0, Ij(ψ) < 0}. (6.6)

We have the following theorems to clarify the relations among all the invariant
manifolds.

Theorem 6.1. Gi,j = Gi ∩ Gj; V+i,−j = ∅; V−i,+j = ∅; Bi,j = Bi ∩ Bj, where i < j
and i, j = 1, 2, 3.

Theorem 6.2. For i < j and i, j = 1, 2, 3, define

Gij := {ψ ∈ H : P (ψ) < di,j , Ij(ψ) > 0},
Bij := {ψ ∈ H : P (ψ) < di,j , Ij(ψ) < 0}.

Then
G1i ⊂ Gi1, Bi1 ⊂ B1i.

Remark 6.3. Theorem 6.1 can well explain the gaps in [19], which was pointed
out in [24].

Remark 6.4. It is easy to see that the reason for V−1,+i = ∅ (i = 2, 3) is due to
the fact I1(ϕ) > Ii (i = 2, 3) for ϕ 6= 0. Now we like to analyze why V+2,−3 = ∅,
V−2,+3 = ∅, V+1,−i = ∅ for i = 2, 3. In fact, we know that V+1,−2 is a subset of
both G1 and B2. We have proved that G1 is a manifold of all the global solutions of
the Cauchy problem (1.1) for P (ϕ) < d1 while B2 is a manifold of all the blowup
solutions of the Cauchy problem (1.1) for P (ϕ) < d2. Hence by Lemma 2.1, there
should be no intersection of the two manifolds, which indicates V+1,−2 = ∅. Hence
it is natural to deduce that the two surfaces

S12,1 := {ψ ∈ H : P (ψ) < d1,2, I1(ψ) = 0}
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and
S12,2 := {ψ ∈ H : P (ψ) < d1,2, I2(ψ) = 0}

coincide. Similarly,

S13,1 := {ψ ∈ H : P (ψ) < d1,3, I1(ψ) = 0}

and
S13,3 := {ψ ∈ H : P (ψ) < d1,3, I3(ψ) = 0}

coincide. Further we define the following three Nehari manifolds

Si := {ψ ∈ H : P (ψ) < d1,2,3, Ii(ψ) = 0},

for i = 1, 2, 3. It is easy to see that S1 = S2 = S3.

To have an intuitive feeling of the relations among some of the above manifolds,
we draw the Figures 1 and 2.

Figure 1. The relations among I1(ϕ), I2(ϕ) and I3(ϕ), where
d1 > d2 > d3; The intersections of the three spheres and red
surface represent the three manifolds Ii(ϕ) = 0 (i = 1, 2, 3), re-
spectively.
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I3(ϕ) = 0

I2(ϕ) = 0

I1(ϕ) = 0 O

I3(ϕ) < 0

I2(ϕ) < 0

I1(ϕ) < 0

I3(ϕ) > 0

I2(ϕ) > 0

I1(ϕ) > 0

Figure 2. Cross section for Figure 1
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tentials, Journal of Differential Equations, 81 (1989), pp. 255–274.

[18] L. E. Payne, D. H. Sattinger; Saddle points and instability of nonlinear hyperbolic equations,
Israel Journal of Mathematics, 22 (1975), pp. 273–303.

[19] J. Shu, J. Zhang; Nonlinear Schrödinger equation with harmonic potential, Journal of Math-
ematical Physics, 47, 063503 (2006).

[20] W. A. Strauss; Nonlinear wave equations, Conference Board of the Mathematical Sciences,
No. 73, American Mathematical Society, Providence, Rhode Island, 1989.

[21] M. Tsutsumi; Nonexistence of global solutions to the Cauchy problem for nonlinear
Schrödinger equations, unpublished manuscript.

[22] T. Tsurumi, M. Wadati; Collapses of wave functions in multidimensional nonlinear
Schrödinger equations under harmonic potential, Journal of the Physical Society of Japan,
66 (1997), pp. 3031–3034.

[23] Y. Tsutsumi, J. Zhang; Instability of optical solitons for two-wave interaction model in cubic
nonlinear media, Advances in Mathematical Sciences and Applications , 8(1998), pp. 691–713.

[24] R. Xu, Y. Liu; Remarks on nonlinear Schrödinger equation with harmonic potential, Journal
of Mathematical Physics, 49, 043512 (2008).

[25] K. Yajima; On fundamental solution of time dependent Schrödinger equations, Contemporary
Mathematics, 217 (1998), pp. 49–68.

[26] J. Zhang; Sharp conditions of global existence for nonlinear Schrödinger and Klein–Gordon
equations, Nonlinear Analysis, 48 (2002), pp. 191–207.

[27] J. Zhang; Stability of standing waves for nonlinear Schrödinger equations with unbounded
potentials, Zeitschrift für angewandte Mathematik und Physik, 51 (2000), pp. 498–503.

[28] J. Zhang; Stability of attractive Bose–Einstein condensates, Journal of Statistical Physics,
101 (2000), pp. 731–746.

[29] J. Zhang; Cross-constrained variational problem and nonlinear Schrödinger equations, Foun-
dation of Computational Mathematics-Proceedings of the Smalefest, 2001, pp. 457–469.

Runzhang Xu
Department of Applied Mathematics, Harbin Engineering University, 150001, China

E-mail address: xurunzh@yahoo.com.cn

Chuang Xu
Department of Mathematiccal and Statistical Sciences, University of Alberta, Edmon-
ton T6G 2G1, Alberta, Canada
Department of Mathematics, Harbin Institute of Technology, 150001, China

E-mail address: xuchuang6305@163.com


	1. Introduction
	2. Preliminaries
	3. Three variational problems and invariant manifolds
	4. Sharp conditions for global existence
	5. Computing d1
	6. Cross-constrained problems and some trivial manifolds
	Acknowledgements

	References

