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EXISTENCE OF SOLUTIONS FOR CONVEX SWEEPING
PROCESSES IN p-UNIFORMLY SMOOTH AND q-UNIFORMLY

CONVEX BANACH SPACES

MESSAOUD BOUNKHEL

Abstract. We show the existence of at least one Lipschitz solution for ex-
tensions of convex sweeping processes in reflexive smooth Banach spaces. Our
result is proved under a weaker assumption on the moving set than those in
[3], and using a different discretization.

1. Main result

Bounkhel and Al-yusof [3] studied the following extension of the convex sweeping
processes from Hilbert spaces H to reflexive smooth Banach spaces X:

(SP) Find u : [0, T ] → X such that u(t) = u0 +
∫ t

0
u̇(s)ds,

− d

dt
(J(u(t))) ∈ N(C(t);u(t)) a.e. in [0, T ] and u(t) ∈ C(t),∀t ∈ [0, T ],

where J : X → X∗ is the duality mapping defined from X into X∗ (see Section 2
for the definition).

Clearly, (SP) coincides with the well known convex sweeping process introduced
and studied in [8] in the Hilbert space setting in which J is the identity mapping.
The authors in [3] proved the following theorem.

Theorem 1.1. Let p, q > 1, X be a p-uniformly convex and q-uniformly smooth
Banach space, T > 0, I = [0, T ] and C : I ⇒ X be a set-valued mapping closed
convex values satisfying for any t, t′ ∈ I and any x ∈ X

|(dV
C(t′))

1/q′
(ψ)− (dV

C(t))
1/q′

(φ)| ≤ λ|t′ − t|+ γ‖ψ − φ‖, (1.1)

where λ, γ > 0, and q′ = q
q−1 . Assume that

J(C(t)) ⊂ K,∀t ∈ I for some convex compact set K in X∗. (1.2)

Then (SP) has at least one Lipschitz solution

They proved the existence of solutions under the Lipschitz continuity of the
function (t, ψ) 7→ (dV

C(t))
1/q′

(ψ) defined on I × X∗, and under the compactness
assumption (1.2). Using a different discretization we prove the previous theorem

2000 Mathematics Subject Classification. 34A60, 49J53.
Key words and phrases. Uniformly smooth and uniformly convex Banach spaces;
state dependent sweeping process; generalized projection; duality mapping.
c©2012 Texas State University - San Marcos.
Submitted February 14, 2012. Published October 4, 2012.

1



2 M. BOUNKHEL EJDE-2012/168

under the boundedness of C and the compactness of their values which is clearly
weaker than the compactness assumption (1.2), and under the Lipschitz continuity
of the usual distance function t 7→ (dC(t))1/q′

(u), for all u ∈ X, defined on I which
is easier to handle with, than the function used in (1.1). Although, both Lipschitz
assumptions coincide in the Hilbert space setting, in the case of Banach spaces the
Lipschitz continuity of the distance function is easier to be checked than (1.1).

Before proving our main result in Theorem 3.1, we recall from [3] some needed
concepts and results and for more details we refer the reader to [3] and the references
therein.

2. Preliminaries

Let X be a Banach space with topological dual space X∗. We denote by dS the
usual distance function to S; i.e., dS(x) := infu∈S ‖x − u‖. Let S be a nonempty
closed convex set of X and x̄ be a point in S. The convex normal cone of S at x̄ is
defined by (see for instance [6])

N(S; x̄) = {ϕ ∈ X∗ : 〈ϕ, x− x̄〉 ≤ 0 for all x ∈ S}. (2.1)

The normalized duality mapping J : X ⇒ X∗ is defined by

J(x) = {j(x) ∈ X∗ : 〈j(x), x〉 = ‖x‖2 = ‖j(x)‖2}.
Many properties of the normalized duality mapping J have been studied. For the
details, one may see the books [1, 10, 11]. Let V : X∗ ×X → R be defined by

V (ϕ, x) = ‖ϕ‖2 − 2〈ϕ, x〉+ ‖x‖2, for any ϕ ∈ X∗ and x ∈ X.
Based on the functional V , a set πS(ϕ) of generalized projections of ϕ ∈ X∗ onto
S is defined as follows (see [2]).

Definition 2.1. Let S be a nonempty subset of X and ϕ ∈ X∗. If there exists a
point x̄ ∈ S satisfying

V (ϕ, x̄) = inf
x∈S

V (ϕ, x),

then x̄ is called a generalized projection of ϕ onto S. The set of all such points
is denoted by πS(ϕ). When the space X is not reflexive πS(ϕ) may be empty for
some elements ϕ ∈ X∗ even when S is closed and convex (see [7, Example 1.4]).

The two following propositions are needed in the proof of the main theorem. For
their proofs we refer the reader to [5, 9] respectively.

Proposition 2.2. Let S be a nonempty closed convex subset of X and x ∈ S. Then

∂dS(x) = NS(x) ∩B.

Proposition 2.3. For a nonempty closed convex subset S of a reflexive smooth
Banach space X and u ∈ S, the following assertions are equivalent:

(i) x̄ ∈ S is a projection of u onto S, that is x̄ ∈ PS(u);
(ii) 〈J(u− x̄), x− x̄〉 ≤ 0 for all x ∈ S;
(iii) J(u− x̄) ∈ N(S; x̄).

Assume now that X is p-uniformly convex and q-uniformly smooth Banach space
and let S be closed nonempty set in X. Recall the definition of the function
dV

S : X∗ → [0,∞[, given by dV
S (ϕ) = infx∈S V (ϕ, x). Clearly, in Hilbert spaces, dV

S

coincides with d2
S . We need the two following lemmas proved in [3].
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Lemma 2.4. Let p, q > 1, X be a p-uniformly convex and q-uniformly smooth
Banach space, and let S be a bounded set. Then there exist two constants α > 0
and β > 0 so that α‖x− y‖p ≤ V (J(x), y) ≤ β‖x− y‖q, for all x, y ∈ S.

Proposition 2.5. If S is a bounded set in X, then dV
S (ϕ) ≤ β(dS(J∗(ϕ)))q, where β

depends on the bound of S and on ϕ. As a consequence, for sets S1 and S2 in X and
X∗ bounded by l1 and l2 respectively, we have dV

S (ϕ) ≤ β(dS(J∗(ϕ)))q, for all ϕ ∈
S2, where β depends on l1 and l2.

The following proposition is taken from [1].

Proposition 2.6. Let p ≥ 2 and let X be a p-uniformly convex and q-uniformly
smooth Banach space. The duality mapping J : X → X∗ is Lipschitz on bounded
sets; that is,

‖J(x)− J(y)‖ ≤ C(R)‖x− y‖, for all ‖x ≤ R, ‖y‖ ≤ R.

Here C(R) := 32Lc22(q− 1)−1 and c2 = max{1, R} and 1 < L < 1.7. The Lipschitz
continuity on bounded sets of the duality mapping J∗ on X∗, follows from the fact
that X∗ is p′-uniformly convex and q′-uniformly smooth Banach space with p′ and
q′ are the conjugate numbers of p and q respectively; i.e., p′ = p

p−1 , q′ = q
q−1 .

The following proposition summarizes some results proved in [4, 7].

Proposition 2.7. Let X be a reflexive Banach space with dual space X∗ and S be
a nonempty, closed and convex subset of X. The following properties hold:

(π1) πS(ϕ) 6= ∅, for any ϕ ∈ X∗;
(π2) If X is also smooth, then ϕ ∈ N(S, x̄), if and only if, there exists α > 0

such that x̄ ∈ πS(J(x̄) + αϕ).

3. Main result

Now, we are ready to prove our main result in the following theorem.

Theorem 3.1. Instead of (1.1) and (1.2) in Theorem 1.1, assume that C is
bounded with compact values and that

|(dC(t′))p/q(u)− (dC(t))p/q(u)| ≤ λ|t′ − t|. (3.1)

Then (SP) has at least one Lipschitz solution.

Proof. Assume that T = 1. Consider ∀n ∈ N the following partition of I

In,i = (tn,i, tn,i+1], tn,i =
i

n
, 0 ≤ i ≤ n− 1, In,0 = {0}.

Put µn = 1/n. Fix n ≥ 2. Define by induction

un,0 = u0 ∈ C(0);

un,i+1 ∈ π(C(tn,i+1);un,i), for 0 ≤ i ≤ n− 1,

and

un(t) := J∗(u∗n(t))

u∗n(t) := J(un,i) +
(t− tn,i)

µn
(J(un,i+1)− J(un,i)), for all t ∈ In,i
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and u∗n(0) = J(u0). The construction is well defined since the generalized projection
π exits by Proposition 2.7. Clearly u∗n and un are continuous on all I and u∗n is
differentiable on I \ {tn,i} and u̇∗n(t) = J(un,i+1)−J(un,i)

µn
, for all t ∈ I \ {tn,i}.

Let us find an upper bound estimate for the expression ‖J(un,i+1) − J(un,i)‖.
First, we have to point out that the sequence un

i is bounded by some l because
the set-valued mapping C is bounded. Now, since X is q-uniformly smooth and
p-uniformly convex and the sequence un

i is bounded by l, there exist some constants
α and β depending on l such that

α‖un,i+1 − un,i‖p ≤ V (J(un,i), un,i+1) ≤ β‖un,i+1 − un,i‖q,

and so by the construction of the sequence un
i and Proposition 2.5 we obtain

α‖un,i+1)− un,i‖p ≤ dV
C(tn,i+1)

(J(un,i)) ≤ βdq
C(tn,i+1)

(un,i)

and so by the Lipschitz continuity in (3.1) we obtain

(
α

β
)

1
p ‖un,i+1)− un,i‖ ≤ d

q/p
C(tn,i+1)

(un,i)− d
q/p
C(tn,i)

(un,i)

≤ λ|tn,i+1 − tn,i| = λµn,

and so
‖un,i+1)− un,i‖ ≤ λ̄µn,

where λ̄ = (β
α )

1
pλ. Using now the Lipschitz property of the duality mapping J in

Proposition 2.6, we can write

‖J(un,i+1)− J(un,i)‖ ≤ C(l)‖un,i+1 − un,i‖ ≤ C(l)λ̄µn.

This inequality ensures the Lipschitz continuity of u∗n on all I with ratio δ := C(l)λ̄.
Using the characterization of the normal cone, in terms of the generalized projection
π projection operator stated in Proposition 2.7, we can write for a.e. t ∈ I

J(un,i+1)− J(un,i) ∈ −N(C(tn,i+1);un,i+1),

which ensures together with Proposition 2.2 that

−J(un,i+1)− J(un,i)
µn

∈ δ∂dC(tn,i+1)(un,i+1).

Define now on In,i the functions θn : I → I by θn(0) = 0, and

θn(t) = tn,i+1, for all t ∈ In,i.

Then the above inclusion becomes

− u̇∗n(t) ∈ δ∂dC(θn(t))(un(θn(t))). (3.2)

Now, let us prove that the sequence (un) has a convergent subsequence. Clearly, we
have B = {un;n ≥ 2} is equi-Lipschitz and bounded. So it remains to prove that
B(t) = {un(t);n ≥ 2} is relatively compact in X, for all t ∈ I. By construction we
have

un(θn(t)) ∈ C(θn(t)), ∀t ∈ I and all n ≥ 2, (3.3)

and hence by the Lipschitz property of dp/q
C and the equi-Lipschitz property of un

we can write

d
p/q
C(t)(un(t)) = d

p/q
C(t)(un(t))− d

p/q
C(θn(t))(un(θn(t)) ≤ λµn + ‖un(θn(t))− un(t)‖

≤ (λ+ δ)µn.
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Assume by contradiction that B(t0) is not relatively compact in X for some t0 ∈ I.
So, γ(B(t0)) ≥ 2δ̄ > 0, for some δ̄ ∈ (0, 1]. Fix now n0 ∈ N such that µn ≤ µn0 <
( δ̄
2 )p/q

λ+δ , for all n ≥ n0. So

un(t) ∈ C(t) + (λ+ δ)q/pµq/p
n0

B, for all n ≥ n0 and all t ∈ I,

which implies

B(t) ⊂ C(t) + (λ+ δ)q/pµq/p
n0

B, for all t ∈ I.

Then the properties of γ and the compactness of the values of C imply

γ(B(t0)) = γ({un(t0) : n ≥ n0}) ≤ γ((C(t0)) + γ((λ+ δ)q/pµq/p
n0

B)

≤ 2(λ+ δ)q/pµq/p
n0

< δ̄,

which is a contradiction. Therefore, the set B(t) is relatively compact in X for any
t ∈ I. Thus, Arzela-Ascoli theorem concludes that (un) has a subsequence (still
denoted un) converging uniformly to some u. Since limn θn(t) = t, we can write
limn un(θn(t)) = limn un(t) = u(t) uniformly on I. So the sequence u∗n = J(un) will
converge uniformly to u∗ = J(u) on I, since J is uniformly continuous on bounded
sets. We also have (u̇∗n) converges weakly star in L∞(I,X∗) to some w. So, by the
reflexivity and the separability of the space X, we can write

u∗(t) = J(u(t)) = lim
n
u∗n(t) = lim

n

(
u∗n(0) +

∫ t

0

u̇∗n(s)ds
)

= u0 +
∫ t

0

w(s)ds.

Hence u̇∗(t) = d
dtJ(u(t)) = w(t) a.e. on I. Let us prove that u is the solution of

our problem. First, we have to prove that u(t) ∈ C(t), for all t ∈ I. Using now the
Lipschitz property of the function t 7→ d

q/p
C(t) to write for all t ∈ I

d
q/p
C(t)(un(θn(t)) = d

q/p
C(t)(un(θn(t))− d

q/p
C(θn(t))(un(θn(t))

≤ λ|θn(t)− t| ≤ λµn,

and so

dC(t)(u(t)) = dC(t)(un(θn(t)) + ‖un(θn(t)− u(t)‖

≤ (λµn)p/q + ‖un(θn(t))− u(t)‖ → 0,

as n→∞, by the fact that limn un(θn(t)) = u(t) uniformly on I. So the closedness
of the set C(t) ensures u(t) ∈ C(t), for all t ∈ I. Going back to (3.2) we have

−u̇∗n(t)) ∈ N(C(θn(t));un(θn(t))), a.e. on I.

So, Proposition 2.2 ensures for a.e. t ∈ I,

〈−u̇∗n(t));x− un(θn(t))〉 ≤ 0, ∀x ∈ C(θn(t)). (3.4)

Using the fact that u̇∗n converges to d
dtJ(u(·)) in the weak star topology of L∞(I,X∗),

we can pass to the limit in (3.4) to obtain

〈− d

dt
J(u(t));x− u(t)〉 ≤ 0, ∀x ∈ C(t), a.e. on I. (3.5)

Indeed, fix t ∈ I, for which u̇∗n(t) exists and converges weakly to d
dtJ(u(t)), and let

x be any element in C(t). Then, we have

x ∈ C(θn(t)) + (λµn)q/pB;
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that is, x = yn(t) + (λµn)q/pbn, with bn ∈ B and yn(t) ∈ C(θn(t)). Hence (3.4)
yields

〈− d

dt
J(u(t)), x− u(t)〉

= 〈− d

dt
J(u(t)) + u̇∗n(t)), x− u(t)〉+ 〈−u̇∗n(t)), x− u(t)〉

= 〈− d

dt
J(u(t)) + u̇∗n(t)), x− u(t)〉+ 〈−u̇∗n(t)), un(θn(t))− u(t)〉

+ 〈−u̇∗n(t), yn(t)− un(θn(t))〉+ 〈−u̇∗n(t)), (λµn)q/pbn〉

≤ 〈u̇∗n(t))− d

dt
J(u(t)), x− u(t)〉+ λ(λµn)q/p + λ‖un

(
θn(t)− u(t)

)
‖ → 0

as n→∞. So,

〈− d

dt
J(u(t)), x− u(t)〉 ≤ 0, for all x ∈ C(t), (3.6)

which by Proposition 2.2 gives

− d

dt
J(u(t)) ∈ N(C(t);u(t)), a.e. on I (3.7)

and hence the proof is complete. �
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